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Abstract

A lifting is a continious map from a system to a compound system
introduced by Ohya and Accardi [1], and we can represent several dynam-
ical processes by using it. Liftings show the relation between two systems
in the compound system clearly, and it is useful to discuss not only the
communication process, but also an entanglement of it. In this study we
define a quantum mutual entropy using liftings and investigate the prop-
erty. We show that there exist some cases where the quantum mutual
entropy violates the Shannon inequality.

1 Introduction
In order to discuss the relation between two systems, we construct a map from
the state space of a system to the state space of another system. The map is
called a channel. Channels from the state space of a system to the state space of
a compound system are very important class, such channels are called liftings.
An example of liftings are the duals of transition expectation.

Let $\mathcal{H}_{1}$ and $\mathcal{H}_{2}$ be two separable Hilbert spaces and $\mathcal{B}(\mathcal{H})$ the set of all
bounded linear operators on $\mathcal{H}$ . For the set 6 $(\mathcal{H})$ of all density operators on
$\mathcal{H};6^{\vee}(\mathcal{H})=\{\rho;\rho\geq 0, tr\rho=1\}$ , we call a map from $\tilde{\not\in}(\mathcal{H}_{1})$ to $b^{\vee}(\mathcal{H}_{2})$ a channel.
If $\Lambda^{*}$ is affine, we call it a linear channel. We denote $\Lambda$ : $\mathcal{B}(\mathcal{H}_{2})arrow \mathcal{B}(\mathcal{H}_{1})$ by
a dual map of $\Lambda^{*}$ ; i.e., $tr\Lambda^{*}\rho A=tr\rho\Lambda A$ for all $\rho\in\langle\tilde{5}(\mathcal{H}_{1})$ and $A\in \mathcal{B}(\mathcal{H}_{2})$ .
If $\Lambda$ is a complete positive map (i.e., for all $n\in N,$ $A_{j}\in \mathcal{B}(\mathcal{H}_{2}),$ $B_{k}\in \mathcal{B}(\mathcal{H}_{1})$

holding $\sum_{j,k=1}^{n}B_{j}^{*}\Lambda(A_{j}^{*}A_{k})B_{k}\geq 0),$
$\Lambda^{*}$ is called a complete positive channel.

Channel is a mathematical tool to describe various physical processes[10].
Lifting was introduced by Accardi and Ohya in $C^{*}$ -dynamical systems[l] to

integrate various channels and open system dynamics. Here let our $C^{*}$ -algebras
are realized on some separable Hilbert spaces $\mathcal{H}_{1}$ and $\mathcal{H}_{2}.\cdot$ A continious map $\mathcal{E}^{*}$

from the state space $e^{\vee}(\mathcal{H}_{1})$ to the compound state space $\Theta^{\vee}(\mathcal{H}_{1}\otimes \mathcal{H}_{2})$ is called
a lifting:

$\mathcal{E}^{*}:e^{\vee}(\mathcal{H}_{1})arrow 0^{\vee}(\mathcal{H}_{1}\otimes \mathcal{H}_{2})$ .
The concept of lifting can be used to understand noncommutative probability.
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If $\mathcal{E}^{*}$ is affine and its dual is a completely positive map, we call it a CP linear
lifting. If it maps pure states into pure states, we call it pure. Remark that a
pure lifting sends a mixed state to either a pure or a mixed state. A lifting $hom$

$(\tilde{3}(\mathcal{H}_{1})$ to $\epsilon^{\vee}(\mathcal{H}_{1}\otimes \mathcal{H}_{2})$ is called non-demolition for a state $\rho_{1}\in\{\tilde{5}(\mathcal{H}_{1})$ if $\mathcal{E}^{*}$

holds the following condition

$tr_{2}\mathcal{E}^{*}\rho_{I}=\rho_{1}$

Given a state $\rho_{1}\in b^{\sim}(\mathcal{H}_{1})$ and a channel $\Lambda^{*}$ : $(\mathcal{H}_{1})arrow\Theta^{\vee}(\mathcal{H}_{2})$ , the fol-
lowing problem is important, that is, to find a standard lifting $\mathcal{E}^{*}:b^{\vee}(\mathcal{H}_{1})arrow$

$(\tilde{5}(\mathcal{H}_{1}\otimes \mathcal{H}_{2})$ such that it describe the correlation between of $\rho_{1}$ and $\Lambda^{*}\rho_{1}=$

$tr_{1}\mathcal{E}^{*}\rho_{1}$ . There are several solutions of this problem in the papers [1, 8, 10].

2 Quantum Mutual Entropy
The classical mutual entropy was introduced by Shannon to discuss the trans-
mission of information from an input system to an output system[5], then
Kolmogorov[6], Gelfand and Yaglom[2] gave a measure theoretic expression for
the mutual entropy by means of the relative entropy defined by Kullback and
Leibler. Shannon $s$ expression for mutual entropy was generalized for the finite-
dimensional quantum (matrix) case by Holevo[3, 4] and Lebtin[7]. Ohya took
the measure theoretic expression of KGY and defined quantum mutual entropy
by means of quantum relative entropy[8, 10].

Let $b^{\vee}$ be the set of all states in a certain $C^{*}$ -algebra (or von Neumann
algebra) describing a quantum system, and $\mu$ a measure decomposing the state
$\varphi$ into extremal orthogonal states in 6. Ohya $s$ definition of quantum mutual
entropy(QME in short) entropy is

Definition 1 $QMEw.r.t$. $\varphi$ and $\Lambda^{*}$ is defined $as[8,10]$

$I( \varphi;\Lambda^{*})\equiv\sup\{\int_{\mathfrak{S}}S^{Araki}(\Lambda^{*}\omega, \Lambda^{*}\varphi)d\mu;\varphi=\int_{ex\mathfrak{S}}\omega d\mu\}$

where $S^{Araki}$ is Araki’s relative entropy.

Definition 2 In the case that the $C^{*}$ -algebra is $B(\mathcal{H})$ and $\{\tilde{5}$ is the set of all
density operators, the above definition goes to

$I( \rho;\Lambda^{*})\equiv\sup\{\sum_{n}\lambda_{n}S^{Umegaki}(\Lambda^{*}E_{n}, \Lambda^{*}\rho);\rho=\sum_{n}\lambda_{n}E_{n}\}$

where $\rho$ is a density operator, $S^{Umegaki}$ is Umegaki’s mutual entropy and $\rho=$

$\sum_{n}\lambda_{n}E_{n}$ is the Schatten decomposition. The Schatten decomposition is no
always unique, so we take the supremum over all possible decompositions.
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Both are quantum input and quantum output case. When the input is
classical, i.e., the state is a probability distribution, the von Neumann-Schatten
decomposition is unique

$\rho=\sum_{n}\lambda_{n}\delta_{n}$

and if the channel is written as $\Lambda^{*}=\Gamma_{2}^{*}\Gamma i$ where $\Gamma_{1}^{*}$ is one for quantum coding,
i.e., $ri\delta_{n}=\rho_{n}$ , then the above mutual entropy generalizes Holevo’s one

$I( \rho;\Lambda^{*})=S(\Lambda^{*}\rho)-\sum_{n}\lambda_{n}S(\Lambda^{*}\rho)$

Moreover, let $\rho=\sum_{k}\lambda_{k}E_{k}$ be a Schatten decomposition of $\rho\in 6^{\vee}(\mathcal{H})$ and
let $\sigma_{E}$ be a compound state of $\rho$ and $\Lambda^{*}\rho$

$\sigma_{E}=\sum_{k}\lambda_{k}E_{k}\otimes\Lambda^{*}E_{k}$

Theorem 3 $[8JTheQMEI(\rho;\Lambda^{*})$ is

$I( \rho;\Lambda^{*})=\sup\{\sum_{n}\lambda_{n}S(\Lambda^{*}E_{n}, \Lambda^{*}\rho);E=\{E_{n}\}\}$

where $\sigma_{0}=\rho\otimes\Lambda^{*}\rho$ .

Theorem 4 $[8JI(\rho;\Lambda^{*})$ satisfies the following property:

1. If a channel $\Lambda^{*}$ is an $i.d.,$ $I(\rho;\Lambda^{*})$ is equal to $S(\rho)$

2. If the system is classical, $I(\rho;\Lambda^{*})$ is equal to classical mutual entropy

3. (The Shannon inequality) $0 \leq I(\rho;\Lambda^{*})\leq\min\{S(\rho), S(\Lambda^{*}\rho)\}$

These are discussed precisely in [11, 12].

3 Quantum Mutual Entropy defined by Lifting
In this section, we define the QME by using a lifting with the marginal condi-
tion. Then we study under which conditions this QME satisfies the Shannon
inequality.

Let $\Lambda^{*}$ be a complete positive channel from $\mathfrak{S}(\mathcal{H}_{1})$ to 6 $(\mathcal{H}_{2})$ and $\mathcal{E}^{*}a$

lifting from $(\tilde{5}(\mathcal{H}_{1})$ to $\Theta^{\vee}(\mathcal{H}_{1}\otimes \mathcal{H}_{2})$ . Here, we take the following two marginal
conditions:

(Ml) For an input state $\rho\in b^{\vee}(\mathcal{H}_{1})$ , it holds $tr_{2}\mathcal{E}^{*}\rho=\rho$ (non-demolition
property).

(M2) For a given channel $\Lambda^{*},$ $tr_{1}\mathcal{E}^{*}\rho=\Lambda^{*}\rho$ .
We define the QME w.r. $t$ . $\mathcal{E}^{*}$ as

$I_{L}(\rho;\mathcal{E}^{*})\equiv S(\mathcal{E}^{*}\rho_{)}\rho\otimes\Lambda^{*}\rho)$

90



Taking a supremum of $I_{L}(\rho;\mathcal{E}^{*})$ on the liftings $\epsilon*$ , the QME for a channel
$\Lambda^{*}$ is defined as

$I_{L}( \rho;\Lambda^{*})\equiv\sup_{\epsilon*}\{I_{L}(\rho;\mathcal{E}^{*});tr_{2}\mathcal{E}^{*}\rho=\rho, tr_{1}\mathcal{E}^{*}\rho=\Lambda^{*}\rho\}$

Let us check whether $I_{L}(\rho;\Lambda^{*})$ satisfies the Shannon inequality

$0\leq I_{L}(\rho;\Lambda^{*})\leq S(\rho)$ .

For a channel $\Lambda^{*}$ we can consider the following three liftings $\mathcal{E}_{i}^{*}(i=1,2,3)$ with
Ml and M2:

Casel: $\mathcal{E}_{1}^{*}\rho=\sum_{k}\lambda_{k}E_{k}\otimes\Lambda^{*}E_{k}$ , where $\rho=\sum_{k}\lambda_{k}E_{k}$ is a Schatten decomposition.

Case2: $\mathcal{E}_{2}^{*}\rho=\sum_{k}p_{k}\rho_{k}\otimes\Lambda^{*}\rho_{k}$ for $\rho=\sum_{k}p_{k}\rho_{k}$ . $\sum_{k}p_{k}=1,p_{k}\geq 0$

Case3: $\mathcal{E}_{3}^{*}$ is a pure lifting.

Concerning the Shannon inequality, we obtain the results below[13].

Theorem 5 $\mathcal{E}_{1}^{*}$ satisfies the marginal condition $Ml$ and $M2$ and the Shannon
inequality.

Theorem 6 $\mathcal{E}_{2}^{*}$ satisfies $Ml,$ $M2$, and the Shannon inequality.

From the above two theorems, we may conclude that if the lifting is a sep-
arable type, that is, $\mathcal{E}^{*}\rho$ is a separable state, then the Shannon inequality is
satisfied. On the contrary, there exists several entangled type pure liftings, that
is, $\mathcal{E}^{*}\rho$ is a pure entangled state, that does not satisfy the Shannon inequality.
In the rest of our paper, we give three examples of pure lifting $\mathcal{E}_{3}^{*}$ ; one is for
satisfying the Shannon inequality and two others are for not.

Example 7 In the case that a channel $\Lambda^{*}$ is written as

$\Lambda^{*}\rho=V\rho V^{*}$

where $V$ is a linear operator from $\mathcal{H}_{1}$ to $\mathcal{H}_{2}$ , the lifting $\mathcal{E}^{*}\rho=\rho\otimes V\rho V^{*}$ is pure.
Let $\rho=\sum_{k}\lambda_{k}E_{k}$ be a Schatten decomposition of $\rho$ , the lifting

$\mathcal{E}_{3}^{*}\rho=\sum_{k}\lambda_{k}E_{k}\otimes VE_{k}V^{*}$

is also pure. This is same as $\mathcal{E}_{1}^{*}$ so that it holds the Shannon’ inequality.

Example 8 Let $\{e_{k}^{1}\}$ and $\{e_{k}^{2}\}$ be two CONSs in $\mathcal{H}_{1}$ and $\mathcal{H}_{2}$ respectively, such
that $\{e_{k}^{1}\}$ gives the Schatten decomposition of $\rho$ :

$\rho=\sum_{k}\lambda_{k}E_{k}$
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$E_{k}=|e_{k}^{1}\rangle\langle e_{k}^{1}|$

We can give a pure lifting $\mathcal{E}_{3}^{*}$ as

$\mathcal{E}_{3}^{*}\rho=(\sum_{k}\sqrt{\lambda_{k}}|e_{k}^{1}\otimes e_{k}^{2}\rangle)(\sum_{l}\sqrt{\lambda_{l}}\langle e_{l}^{1}\otimes e_{l}^{2}|)$

This pure lifting $\mathcal{E}_{3}^{*}$ does not satisfy the Shannon inequality.

Proof. In this case, $\mathcal{E}_{3}^{*}\rho$ can be written as

$\mathcal{E}_{3}^{*}\rho=|\xi\rangle\langle\xi|$

$| \xi\rangle=\sum_{k}\sqrt{\lambda_{k}}|e_{k}^{1}\otimes e_{k}^{2}\rangle$
.

Since $\mathcal{E}_{3}^{*}\rho$ is a pure state, and $S(\mathcal{E}_{3}^{*}\rho)=0$ . For a general (i.e., pure or mixed)
state $\rho$ , one has

$S(\rho)=S(\Lambda^{*}\rho)$

where
$\rho=tr_{2}\mathcal{E}_{3}^{*}\rho$

$\Lambda^{*}\rho=tr_{1}\mathcal{E}_{3}^{*}\rho$

Then,

$I_{L}(\rho;\mathcal{E}_{3}^{*})=-S(\mathcal{E}_{3}^{*}\rho)+S(\rho)+S(\Lambda^{*}\rho)$

$=2S(\rho)$

which does not satisfy the Shannon inequality. $\blacksquare$

Example 9 Let a linear map $V$ : $\mathcal{H}_{1}arrow \mathcal{H}_{2}$ which defines a channel

$\Lambda\rho^{*}=V\rho V^{*}$ ,

We can define a pure lifting $\mathcal{E}_{3}^{*}$ as

$\mathcal{E}_{3}^{*}\rho=\sum_{k,l}\sqrt{\lambda_{k}}\sqrt{\lambda_{l}}|e_{k}^{1}\rangle\langle e_{l}^{1}|\otimes V|e_{k}^{1}\rangle\langle e_{l}^{1}|V^{*}$

Then $\mathcal{E}_{3}^{*}$ does not satisfy the Shannon inequality

Proof. $\mathcal{E}_{3}^{*}\rho$ holds marginal condition in fact:

$tr_{2}\mathcal{E}_{3}^{*}\rho=\sum_{m,k,l}\sqrt{\lambda_{k}}\sqrt{\lambda_{l}}\langle e_{m}^{2},$

$|e_{k}^{1}\otimes e_{k}^{2}\rangle\langle e_{l}^{1}\otimes e_{l}^{2}|e_{m}^{2}\rangle$

$= \sum_{k}\lambda_{k}|e_{k}^{1}\rangle\langle e_{k}^{1}|=\rho$
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$tr_{1}\mathcal{E}_{3}^{*}\rho=\sum_{n,k,l}\sqrt{\lambda_{k}}\sqrt{\lambda_{l}}\langle e_{n}^{1},$

$|e_{k}^{1}\otimes e_{k}^{2}\rangle\langle e_{l}^{1}\otimes e_{l}^{2}|e_{n}^{1}\rangle$

$= \sum_{l}\lambda_{l}|e_{l}^{2}\rangle\langle e_{l}^{2}|=\Lambda^{*}\rho$

Since $\mathcal{E}_{3}^{*}\rho$ is a pure state for a general state, one has $S(\mathcal{E}_{3}^{*}\rho)=0$ . As the same
discussion as 8, we obtain

$I_{L}(\rho;\mathcal{E}_{3}^{*})=2S(\rho)$ .

Therefore it does not satisfy the Shannon inequality. $\blacksquare$

4 Conclusion
We generalized a quantum mutual entropy by using liftings, so that we can
represent the relation between input and output precisely. In some cases, there
exists pure liftings which do not satisfy the Shannon inequality make an entan-
gled state.
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