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1 The probe method for inverse obstacle scattering
problems at a fixed wave number

In this paper we consider inverse problems for partial differential equations. We restrict
ourself to the reconstruction issue of the problems and refer the reader to [29] for several
aspects and uniqueness results in inverse problems for partial differential equations.

More than ten years ago Ikehata discovered two methods for the purpose of extracting
information about the location and shape of unknown discontinuity embedded in a known
background medium from observation data. The methods are called the probe and enclo-
sure methods. This paper presents their past and recent applications to inverse obstacle
scattering problems of acoustic wave.

The probe method was originally introduced in 1997 and published in [5]. Since then
the method has been applied to several inverse problems for partial differential equations
[6, 7, 13, 19, 20] and still now some new knowledge on the method itself added in [16, 21].

In this section we present one of typical applications of the probe method published
in [7]. Therein the author considered an inverse obstacle scattering problem at a fixed
wave number. We denote by $D$ and $B_{R}$ an unknown obstacle in $R^{3}$ and open ball radius
$R$, respectively. We assume that: $D$ is an open set with smooth boundary satisfying
$\overline{D}\subset B_{R}$ and that $B_{R}\backslash \overline{D}$ is connected. $\partial B_{R}$ indicates the location of the emitters and
the receivers.

Let $k>0$ . Given $y\in\partial B_{R}$ let $\Phi(x)=\Phi_{D}(x, y;k),$ $x\in R^{3}\backslash \overline{D}$ denote the solution of
the problem:

$(\triangle+k^{2})\Phi+\delta(\cdot-y)=0$ in $R^{3}\backslash \overline{D},$ $\frac{\partial\Phi}{\partial\nu}=0$ on $\partial D$

and the outgoing Sommerfeld radiation condition $\lim_{rarrow\infty}r(\partial\Phi/\partial\nu-ik\Phi)=0$ , where $r=|x|$

and $\nu$ is the outward normal relative to $D$ .
Inverse Problem 1.1. Fix $k$ . Reconstruct $D$ from the surface data $\Phi_{D}(x, y;k)$ given at
all $x\in\partial B_{R}$ and $y\in\partial B_{R}$ .

The $\Phi_{D}$ has the form $\Phi_{D}(x, y;k)=\Phi_{0}(x, y;k)+E_{D}(x, y;k)$ , where $E(x)=E_{D}(x, y;k)$

satisfies
$(\triangle+k^{2})E=0$ in $R^{3}\backslash \overline{D},$ $\frac{\partial E}{\partial\nu}=-\frac{\partial\Phi_{0}}{\partial\nu}$ on $\partial D$

and the outgoing Sommerfeld radiation condition $\lim_{farrow\infty}r(\partial E/\partial\nu-ikE)=0;\Phi_{0}(x, y;k)=$

$e^{ik|x-y|}/(4\pi|x-y|)$ . The $E_{D}(x, y;k)$ is called the scattered wave field generated by the
point source $\delta(\cdot-y)$ located at $y$ . $\Phi_{D}(x, y;k)$ is called the total wave field.

In [7] the author has established the following result.
Theorem 1.1. Assume that $k^{2}$ is not a Dirichlet eigenvalue for $-\triangle$ on $B_{R}$ nor an
eigenvalue $for-\triangle$ on $B_{R}\backslash \overline{D}$ with homogeneous Dirichlet boundary condition on $\partial B_{R}$

and Neumann boundary condition on $\partial D$ . Then one can reconstruct $D$ from $\Phi_{D}(x, y;k)$

given at all $x\in\partial B_{R}$ and $y\in\partial B_{R}$ .
A brief outline of the proof is as follows. Set $\Omega=B_{R}$ . We starts with introducing two

Dirichlet-to-Neumann maps for the Helmholtz equation in $\Omega\backslash \overline{D}$ and $\Omega$ .
Given $f\in H^{1/2}(\partial\Omega)$ let $u\in H^{1}(\Omega\backslash \overline{D})$ be the weak solution of the elliptic problem

$(\triangle+k^{2})u=0$ in $\Omega\backslash \overline{D},$ $\frac{\partial u}{\partial\nu}=0$ on $\partial D,$ $u=f$ on $\partial\Omega$ . (1.1)
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The map $\Lambda_{D}$ : $f\mapsto\partial u/\partial\nu|_{\partial\Omega}$ Is called the Dirichlet-to-Neumann map associated with
the elliptic problem. Set also $\Lambda_{D}=\Lambda_{0}$ for $D=\emptyset$ .

Theorem 1.1 is divided into two steps.
Step 1. One can calculate $\Lambda_{0}-\Lambda_{D}$ from $\Phi_{D}(x, y;k)$ given at all $x\in\partial\Omega$ and $y\in\partial\Omega$ .

Step 2. One can reconstruct $D$ itself from the integml $\int_{\partial\Omega}(\Lambda_{0}-\Lambda_{D})f\cdot\overline{f}dS$ for infinitely
many $fs$ independent of $D$ .

Note that the integral in Step 2 has the form

$\int_{\partial\Omega}(\Lambda_{0}-\Lambda_{D})f\cdot\overline{f}dS=\int_{\partial\Omega}(\frac{\partial v}{\partial\nu}\overline{u}-\frac{\partial u}{\partial\nu}\overline{v})dS$

where $v=v(x),$ $x\in\Omega$ solves $(\triangle+k^{2})v=0$ in $\Omega,$ $v=f$ on $\partial\Omega;u=u(x),$ $x\in\Omega\backslash \overline{D}$

solves (1.1) with $f=v|_{\partial\Omega}$ . Thus infinitely many $f$ means infinitely many $v$ .
The step 1 consists of two parts.

(i) Given $f$ find the solutions $g$ and $h$ of the integral equations

$\int_{\partial\Omega}\Phi_{0}(x, y;k)g(y)dS(y)=f(x),$ $\int_{\partial\Omega}\Phi_{D}(x, y;k)h(y)dS(y)=f(x),$ $x\in\partial\Omega$ .
(ii) Compute $(\Lambda_{0}-\Lambda_{D})f$ by using solutions $g$ and $h$ in (i) by the formula $(\Lambda_{0}-\Lambda_{D})f=$

$g-h$ .
This type of procedure, like (i) and (ii) has been known for the stationary Schr\"odinger
equation [35] and the proof is an adaptation of the argument. Thus the point is Step 2.

1.1 Step 2.
In this subsection we explain Step 2. Instead of the original formulation of the probe
method we employ a new one developed in [16, 21].

1.1.1 Needle, Needle sequence

Definition 1.1. Given a point $x\in\Omega$ we say that a non self-intersecting piecewise linear
curve $\sigma$ in St is a needle with tip at $x$ if $\sigma$ connects a point on $\partial\Omega$ with $x$ and other points
of $\sigma$ are contained in $\Omega$ . We denote by $N_{x}$ the set of all needles with tip at $x$ .

Let $b$ be a nonzero vector in $R^{3}$ . Given $x\in R^{3},$ $\rho>0$ and $\theta\in$ ] $0,$ $\pi[$ set $C_{x}(b, \theta/2)=$

$\{y\in R^{3}|(y-x)\cdot b>|y-x||b|\cos(\theta/2)\}$ and $B_{\rho}(x)=\{y\in R^{3}||y-x|<\rho\}$ . A set
having the form $V=B_{\rho}(x)\cap C_{x}(b, \theta/2)$ for some $\rho,$ $b,$ $\theta$ and $x$ is called a finite cone with
vertex at $x$ .

Let $G(y)$ be a solution of the Helmholtz equation in $R^{3}\backslash \{0\}$ such that, for any finite
cone $V$ with vertex at $0$

$\int_{V}|\nabla G(y)|^{2}dy=\infty$ .

Hereafter we fix this $G$ .
Definition 1.2. Let $\sigma\in N_{x}$ . We call the sequence $\{v_{n}\}$ of $H^{1}(\Omega)$ solutions of the
Helmholtz equation a needle sequence for $(x, \sigma)$ if it satisfies, for any compact set $K$ of
$R^{3}$ with $K\subset\Omega\backslash \sigma$

$\lim_{narrow\infty}(\Vert v_{n}(\cdot)-G(\cdot-x)\Vert_{L^{2}(K)}+\Vert\nabla\{v_{n}(\cdot)-G(\cdot-x)\}\Vert_{L^{2}(K)})=0$ .
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The eststence of the needle sequence is a consequence of the Runge approximation
property (cf.[30]) for the Helmholtz equation under the assumption on $k:k^{2}$ is not a
Dirichlet eigenvalue for-A on $\Omega$ . See the appendix of [7] and A. 1.Remark in the appendix
of [16] for the proof. The unique continuation property of the solution of the Helmholtz
equation is essential.

1.1.2 Special behaviour of the needle sequence

In the following we do not assume that $k^{2}$ is not an eigenvalue $for-\triangle$ in $\Omega$ with Dirichlet
boundary condition.
Lemma 1.1. Let $x\in\Omega$ be an arbitrargt point and $\sigma\in N_{x}$ . Let $\{v_{n}\}$ be an arbitmry needle
sequence for $(x,\sigma)$ . Then, for any finite cone $V$ with vertex at $x$ we have $\Vert\nabla v_{n}\Vert_{L^{2}(V\cap\Omega)}arrow$

$\infty$ as $narrow\infty$ .

Lemma 1.2. Let $x\in\Omega$ be an arbitrary point and $\sigma\in N_{x}$ . Let $\{v_{n}\}$ be an arbitrary
needle sequence for $(x,\sigma)$ . Then for any point $z\in\sigma$ and open ball $B$ centered at $z$ we
have $\Vert\nabla v_{n}\Vert_{L^{2}(B\cap\Omega)}arrow$ 科科 as $narrow$ 科科．

Note that $hom$ Definition 1.2 and Lemmas 1.1 and 1.2 one can recover $\sigma\in N_{x}$ itself from
the behaviour of any needle sequence for $(x, \sigma)$ .

Summing up, we see that $\{v_{n}\}$ has two different sides:
(A) converges to singular solution $G(y-x)$ with singularity at $y=x$ outside $\sigma$ ;
(B) blows up on $\sigma$ .
These different sides of needle sequences yield two sides of the probe method which we
call Side A and Side B.

1.1.3 Indicator function and Side A of the probe method

Let $v$ satisfy $(\triangle+k^{2})v=0$ in $\Omega$ and $u$ solve (1.1) with $f=v|_{\partial\Omega}$ . Set $w=u-v$ in $\Omega\backslash \overline{D}$ .
The $w$ satisfies

$(\triangle+k^{2})w=0$ in $\Omega\backslash \overline{D},$ $w=0$ on $\partial\Omega,$ $\frac{\partial w}{\partial\nu}=-\frac{\partial v}{\partial\nu}$ on $\partial D$ . (1.2)

Integration by parts yields

$\int_{\partial\Omega}(\Lambda_{\emptyset}-\Lambda_{D})(v|_{\partial\Omega})\cdot\overline{v}dS=\int_{D}|\nabla v|^{2}dy-k^{2}\int_{D}|v|^{2}dy$

(1.3)
$+ \int_{\Omega\backslash \overline{D}}|\nabla w|^{2}dy-k^{2}\int_{\Omega\backslash \overline{D}}|w|^{2}dy$ .

This motivates
Definition 1.3. The indicator function $I(x),$ $x\in\Omega\backslash \overline{D}$ is defined by the formula

$I(x)= \int_{D}|\nabla G(y-x)|^{2}dy-k^{2}\int_{D}|G(y-x)|^{2}dy+\int_{\Omega\backslash \overline{D}}|\nabla w_{x}|^{2}dy-k^{2}\int_{\Omega\backslash \overline{D}}|w_{x}|^{2}dy$ ,

where $w_{x}$ is the unique weak solution of the problem:

$(\triangle+k^{2})w=0$ in $\Omega\backslash \overline{D},$ $\frac{\partial w}{\partial\nu}=-\frac{\partial}{\partial\nu}(G(\cdot-x))$ on $D,$ $w=0$ on $\partial\Omega$ .
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The function $w_{x}$ is called the reflected solution by $D$ .
The following theorem is based on the convergence property of needle sequences and

says that
$\bullet$ one can calculate the value of the indicator function at an arbitrary point outside $D$

from $\Lambda_{0}-\Lambda_{D}$ ;
$\bullet$ the indicator function can not be continued across $\partial D$ as a bounded function in the
whole domain.

Thus one can reconstruct $\partial D$ as the singularity of the field $I(x)$ which can be computed
from the data with needles and needle sequences. That is the meaning of the following
result.

Theorem A. It holds that
$\bullet$ (A.1) given $x\in\Omega\backslash \overline{D}$ and needle $\sigma$ with tip at $x$ if $\sigma\cap\overline{D}=\emptyset$ , then for any needle
sequence $\{v_{n}\}$ for $(x, \sigma)$ we have $I(x)= \lim_{narrow\infty}\int_{\partial\Omega}(\Lambda_{0}-\Lambda_{D})(v_{n}|_{\partial\Omega})\cdot\overline{v_{n}}dS$ ;
$\bullet$ (A.2) for each $\epsilon>0\sup\{I(x)|dist(x, D)>\epsilon\}<\infty$;
$\bullet$ (A. 3) for any point $a \in\partial D\lim_{xarrow a}I(x)=\infty$ .

The key for (A.3) is to establish $\lim_{xarrow}\sup_{a}$ Il $w_{x}\Vert_{L^{2}(\Omega\backslash \overline{D})}<\infty$. An outline of the proof is
as follows. Using the solution of the boundary value problem: $(\triangle+k^{2})p=w_{x}$ in $\Omega\backslash \overline{D}$,
$p=0$ on $\partial\Omega$ and $\partial p/\partial\nu=0$ on $\partial D$ , we have the expression

$\int_{\Omega\backslash \overline{D}}|w_{x}|^{2}dy=\int_{\partial D}(p(x)-p(y))\frac{\partial\Phi_{0}}{\partial\nu}(y-x)dS(y)+k^{2}p(x)\int_{D}\overline{\Phi_{0}(y-x)}dy$.

Applying a standard regularity estimate of $p:\Vert p\Vert_{H^{2}(\Omega\backslash \overline{D})}\leq C\Vert w_{x}\Vert_{L^{2}(\Omega\backslash \overline{D})}$ and the Sobolev
imbedding: $|p(x)-p(y)|\leq C|x-y|^{1/2}\Vert p\Vert_{H^{2}(\Omega\backslash \overline{D})},$ $x,y\in\Omega\backslash \overline{D}$ and $\Vert p\Vert_{L(\Omega\backslash \overline{D})}\infty\leq$

$C\Vert p\Vert_{H^{2}(\Omega\backslash \overline{D})}$ to this right-hand side, one gets an upper bound of $\Vert w_{x}\Vert_{L^{2}(\Omega\backslash \overline{D})}$ which in-
volves integrals of weakly singular kernels over $\partial D$ and $D$ .

1.2 Remark I. Side $B$ of the probe method and an open problem
Since mathematically Theorem A is enough for establishing a reconstruction formula, in
the previous applications of the probe method we did not consider the following natural
question.
$\bullet$ Let $x\in\Omega$ and $\sigma\in N_{x}$ . Let $\xi=\{v_{n}\}$ be a needle sequence for $(x, \sigma)$ . What happens on
the sequence

$I(x, \sigma, \xi)_{n}\equiv\int_{\theta\Omega}(\Lambda_{0}-\Lambda_{D})(v_{n}|_{\partial\Omega})\cdot\overline{v_{n}}dS,$$n=1,2,$ $\cdots$

when $x$ is just located on the boundary of obstacles, inside or passing through the obsta-
cles? We call sequence $\{I(x, \sigma, \xi)_{n}\}$ the indicator sequence for $(x, \sigma)$ and $\xi$ .

In practice the tip of the needle can not move forward with infinitely small step and
therefore in the scanning process with needle there is a possibility of skipping the unknown
boundary of obstacles, entering inside or passing through obstacles. So for the practical
use of the probe method we have to clarify the behaviour of the indicator sequence in
those cases. The answer to this question is
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Theorem B. Assume that $k^{2}$ is sufficiently small (not specify here). Let $x\in\Omega$ and
$\sigma\in N_{x}$ . If $x\in\Omega\backslash \overline{D}$ and $\sigma\cap D\neq\emptyset$ or $xED$, then for any needle sequence $\xi=\{v_{n}\}$ for
$(x, \sigma)$ we have $\lim_{narrow\infty}I(x, \sigma,\xi)_{n}=\infty$ .
In the proof the blowing up property of needle sequences is essential.

A sketch of the proof. For simplicity, we consider here only a single obstacle case. We
make use of two well known Poincar\’e $s$ inequalities:

(I) $\Vert w\Vert_{L^{2}(\Omega\backslash \overline{D})}^{2}\leq C(\Omega\backslash \overline{D})\Vert\nabla w\Vert_{L^{2}(\Omega\backslash \overline{D})}^{2}$ for all $w\in H^{1}(\Omega\backslash \overline{D})$ with $w=0$ on $\partial\Omega$ ;

(II) $\Vert v-v_{D}\Vert_{L^{2}(D)}^{2}\leq C(D)\Vert\nabla v\Vert_{L^{2}(D)}^{2}$ for all $v\in H^{1}(D)$ , where $v_{D}= \int_{D}vdy/|D|$ .
Let $A$ be an arbitrary Lebesgue measurable set with $A\subset D,$ $|A|>0$ and $v\in L^{2}(D)$ .

A simple argument in [42] gives $\Vert v-v_{A}\Vert_{L^{2}(D)}^{2}\leq 2K_{A}\Vert v-v_{D}\Vert_{L^{2}(D)}^{2}$ , where $v_{A}= \int_{A}vdy/|A|$

and $K_{A}=1+|D|/|A|$ . A combination of this and (II) yields

$\int_{D}|v|^{2}dy\leq 4K_{A}C(D)\int_{D}|\nabla v|^{2}dy+2|D||v_{A}|^{2}$ . (14)

Let $u=u_{n}$ solve (1.1) with $f=v_{n}|_{\partial\Omega}$ and set $w_{n}=u_{n}-v_{n}$ . It follows $hom(1.3),$ $(I)$

and (1.4) that

$I(x, \sigma,\xi)_{n}\geq(1-k^{2}C(\Omega\backslash \overline{D}))\int_{\Omega\backslash \overline{D}}|\nabla w_{n}|^{2}dy$

$+(1-4k^{2}K_{A}C(D)) \int_{D}|\nabla v_{n}|^{2}dy-2k^{2}|D||(v_{n})_{A}|^{2}$ .

Thus if $k$ satisfies $k^{2}C(\Omega\backslash \overline{D})\leq 1$ , then we have

$I(x, \sigma, \xi)_{n}\geq(1-4k^{2}K_{A}C(D))\int_{D}|\nabla v_{n}|^{2}dy-2k^{2}|D||(v_{n})_{A}|^{2}$.

Write $1-4k^{2}K_{A}C(D)=1-8k^{2}C(D)-4k^{2}(K_{A}-2)C(D)$ . Here we make $k$ smaller in
such a way that $8k^{2}C(D)<1$ . Using an exhaustion of $\Omega\backslash \sigma$ , one can construct $A\subset D$

in such a way that $|A|\approx|D|$ and A $\subset\Omega\backslash \sigma$ . Since $K_{A}-2=|D|/|A|-1$ , one gets
$1-4k^{2}K_{A}C(D)>0$ . Note also that the sequence $\{(v_{n})_{A}\}$ is always convergent for a fixed
$A$ . Thus the blowing up property of the indicator sequence is governed by that of the
sequence $\{\Vert\nabla v_{n}\Vert_{L^{2}(D)}^{2}\}$ .

A combination of Theorems A and $B$ yields another characterization of the obstacle.
Corollary 1.1. Assume the smallness of $k^{2}$ same as Theorem B. A point $x\in\Omega$ belongs
to $\Omega\backslash \overline{D}$ if and only if there exists a needle $\sigma$ with tip at $x$ and needle sequence $\xi$ for $(x, \sigma)$

such that the indicator sequence is bounded from above.

Needless to say, this automatically gives a uniqueness theorem, too.
An open problem in the foundation of the probe method is the following.

Open problem 1.1. Can one remove the smallness of $k^{2}$ in Theorem $B$?
Here are some closely related technical questions.

$\bullet$ Is it true ?: if $x\in\Omega\backslash \overline{D}$ and $\sigma\cap D\neq\emptyset$ or $x\in\overline{D}$ , then

$\lim_{narrow\infty}\frac{||v_{n}\Vert_{L^{2}(D)}}{\Vert\nabla v_{n}||_{L^{2}(D)}}=0$ . (1.5)
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$\bullet$ Let $u=u_{n}$ solve (1.1) with $f=v_{n}|_{\partial\Omega}$ and set $w_{n}=u_{n}-v_{n}$ . We know that if $x\in\overline{D}$ ,
then $\Vert\nabla w_{n}\Vert_{L^{2}(\Omega\backslash \overline{D})}arrow\infty$ as $narrow\infty$ ([20]). The question is: identify the points in
$\overline{\Omega}\backslash D$ that really contribute the blowing up of $\nabla w_{n}$ . See [16] for an example in the case
when $k=0$.
$\bullet$ Is it true ?: if $x\in\Omega\backslash \overline{D}$ and $\sigma\cap D\neq\emptyset$ or $x\in\overline{D}$, then

$\lim_{narrow\infty}\frac{||w_{n}||_{L^{2}(\Omega\backslash \overline{D})}}{||\nabla v_{n}||_{L^{2}(D)}}=0$.

See [16, 19, 20] for more information on these questions.

1.3 Remark II. An explicit needle sequence
From Lemmas 1.1 and 1.2 we know that given $\sigma\in N_{x}$ the energy of an arbitrary needle
sequence $\{v_{n}\}$ for $(x, \sigma)$ blows up on $\sigma$ . However, it will be difficult to understand the
behaviour of $v_{n}(y)$

. at each $y\in\sigma$ . In this subsection, we give a family of special solutions
of the Helmholtz equation with two parameters that yields an explicit needle sequence for
a straight needle. We call such a family a generator of needle sequence.

The contents of this subsection are based on the classical materials developed by
Yarmukhamedov, Mittag-Lefller and Vekua.

1.3.1 Yarmukhamedov
The following fact is taken from the article [45].
Theorem 1.2. Let $K(w)$ be an entire function such that: $K(w)$ is real for real $w$ ;
$K(O)=1$ ; for each $R>0$ and $m=0,1,2|Re_{w|<R}sup|K^{(m)}(w)|<\infty$ .

Define
$-2 \pi^{2}\Phi_{K}(x)=\int_{0}^{\infty}Im(\frac{K(w)}{w}I\frac{du}{\sqrt{|x’|^{2}+u^{2}’}}$

where $w=x_{3}+i\sqrt{|x’|^{2}+u^{2}}$ and $x’=(x_{1}, x_{2})\neq(0,0)$ . Then one has the expression
$\Phi_{K}(x)=1/(4\pi|x|)+H_{K}(x)$ where $H_{K}$ satisfies $\triangle H_{K}(x)=0$ in $R^{3}$ .

Note that $\Phi_{K}$ can be identified with a unique distribution in the whole space and
satisfies $\triangle\Phi_{K}(x)+\delta(x)=0$ in $R^{3}$ .
Example 1. $K(w)\equiv 1$ . In this case we have $\Phi_{K}(x)=1/(4\pi|x|)$ . This is because of

$\frac{1}{4\pi|x|}=\int_{-\infty}^{\infty}\frac{du}{4\pi^{2}(|x|^{2}+u^{2})}$

and

$\frac{1}{|x|^{2}+u^{2}}=-{\rm Im}(\frac{1}{x_{3}+i\sqrt{|x’|^{2}+u^{2}}}I\frac{1}{\sqrt{|x’|^{2}+u^{2}}}\cdot$

Thus for general $K$ we have

$H_{K}(x)=- \frac{1}{2\pi^{2}}\int_{0}^{\infty}{\rm Im}(\frac{K(w)-1}{w}I\frac{du}{\sqrt{|x’|^{2}+u^{2}}}\cdot$
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Example 2. $K(w)\equiv e^{\tau w}$ . $\tau>0$ a parameter. In [12] the author pointed out that $\Phi_{K}(x)$

with this $K$ coincides with the Faddeev Green hnction $G_{z}(x)$ with $z=\tau(e_{3}+ie_{1})$ :

$G_{z}(x)= \frac{e^{x\cdot z}}{(2\pi)^{3}}\int_{R^{\theta}}\frac{e^{1x\cdot\eta}}{|\eta|^{2}-i2z\cdot\eta}d\eta$ .

The Faddeev Green function has been applied to several inverse boundary value/scattering
problems by Sylvester-Uhlmann [43], Novikov [36], Nachman [35], et al..

1.3.2 Mittag-Leffler

Let $0<\alpha\leq 1$ . The entire function of the complex variable $w$

$E_{\alpha}(w)=1+ \frac{w}{\Gamma(1+\alpha)}+\frac{w^{2}}{\Gamma(1+2\alpha)}+\frac{w^{3}}{\Gamma(1+3\alpha)}+\cdots$ ,

is introduced in [34] and called the Mttag-Leffler function.
It is known that $K(w)=E.(\tau w)$ with $\tau>0$ satisfies the condition in Theorem 1.2 (cf.

[2] $)$ . In [46] Yarmukhamedov applied this function with a fixed $\alpha$ to the Cauchy problem
for the Laplace equation in two dimensions.

1.3.3 Vekua

The Vekua transform $v T_{k}v$ in three dimensions [44] takes the form

$T_{k}v(y)=v(y)- \frac{k|y|}{2}\int_{0}^{1}v(ty)J_{1}(k|y|\sqrt{1-t})\sqrt{\frac{t}{1-t}}dt$

where $J_{1}$ stands for the Bessel function of order 1 of the first kind.
The important property of this transform is: if $v$ is harmonic in the whole space, then

$T_{k}v$ is a solution of the Helmholtz equation $\triangle u+k^{2}u=0$ in the whole space.

1.3.4 Generator of needle sequence

Using materials introduced by Yarmukhamedov, Mittag-LeMer and Vekua, the author
found an explicit needle sequence when the needle is given by a segment.

Given $0<\alpha\leq 1$ and $\tau>0$ define $v(y;\alpha, \tau)=-H_{K}(y),$ $y\in R^{3}$ , where $K(w)\equiv$

$E_{\alpha}(\tau w)$ . This $v$ is harmonic in the whole space and thus the function $v^{k}(y;\alpha, \tau)=$

$T_{k}v(y;\alpha, \tau),$ $y\in R^{3}$ satisfies the Helmholtz equation in the whole space.

Theorem 1.3([21]). Let $x\in\Omega$ and $\sigma$ be a stmight needle with tip at $x$ directed to
$\omega=(0,0,1)^{T}$ , that means: $\sigma$ has the expression $\sigma=\{x+s\omega|0\leq s\leq l\}$ nith $l>0$ .
Then the function $v^{k}(\cdot-x;\alpha, \tau)|_{\Omega}$ as $\alphaarrow 0$ and $\tauarrow\infty$ generates a needle sequence
for $(x, \sigma)$ with $G=G_{k}$ given by

$G_{k}(y)=Re( \frac{e^{|k|y|}}{4\pi|y|}I\cdot$

Note that since the function

$\frac{\sin k|y|}{4\pi|y|},$ $y\in R^{3}$

8

8



satisfies the Helmholtz equation in the whole space, the function

$v^{k}(y-x; \alpha, \tau)+i\frac{\sin k|y-x|}{4\pi|y-x|},$ $y\in\Omega$

generates also a needle sequence for $(x, \sigma)$ with

$G(y)= \frac{e^{|k|y|}}{4\pi|y|}$ . (16)

Thus now we have an explicit generator of a needle sequence for a straight needle with
(1.6). This makes the probe method completely explicit in the case when one uses only
such a needle. Everything is reduced to the choice of small $\alpha$ and large $\tau$ .

This is very important also in the singular sources method by Potthast [38] since in
his method one has to construct the density of the Herglotz wave function (cf. [3]) that
approximates locally the fundamental solution of the Helmholtz equation in a domain like
$\Omega\backslash \sigma$ . However, Theorem 1.3 shows that instead one can consider only a simpler problem:
construct the density of the Herglotz wave function that approximates $v^{k}(y-x;\alpha, \tau)$ on
the whole boundary of a geometrically simpler domain like a ball.
Open problem 1.2. It would be interesting: do the numerical testing of the probe and
singular sources methods in three dimensions with this explicit needle sequence.
Open problem 1.3. A mathematically interesting question is: find a generator of a
needle sequence for a general needle.

Note that Yarmukhamedov [47] made use of $\Phi_{K}(y-x)$ itself not its regular part
$H_{K}(y-x)$ to give a Carleman function which yields a representation of the solution of
the Cauchy problem for the Laplace equation in three dimensions.

Finally we give a remark that is closely related to Open problem 1.1. In [21] an explicit
formula of the precise values of $v^{k}(y-x;\alpha, \tau)$ on the line $y=x+s\omega(-oo<s<\infty)$ is
given. They are:
$\bullet$ if $y=x+s\omega$ with $s\neq 0$ , then

$v^{k}(y-x; \alpha, \tau)=\frac{1}{4\pi}\frac{E_{\alpha}(\tau s)-\cos ks}{s}-\frac{k}{4\pi}\int_{0}^{1}(1-w^{2})^{-1/2}E_{\alpha}(\tau(1-w^{2})s)J_{1}(ksw)dw$ ;

$\bullet$ if $y=x$ , then
$v^{k}(y-x; \alpha, \tau)|_{y=x}=\frac{\tau}{4\pi\Gamma(1+\alpha)}$ .

Moreover, we see that $\nabla v^{k}(y-x;\alpha, \tau)$ on the line $y=x+s\omega$ $(- 00<s<\infty)$ is parallel
to $\omega$ . In particular, we have

$\nabla v^{k}(y-x;\alpha, \tau)|_{y=x}=\frac{\tau^{2}}{4\pi\Gamma(1+2\alpha)}\omega$.

It seems that the behaviuor of $v^{k}(y-x;\alpha, \tau)$ and its gradient at $y=x$ suggest the validity
of (1.5).
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2 The enclosure method for inverse obstacle scatter-
ing problems at a fixed wave number

The enclosure method was introduced by the author in [10] and has been applied to
several inverse problems for partial differential equations. In this section we present its
applications to inverse obstacle scattering problems at a fixed wave number.

2.1 The enclosure method with infinitely many data
The method applied to inverse obstacle scattering problems is based on the asymptotic
behaviour of the function (we call the indicator function again)

$\mathcal{T}\int_{\partial\Omega}(\Lambda_{0}-\Lambda_{D})(v|_{\partial\Omega})\cdot\overline{v}dS$,

where $v=e^{x\cdot(i\sqrt{\tau^{2}+k^{2}}^{\perp})}\mathcal{T}td+td$ having large parameter $\tau$ ; both $\omega$ and $\omega^{\perp}$ are unit vectors
and perpendicular to each other.

This $v$ satisfies the Helmholtz equation $\triangle v+k^{2}v=0$ in the whole space and divides
the whole space into two parts: if $x\cdot\omega>t$ , then $e^{-\tau t}|v|arrow\infty$ as $\tauarrow\infty$ ; if $x\cdot\omega<t$ ,
then $e^{-\tau t}|v|arrow 0$ as $\tauarrow\infty$ .

The method yielded the convex hull of unknown sound-soft obstacles by checking the
behaviour of the indicator function. It virtually checks whether given $t$ the half space
$x\cdot\omega>t$ touches unknown obstacles.

In [9] an extraction formula of an sound-hard obstacle $D\subset R^{3}$ with a constrained on
the Gaussian curvature of $\partial D$ from Dirichlet-to-Neumann map $\Lambda_{D}$ has been established.
Its precise statement rewritten with the present style is the following.

Let us recall the support function of $D:h_{D}( \omega)=\sup_{x\in D}x\cdot\omega,$
$\omega\in S^{2}$ . The convex hull

of $D$ is given by the set $n_{\iota v\in S^{2}}\{x\in R^{3}|x\cdot\omega<h_{D}(\omega)\}$ . Therefore, knowing $h_{D}(\omega)$ for a
$\omega$ yields an estimation of the convex hull of $D$ from above.

Theorem 2.1. Assume that the set $\{x\in\partial D|x\cdot\omega=h_{D}(\omega)\}$ consists of only one point
and the Gaussian curvature of $\partial D$ doesn’t vanish at the point. Then the fomula

$\lim_{\tauarrow\infty}\frac{1}{2\tau}\log|\int_{\partial\Omega}(\Lambda_{0}-\Lambda_{D})(v|_{\partial\Omega})\cdot\overline{v}dS|=h_{D}(\omega)$ ,

is valid. Moreover, we have:
if $t>h_{D}(\omega)$ , then

$\lim_{\tauarrow\infty}\int_{\partial\Omega}(\Lambda_{0}-\Lambda_{D})(e^{-\tau t}v|_{\partial\Omega})\cdot\overline{e^{-\tau t}v}dS=0$ ;

if $t<h_{D}(\omega)$ , then

$\lim_{\tauarrow\infty}\int_{\partial\Omega}(\Lambda_{0}-\Lambda_{D})(e^{-\tau t}v|_{\partial\Omega})\cdot\overline{e^{-\tau t}v}dS=\infty$;

if $t=h_{D}(\omega)$ , then

$\lim_{\tauarrow}\inf_{\infty}\int_{\partial\Omega}(\Lambda_{0}-A_{D})(e^{-\tau t}v|_{\partial\Omega})\cdot\overline{e^{-\tau t}v}dS>0$.
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Note that: if one considers the Dirichlet boundary condition $u=0$ on $\partial D$ instead of
the Neumann boundary condition $\partial u/\partial\nu=0$ on $\partial D$ , one can drop the assumption on $\omega$

and the Gaussian curvature of $\partial D$ . See [10] for this result. Thus we propose
Open problem 2.1. Remove the curvature condition in Theorem 2.1.

A sketch of the proof of Theorem 2.1. Let $u$ solve (1.1) with $f=v|_{\partial\Omega}$ and set $w=$
$u-v$ in $\Omega\backslash \overline{D}$. The $w$ satisfies (1.2). We have three lemmas.
Lemma 2.1. There exists a positive constat $C(k)$ such that for all $\omega\in S^{2},$ $\tau>0$

$2 \tau^{2}\int_{D}e^{2\tau x\cdot\omega}dx-k^{2}\int_{\Omega\backslash \overline{D}}|w|^{2}d_{X}\leq\int_{\partial\Omega}(\Lambda_{0}-\Lambda_{D})(v|_{\partial\Omega})\cdot\overline{v}dS\leq C(k)(\tau^{2}+k^{2})\int_{D}e^{2\tau x\cdot v}dx$ .

This is a consequence of the representation formula (1.3) and the estimate $\Vert w\Vert_{H^{1}(\Omega\backslash \overline{D})}\leq$

$C(k)\Vert v\Vert_{H^{1}(D)}$ .
Lemma 2.2.

$\lim_{\tauarrow}\inf_{\infty}e^{-2\tau h_{D}(\omega)}\tau^{2}\int_{D}e^{2\tau x\cdot td}dx>0$ .

The proof of this lemma can be done by slicing $D$ with the planes $x\cdot\omega=h_{D}(\omega)-s$

with $0<s<<1$ .
Lemma 2.3. Assume that the set $\{x\in\partial D|x\cdot\omega=h_{D}(\omega)\}$ consists of the only one point
and the Gaussian curvature of $\partial D$ doesn’t vanish at the point. Then

$\lim_{rarrow\infty}\frac{\int_{\Omega\backslash \overline{D}}|w|^{2}dx}{2\tau^{2}\int_{D}e^{2\tau x\cdot\omega}dx}=0$.

From Lemmas 2.1, 2.2 and 2.3 one knows that there exist positive constants $C_{1},$ $C_{2}$

and $\tau_{0}>0$ such that for all $\tau\geq\tau_{0}$

$C_{1}e^{2\tau h_{D}(\omega)} \leq\int_{\partial\Omega}(\Lambda_{0}-\Lambda_{D})(v|_{\partial\Omega})\cdot\overline{v}dS\leq C_{2}\tau^{2}e^{2\tau h_{D}(\omega)}$ .

All the statements in Theorem 2.1 now follows from these estimates.
Finally we describe the outline of the proof of Lemma 2.3. One can find $p\in H^{2}(\Omega\backslash \overline{D})$

such that $(\triangle+k^{2})p=\varpi$ in $\Omega\backslash \overline{D},$ $p=0$ on $\partial\Omega$ and $\partial p/\partial\nu=0$ on $\partial D$ . From the Sobolev
imbedding and the estimate $\Vert p\Vert_{H^{2}(\Omega\backslash \overline{D})}\leq C(k)\Vert w\Vert_{L^{2}(\Omega\backslash \overline{D})}$ we have: $|p(x)-p(y)|\leq$

$C(k)|x-y|^{1/2}\Vert w\Vert_{L^{2}(\Omega\backslash \overline{D})}$ and
$x\in\backslash Ds_{\frac{u}{\Omega}}p|p(x)|\leq C(k)\Vert w\Vert_{L^{2}(\Omega\backslash \overline{D})}$

.

Let $x_{0}$ be the point in the set $\{x\in\partial D|x\cdot\omega=h_{D}(\omega)\}$ . Since $\int_{\partial D}(\partial v/\partial\nu)dS(x)=$

$-k^{2} \int_{D}vdx$ , one can write

$\int_{\Omega\backslash \overline{D}}|w|^{2}dx=-\int_{\partial D}p\frac{\partial v}{\partial\nu}dS(x)=\int_{\partial D}\{p(x_{0})-p(x)\}\frac{\partial v}{\partial\nu}dS(x)+k^{2}p(x_{0})\int_{D}vdx$ .

From these one gets

$\int_{\Omega\backslash \overline{D}}|w|^{2}dx\leq C(k)(\sqrt{2\tau^{2}+k^{2}}\int_{\partial D}|x_{0}-x|^{1/2}e^{\tau x\cdot\omega}dS(x)+\int_{D}e^{\tau x\cdot\omega}dx)\Vert w\Vert_{L^{2}(\Omega\backslash \overline{D})}$
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and this thus yields

$\int_{\Omega\backslash \overline{D}}|w|^{2}d_{X}\leq C(k)\{(\tau\int_{\partial D}|x_{0}-x|^{1/2}e^{\tau x\cdot\omega}dS(x))^{2}+(\int_{D}e^{\tau x\cdot\omega}dx)^{2}\}$.

The Schwarz inequality yields

$( \int_{D}e^{\tau x\cdot\omega}dx)^{2}\leq|D|\int_{D}e^{2\tau x\cdot\omega}dx$ .

Thus from this and Lemma 2.2 one knows that it suffices to prove

$\lim_{\tauarrow\infty}\tau e^{-\tau h_{D}(\omega)}\int_{\partial D}|x_{0}-x|^{1/2}e^{\tau x\cdot\omega}dS(x)=0$ .

In fact, one gets
$\tau e^{-\tau h_{D}(\omega)}\int_{\partial D}|x_{0}-x|^{1/2}e^{\tau x\cdot\omega}dS(x)=O(\tau^{-1/4})$ .

This is proved by using a localization at $x_{0}$ and a local coordinates at the point.

2.2 The enclosure method with a single incident plane wave
The idea started with considering an inverse boundary value problem for the Laplace
equation in two dimensions in [8]. Five years later in [15] the idea was applied to an
inverse obstacle scattering problem in two dimensions. The problem is to reconstruct a
two dimensional obstacle from the Cauchy data on a circle surrounding the obstacle of
the total wave field for a single incident plane wave with a fixed wave number.

In this subsection we assume that $D$ is polygonal, that is, $D$ takes the form $D_{1}\cup\cdots\cup D_{m}$

with $1\leq m<\infty$ where each $D_{j}$ is open and a polygon; $\overline{D}_{j}\cap\overline{D}_{j’}=\emptyset$ if $j\neq j’$ .
The total wave field $u$ outside obstacle $D$ satisfies

$\triangle u+k^{2}u=0$ in $R^{2}\backslash \overline{D},$ $\frac{\partial u}{\partial\nu}=0$ on $\partial D$

and the scattered wave $w=u-e^{ikx\cdot d}$ with $k>0$ and $d\in S^{1}$ satisfies the outgoing
Sommerefeld radiation condition $\lim_{farrow\infty}\sqrt{r}(\partial w/\partial r-ikw)=0$ , where $r=|x|$ .

Let $B_{R}$ be an open disc with radius $R$ satisfying $\overline{D}\subset B_{R}$ . We assume that $B_{R}$

is known. Our data are $u$ and $\partial u/\partial\nu$ on $\partial B_{R}$ . Let $\omega$ and $\omega^{\perp}$ be two unit vectors
perpendicular to each other. Set $z=\tau\omega+i\sqrt{\tau^{2}+k^{2}}\omega^{\perp}$ with $\tau>0$ and $v(x;z)=e^{x\cdot z}$ .
Recall $h_{D}( \omega)=\sup_{x\in D}x\cdot\omega$ .
Theorem 2.2. Assume that the set $\partial D\cap\{x\in R^{2}|x\cdot\omega=h_{D}(\omega)\}$ consists of only one
point. Then the formula

$\lim_{\tauarrow\infty}\frac{1}{\tau}\log|\int_{\partial B_{R}}(\frac{\partial u}{\partial\nu}v(x;z)-\frac{\partial v}{\partial\nu}(x;z)u)dS(x)|=h_{D}(\omega)$ ,

is valid. Moreover, we have:
if $t\geq h_{D}(\omega)$ , then

$\lim_{\tauarrow\infty}|\int_{\partial B_{R}}(\frac{\partial u}{\partial\nu}e^{-\tau t}v(x;z)-e^{-\tau t}\frac{\partial v}{\partial\nu}(x;z)u)dS(x)|=0$ ;
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if $t<h_{D}(\omega)$ , then

$\tau\lim_{arrow\infty}|\int_{\partial B_{R}}(\frac{\partial u}{\partial\nu}e^{-\tau t}v(x;z)-e^{-\tau t}\frac{\partial v}{\partial\nu}(x;z)u)dS(x)|=$科科．

Sketch of the proof. The one of key points is: intmducing a new pammeter $s$ instead
of $\tau$ by the equation $s=\sqrt{\tau^{2}+k^{2}}+\tau$ , we obtain, as $sarrow\infty$ the complete asymptotic
expansion

$\int_{\partial B_{R}}’(\frac{\partial u}{\partial\nu}v(x;z)-\frac{\partial v}{\partial\nu}(x;z)u)dS(x)e^{-\iota\sqrt{\tau^{2}+k^{2}}x0\cdot\omega^{\perp}-\tau h_{D}(\omega)}\sim-i\sum_{n=2}^{\infty}\frac{e^{1\frac{\pi}{2}\lambda_{n}}k^{\lambda_{n}}\alpha_{n}K_{n}}{s^{\lambda_{\mathfrak{n}}}}$. (21)

Here the $\lambda_{n}$ describes the singularity of $u$ at a comer and in this case explicitly given by
the formula $\lambda_{n}=(n-1)\pi/\Theta$ , where $\Theta$ denotes the outside angle of $D$ at $x_{0}\in\partial D\cap\{x\in$

$R^{2}|x\cdot\omega=h_{D}(\omega)\}$ and thus satisfies $\pi<\Theta<2\pi;K_{n}$ are constants depending on $\lambda_{n}$ ,
$\omega$ and shape of $D$ around $x_{0};\alpha_{2},$ $\alpha_{3},$ $\cdots$ are the coefficients of the convergent series
expansion of $u$ with polar coordinates at a corner:

$u(r, \theta)=\alpha_{1}J_{0}(kr)+\sum_{n=2}^{\infty}\alpha_{n}J_{\lambda_{n}}(kr)\cos\lambda_{n}\theta,$ $0<r<<1,0<\theta<\Theta$ .

Now all the statements in Theorem 2.2 follow from (2.1) and another key point: ョ$n\geq 2$

$\alpha_{n}K_{n}\neq 0$ . This is due to a contradiction argument. Assume that the assertion is not
true, that is, $\forall n\geq 2\alpha_{n}K_{n}=0$.

First we consider the case when $\Theta/\pi$ is irrational. In this case we see that $\forall n\geq$

$2K_{n}\neq 0$ . Thus $\alpha_{n}=0$ and this yields $u(r, \theta)=\alpha_{1}J_{0}(kr)$ near a corner. Since this
right-hand side is an entire solution of the Helmholtz equation, the unique continuation
property of the solution of the Helmholtz equation yields $u(x)=\alpha_{1}J_{0}(k|x-x_{0}|)$ in $R^{2}\backslash \overline{D}$.
However, we see that the asymptotic behaviour of this right-hand and left-hand sides are
completely different. Contradiction.

Next consider the case when $\Theta/\pi$ is a mtional. By carefully checking the constant
$K_{n}$ we know that for each $n\geq 2$ with $K_{n}=0$ the $\lambda_{n}$ becomes an integer. Rom the
assumption of the contradiction argument one knows if $n$ satisfies $K_{n}\neq 0$ , then $C_{n}=0$ .
Thus we have the expansion

$u(r, \theta)=\sum_{n_{j}}C_{n_{j}}J_{\lambda_{n_{j}}}(kr)\cos\lambda_{n_{j}}\theta$
,

where $n_{j}\geq 2$ satisfy $K_{n_{j}}=0$ . Since $\lambda_{n_{j}}$ is an integer and $\lambda_{n_{j}}\Theta=(n_{j}-1)\pi$ , from this
right-hand side one gets: for all $r$ with $0<r<<1\partial u/\partial\theta(r, \pi)=\partial u/\partial\theta(r, \Theta-\pi)=0$.
Then a reflection argument ([1]) yields that this is true for all $r>0$ . However, from this
together with the asymptotic behaviour of $\nabla u$ one can conclude that incident direction $d$

has to be parallel to two linearly independent vectors which are directed along the lines
$\theta=\pi$ and $\theta=\Theta-\pi$ . Contradiction.

Remarks are in order.
$\bullet$ In Theorem 2.2 one uses the Cauchy data on the circle surrounding the obstacle as the
observation data. However, $\partial u/\partial\nu$ on $B_{R}$ can be calculated from $u$ on $\partial B_{R}$ by solving an
exterior Dirichlet problem for the Helmholz equation.
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$\bullet$ In [18] a similar formula has been established by using the far field pattem $F_{D}(\varphi,d;k)$ ,
$\varphi\in S^{1}$ of scattered wave $w=u-e^{ikx\cdot d}$ for fixed $d$ and $k$ which determines the leading
term of the asymptotic expansion of $w$ at infinity in the following sense

$w(r \varphi)\sim\frac{e^{1kr}}{\sqrt{r}}F_{D}(\varphi,d;k)rarrow\infty$.

Moreover, therein instead of volumetric obstacle, similar formulae for thin sound-hard
obstacle (or screen) also have been established with two incident plane waves.
$\bullet$ In [37] the numerical testing of a method based on results in [14, 15, 18] has been
reported.
$\bullet$ It would be interesting to consider the case when the total wave $u$ satisfies the equation
$\nabla\cdot\gamma\nabla u+k^{2}u=0$ in $R^{2}$ where $\gamma(x)=1$ for $x\in R^{2}\backslash D$ and $\gamma(x)=A_{j}$ for $x\in D_{j}$ ,
$j=1,$ $\cdots,$ $m$ ; each $A_{j}$ are positive constants and $A_{j}\neq 1$ . The author thinks that this
case becomes extremely difficult because of the complicated behaviour of $u$ at a corner.
However we propose
Open problem 2.2. Establish Theorem 2.2 for $u$ above.
See [11] for $k=0$ and [17] for the equation $\nabla\cdot\gamma\nabla u+k^{2}\gamma u=0$ .
$\bullet$ For recent applications of the enclosure method with a single measurement for a system
arising in linear theory of elasticity we have [24, 25, 26]. However, their extension to the
elastic wave with a single incident plane wave remains open. It is a challenging problem
to be solved.

3 Inverse obstacle scattering problems with dynam-
ical data over a finite time interval

Previously we considered only the stationary or time harmonic problem. In this section
we consider how one can use the data over a finite time intemal to extract information
about the location and shape of unknown obstacles. In [28, 39, 40] some uniqueness
results have been established, however, it seems that mathematically rigorous study of
the reconstruction issue in this type of problem has not been paid much attention. Note
that: there are some results [31, 32, 33] in the context of the Lax-Phillips scattering
theory, which give the convex hull of an unknown obstacle, however, the data are taken
from $t=0$ to $t=\infty$ .

The purpose of this section is to introduce a new and simple method in [23] which is
an application of the idea developed in [22, 27] and employs the data over a finite time
interval on a known surface surrounding unknown obstacles.

3.1 New development of the enclosure method
In order to explain the basic idea, in this subsection we present an application to the
one-space dimensional wave equation which is taken from Appendix $B$ in [22]. Let $a>0$
and $c>0$ . Let $u=u(x, t)$ be a solution of the problem:

$\frac{1}{c^{2}}u_{tt}=u_{xx}$ in $]0,$ $a[\cross]0,$ $T[,$ $cu_{x}(a,$ $t)=0$ for $t\in]0,$ $T[$ ,

$u(x, 0)=0,$ $u_{t}(x, 0)=0$ in $]0,$ $a[$ .
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The quantity $c$ denotes the propagation speed of the signal governed by the equation.
Inverse Problem 3.1. Assume that $a$ is unknown. Extract $a$ from $u(O, t)$ and $u_{x}(0, t)$

for $0<t<T$ .
Theorem 3.1. Let $u_{x}(0, t)\in L^{2}(0, T)$ satisfy the condition: there exists a real number $\mu$

such that
$\lim_{\tauarrow}\inf_{\infty}\tau^{\mu}|\int_{0}^{T}u_{x}(0, t)e^{-\tau t}dt|>0$. (3.1)

Let $T>2a/c$ and $v(x, t)=v(x, t;\tau)=e^{-\tau(x/c+t)}$ . Then the formula
$\lim_{\tauarrow\infty}\frac{1}{\tau}\log|\int_{0}^{T}(-cv_{x}(0, t)u(0, t)+cu_{x}(0, t)v(0, t))dt|=-2a/c$ , (3.2)

is valid.

Some remarks are in order.
$\bullet$ The $v$ satisfies the wave equation $(1/c)^{2}v_{tt}=v_{xx}$ and satisfies: if $x+ct>0$ , then
$v(x, t)arrow 0$ as $\tauarrow\infty$ ; if $x+ct<0$ , then $v(x, t)arrow+\infty$ as $\tauarrow\infty$ .
$\bullet$ The quantity $2a/c$ coincides with the travel time of a signal governed by the wave
equation with propagation speed $c$ which starts at the boundary $x=0$ and initial time
$t=0$ , reflects another boundary $x=a$ and returns to $x=0$. Thus the restriction
$T>2a/c$ is quite reasonable and does not against the well known fact: the wave equation
has the finite propagation property.
$\bullet$ The condition (3.1) ensures that $u_{x}(0, t)$ can not be identically zero in an interval
$]0,$ $T’[\subset]0,$ $T[$ . Therefore surely a signal occurs at the initial time. However, it should be
emphasized that the formula (3.2) makes use of the averaged value of the measured data
with an exponential weight over the observation time. This is a completely different idea
from the well known approach in nondestructive evaluation by sound wave: monitoring
of the first arrival time of the echo, one knows the travel time.

A sketch of the proof of Theorem 3.1. Introduce the function $w$ by the formula

$w(x)=w(x; \tau)=\int_{0}^{T}u(x, t)e^{-\tau t}dt,$ $0<x<a$ .

It holds that
$c^{2}w’’-\tau^{2}w=e^{-\tau T}(u_{t}(x, T)+\tau u(x, T))$ in] $0,$ $a[,$ $\alpha v’(a)=0$ .

Then, this together with integration by parts gives the expression

$e^{2a\tau/c} \int_{0}^{T}(-cu_{x}(0, t)u(0, t)+cu_{x}(0, t)v(0, t))dt$

$= \tau w(a)e^{a\tau/c}-c^{-1}e^{-\tau(T-(2a/c))}\int_{0}^{a}(u_{t}(\xi, T)+\tau u(\xi, T))e^{-\xi\tau/c}d\xi$ .

Now (3.2) can be checked by studying the asymptotic behaviour of this right-hand side
with the help of the expression

$w(a)=- \frac{2cw^{f}(0)}{\tau(e^{a\tau/c}-e^{-a\tau/c})}-\frac{e^{-\tau T}}{\tau(e^{a\tau/c}-e^{-a\tau/c})}$

$\cross\{\int_{0}^{a}(u_{t}(\xi, T)+\tau u(\xi, T))e^{-\xi\tau/c}d\xi+\int_{0}^{a}(u_{t}(\xi, T)+\tau u(\xi, T))e^{\xi\tau/c}d\xi\}$
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together with (3.1).
The proof presented here heavily relies on the spaciality of onespace dimension. In

[27] we found another method for the proof which works also for higher space dimensions
and applied it to a similar problem for the heat equation. In the following two subsections
we present further applications of the method to the wave equations.

3.2 Sound-hard obstacle
Let $D\subset R^{3}$ be a bounded open set with smooth boundary such that $R^{3}\backslash \overline{D}$ is connected.
Denote by $\nu$ the unit outward normal to $\partial D$ . Let $0<T<\infty$ .

Given $f\in L^{2}(R^{3})$ with compact support satisfying $suppf\cap\overline{D}=\emptyset$ let $u=u(x, t)$

satisfy the initial boundary value problem:

$\partial_{t}^{2}u-\triangle u=0$ in $(R^{3}\backslash \overline{D})\cross]0,$ $T[, \frac{\partial u}{\partial\nu}=0 on \partial D\cross]0,$ $T[$ ,

$u(x, 0)=0,$ $\partial_{t}u(x,0)=f(x)$ in $R^{3}\backslash \overline{D}$ .

Let $\Omega$ be a bounded domain with smooth boundary such that $\overline{D}\subset\Omega$ and $R^{3}\backslash$ sri is
connected. Denote by the same symbol $\nu$ the unit outward normal to $\partial\Omega$ .

The $\partial\Omega$ is considered as the location of the receivers of the acoustic wave produced by
an emitter located at the support of $f$ . In this section we consider the following problem.
Inverse Problem 3.2. Assume that $D$ is unknown. Extract information about the
location and shape of $D$ from $u$ on $\partial\Omega\cross$ ] $0,$ $T[$ for some fixed knoum $f$ satisfying $suppf\cap$

St $=\emptyset$ and $T<\infty$ .
Note that $u$ in $(R^{3}\backslash \overline{\Omega})\cross]0,$ $T$ [ can be computed from $u$ on $\partial\Omega\cross$ ] $0,$ $T[$ by the formula

$u=z$ in $(R^{3}\backslash D)\cross]0,$ $T[$ (3.3)

where $z$ solves the initial boundary value problem in $R^{3}\backslash \prod$ :

$\partial_{t}^{2}z-\triangle z=0$ in $(R^{3}\backslash \overline{\Omega})\cross]0,$ $T[, z=u on \partial\Omega\cross]0,$ $T[$ ,

$z(x, 0)=0,$ $\partial_{t}z(x, 0)=f(x)$ in $R^{3}\backslash \overline{\Omega}$ .

Thus the problem can be reformulated as
Inverse Problem 3.2’. Extract information about the location and shape of $D$ from $u$

in $(R^{3}\backslash \overline{\Omega})\cross]0,$ $T[$ for some known $f$ satisfying $suppf\cap\overline{\Omega}=\emptyset$ and $T<\infty$ .
Now we state the result. Let $B$ be an open ball with $\overline{B}\cap$ St $=\emptyset$ . Choose the initial

data $f\in L^{2}(R^{3})$ in such a way that:
(Il) $f(x)=0$ a.e. $x\in R^{3}\backslash B$ ;
(I2) there exists a positive constant $C$ such that $f(x)\geq C$ a.e. $x\in Bor-f(x)\geq C$ a.e.
$x\in B$ .

Set
$w(x; \tau)=\int_{0}^{T}e^{-\tau t}u(x, t)dt,$ $x\in R^{3}\backslash \overline{D},$ $\tau>0$ .

Our result is the following extraction formula from $w$ and $\partial w/\partial\nu$ on $\partial\Omega\cross$ ] $0T[$ which can
be computed from the data $u$ in $(R^{3}\backslash \overline{\Omega})\cross]0,$ $T[$ .
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Theorem 3.2. Let $\tau>0$ and $v\in H^{1}(R^{3})$ be the weak solution of
$(\triangle-\tau^{2})v+f(x)=0inR^{3}$ .

If the observation time $T$ satisfies
(3.4)

$T>2$dist $(D, B)$ –dist $(\Omega, B)$ , (3.5)

then there exists a $\tau_{0}>0$ such that, for all $\tau\geq\tau_{0}$

$\int_{\partial\Omega}(\frac{\partial v}{\partial\nu}w-\frac{\partial w}{\partial\nu}v)dS>0$

and the formula

$\lim_{\tauarrow\infty}\frac{1}{2\tau}\log\int_{\partial\Omega}(\frac{\partial v}{\partial\nu}w-\frac{\partial w}{\partial\nu}v)dS=$ -dist $(D, B)$ , (3.6)

is valid.

Some remarks are in order.
$\bullet$ The $v$ is unique and is given by the explicit form

$v(x; \tau)=\frac{1}{4\pi}\int_{B}\frac{e^{-\tau|x-y|}}{|x-y|}f(y)dy,$ $x\in R^{3}$ .

$\bullet$ The quantity dist $(D, B)+\sqrt{|\partial B|/4\pi}$ coincides with the distance from the center of $B$

to $D$ and thus (3.6) yields the information about $d_{D}(p)$ for a given point $p$ in $R^{3}\backslash \overline{\Omega}$.
$\bullet$ It is easy to see that $2dist(D, B)$ -dist $(\Omega, B)\geq l(\partial B, \partial D, \partial\Omega)$ , where $l(\partial B, \partial D, \partial\Omega)=$

$\inf\{|x-y|+|y-z||x\in\partial B, y\in\partial D, z\in\partial\Omega\}$ . This is the minimum length of the bmken
paths that start at $x\in\partial B$ and reflect at $y\in\partial D$ and return to $z\in\partial\Omega$ . Therefore (3.5)
ensures that $T$ is greater than the first arrival time of a signal with the unit propagation
speed that starts at a point on $\partial B$ at $t=0$ , reflects at a point on $\partial D$ and goes to a point
on $\partial\Omega$ .

The main part of the proof of Theorem 3.2 is to show that

$\lim_{\tauarrow}\inf_{\infty}\tau^{4}e^{2\tau}$
dist

$(D,B) \int_{\partial\Omega}(\frac{\partial v}{\partial\nu}w-\frac{\partial w}{\partial\nu}v)dS>0$ . (3.7)

It is a consequence of the following representation formula which corresponds to (1.3) and
the estimate for $v$ :

$\int_{\partial\Omega}(\frac{\partial v}{\partial\nu}w-\frac{\partial w}{\partial\nu}v)dS$

$= \int_{D}|\nabla v|^{2}dx+\tau^{2}\int_{D}|v|^{2}dx+\int_{R^{3}\backslash \overline{D}}|\nabla(w-v)|^{2}dx+\tau^{2}\int_{R^{3}\backslash \overline{D}}|w-v|^{2}dx$

$+e^{-\tau T} \int_{R^{3}\backslash \overline{D}}(w-v)(\partial_{t}u(x, T)+\tau u(x, T))dx-e^{-\tau T}\int_{\Omega\backslash \overline{D}}(\partial_{t}u(x, T)+\tau u(x, T))vdx$;

$\lim_{\tauarrow}\inf_{\infty}\tau^{6}e^{2\tau}dist_{(D,B)}\int_{D}|v|^{2}dx>0$ . (3.8)

Note that the precise values of 4 and 6 of $\tau^{4}$ in (3.7) and $\tau^{6}$ in (3.8), respectively are not
essential.
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3.3 Penetrable obstacle
The method in the former subsection can be applied to a more general case. Given
$f\in L^{2}(R^{3})$ with compact support let $u=u(x,t)$ satisfy the initial value problem:

$\partial_{t}^{2}u-\nabla\cdot\gamma\nabla u=0$ in $R^{3}\cross]0,$ $T[$ ,
(3.9)

$u(x, 0)=0,$ $\partial_{t}u(x, 0)=f(x)$ in $R^{3}$ ,

where $\gamma=\gamma(x)=(\gamma_{1j}(x))$ satisfies: for each $i,j=1,2,3\gamma_{ij}(x)=\gamma_{ji}(x)\in L^{\infty}(R^{3})$; there
exists a positive constant $C$ such that $\gamma(x)\xi\cdot\xi\geq C|\xi|^{2}$ for all $\xi\in R^{3}$ and a. e. $x\in R^{3}$ .

We assume: there exists a bounded open set $D$ with a smooth boundary such that
$\gamma(x)$ a.e. $x\in R^{3}\backslash D$ coincides with the $3\cross 3$ identity matrix $I_{3}$ . Write $h(x)=\gamma(x)-I_{3}$

a.e. $x\in D$ .
Our second inverse problem is the following.

Inverse Problem 3.3. Assume that both $D$ and $h$ are unknown and that one of the
following two conditions is satisfied:
(Al) there exists a positive constant $C$ such $that-h(x)\xi\cdot\xi\geq|\xi|^{2}$ for all $\xi\in R^{3}$ and a.e.
$x\in D$ ;
(A2) there exists a positive constant $C$ such that $h(x)\xi\cdot\xi\geq|\xi|^{2}$ for all $\xi\in R^{3}$ and a.e.
$x\in D$ .
Let $\Omega$ be a bounded domain with smooth boundary such that $\overline{D}\subset\Omega$ . Extract information
about the location and shape of $D$ from $u$ on $\partial\Omega\cross$ ] $0,$ $T[$ for some fixed known $f$ satisfying
$suppf\cap$ St $=\emptyset$ and $T<\infty$ .

Note that $u$ in $(R^{3}\backslash \overline{\Omega})\cross]0,$ $T$ [ can be computed from $u$ on $\partial\Omega\cross$ ] $0,$ $T[$ by the exactly
same formula as (3.3) and thus the problem can be reformulated again as
Inverse Problem 3.3’. Extract information about the location and shape of $D$ from $u$

in $(R^{3}\backslash \Pi)\cross]0,$ $T[$ for some known $f$ satisfying $suppf\cap\overline{\Omega}=\emptyset$ and $T<\infty$ .
Now we state our second result.

Theorem 3.3. Assume that $\gamma$ satisfies (A 1) or $(A2)$ . Let $f$ satisfy (Il) and $(I2)$ in
subsection 3.2 and $v$ be the weak solution of (3.4). Let $T$ satisfies (3.5) and $w$ be given by

$w(x; \tau)=\int_{0}^{T}e^{-\tau t}u(x, t)dt,$ $x\in R^{3},$ $\tau>0$

with solution $u$ of (3.9). If $(Al)$ is satisfied, then there exists a $\tau_{0}>0$ such that, for all
$\tau\geq\tau_{0}$

$\int_{\partial\Omega}(\frac{\partial v}{\partial\nu}w-\frac{\partial w}{\partial\nu}v)dS>0$ ;

if $(A2)$ is satisfied, then there exists a $\tau_{0}>0$ such that, for all $\tau\geq\tau_{0}$

$- \int_{\partial\Omega}(\frac{\partial v}{\partial\nu}w-\frac{\partial w}{\partial\nu}v)dS>0$ .

In both cases we have

$\lim_{\tauarrow\infty}\frac{1}{2\tau}\log|\int_{\partial\Omega}(\frac{\partial v}{\partial\nu}w-\frac{\partial w}{\partial\nu}v)dS|=$ -dist $(D, B)$ .
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The key points for the proof are an estimate for $\nabla v$ similar to (3.8) and the following
two representation formula:

$\int_{\partial\Omega}\{(\nabla v\cdot\nu)w-(\gamma\nabla w\cdot\nu)v\}dS=-\int_{D}h\nabla v\cdot\nabla vdx$

$+ \int_{R^{3}}\gamma\nabla(w-v)\cdot\nabla(w-v)dx+\tau^{2}\int_{R^{3}}|w-v|^{2}dx$

$+e^{-\tau T} \int_{R^{3}}(\partial_{t}u(x, T)+\tau u(x, T))(w-v)dx-e^{-\tau T}\int_{\Omega}(\partial_{t}u(x, T)+\tau u(x,T))vdx$;

$- \int_{\partial\Omega}\{(\nabla v\cdot\nu)w-(\gamma\nabla w\cdot\nu)v\}dS=\int_{D}h\nabla w\cdot\nabla wdx$

$+ \int_{R^{3}}\nabla(v-w)\cdot\nabla(v-w)dx+\tau^{2}\int_{R^{3}}|v-w|^{2}dx$

$-e^{-\tau T} \int_{R^{3}}(\partial_{t}u(x, T)+\tau u(x, T))(v-w)dx+e^{-\tau T}\int_{\Omega}(\partial_{t}u(x, T)+\tau u(x, T))vdx$ .

4 Summary and further research direction
In this paper we presented: past applications of the probe and enclosure methods to
inverse obstacle scattering problems with a fixed wave number and related open problems;
recent applications of the enclosure method to inverse obstacle scattering problems with
dynamical data over a finite time interval.

In particular, in Section 3 we presented a new and simple method in [23] for a typical
class of inverse obstacle scattering problems that employs the values of the wave field over
a finite time interval on a known surface surrounding unknown obstacles as the observation
data. The wave field is generated by an initial data localized outside the surface and its
form is not specified except for the condition on the support. The method explicitly yields
information about the location and shape of the obstacles more than the convex hull.

It would be interesting to apply the method presented in Section 3 to other time
dependent problems in electromagnetism(e.g., subsurface mdar [4], micmwave tomogmphy
[41] $)$ , linear elasticity, classical fluids etc.. Those applications belong to our future plan.
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