Title
Hilbert Space Representations of Quantum Phase Spaces with General Degrees of Freedom (Duality and Scales in Quantum-Theoretical Sciences)

Author(s)
Arai, Asao

Citation
数理解析研究所講究録

Issue Date
2010-08

URL
http://hdl.handle.net/2433/170122

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Hilbert Space Representations of Quantum Phase Spaces with General Degrees of Freedom

Asao Arai (新井朝雄)
Department of Mathematics, Hokkaido University
Sapporo, Hokkaido 060-0810
Japan
E-mail: arai@math.sci.hokudai.ac.jp

Abstract

For each integer \(n \geq 2 \) and a parameter \(\Lambda = (\theta, \eta) \) with \(\theta \) and \(\eta \) being \(n \times n \) real anti-symmetric matrices, a quantum phase space (QPS) (or a non-commutative phase space) with \(n \) degrees of freedom, denoted \(\text{QPS}_n(\Lambda) \), is defined, where \(\theta \) and \(\eta \) are parameters measuring non-commutativity of the QPS. Some results on Hilbert space representations of \(\text{QPS}_n(\Lambda) \) are reported.

Keywords: Quantum phase space; non-commutative phase space; canonical commutation relations; quantum deformation.

Mathematics Subject Classification 2000: 81D05, 81R60, 47L60, 47N50

1 Introduction

As is well-known, one of the fundamental principles in von Neumann's axiomatic quantum mechanics is that a subset of physical quantities of a quantum system with \(n \) external degrees of freedom (\(n \in \mathbb{N} \)) are constructed from a self-adjoint representation of the canonical commutation relations (CCR) with \(n \) degrees of freedom, which is given by a triple \((\mathcal{H}, \mathcal{D}, \{Q_j, P_j\}_{j=1}^{n})\) consisting of a complex Hilbert space \(\mathcal{H} \), a dense subspace \(\mathcal{D} \) of \(\mathcal{H} \) and a set \(\{Q_j, P_j\}_{j=1}^{n} \) of self-adjoint operators on \(\mathcal{H} \) satisfying (i) \(\mathcal{D} \subset \cap_{j,k=1}^{n} D(Q_jQ_k) \cap D(P_jP_k) \cap D(Q_jP_k) \cap D(P_kQ_j) \), where, for a linear operator \(A \) on a Hilbert space, \(D(A) \) denotes the domain of \(A \); (ii) (CCR)

\[
[Q_j, Q_k] = 0, \quad [P_j, P_k] = 0, \quad [Q_j, P_k] = i\delta_{jk}, \quad j, k = 1, \cdots, n \tag{1.1}
\]

on \(\mathcal{D} \), where \([X,Y] := XY - YX \) is the imaginary unit and \(\delta_{jk} \) is the Kronecker delta. If \(Q_j \) and \(P_j \ (j = 1, \cdots, n) \) are not necessarily self-adjoint, but symmetric, then the triple \((\mathcal{H}, \mathcal{D}, \{Q_j, P_j\}_{j=1}^{n})\) is called a symmetric representation of the CCR with \(n \) degrees of freedom. This class of representations of CCR also plays important roles, e.g., in the theory of time operators ([1, 2, 3], [5, 6], [12]).
In commutation relations (1.1) and (1.2), non-commutativity is imposed only between Q_j and P_j ($j = 1, \cdots, n$). But, from a general mathematical point of view, it may be natural to extend non-commutativity to Q_j’s and P_j’s too. This idea leads us to a general concept of a quantum phase space (QPS) or a non-commutative phase space\(^1\). In this paper we propose one of possible
QPS’s and report some results on Hilbert space representations of it (for more details, see [4]).

In addition, we remark that non-commutative extensions of CCR have already been discussed in connection with quantum theory on non-commutative space-times (e.g., [7, 8, 9, 15]), non-commutative spaces (e.g., [10, 11]) and non-commutative phase spaces (e.g., [13, 14, 16, 17]). But it seems that representation theoretic investigations on non-commutative extensions of CCR have not yet been fully developed.

2 Hilbert Space Representations of a QPS

Let $n \in \mathbb{N}$ with $n \geq 2$. To define a QPS with n degrees of freedom, we take two $n \times n$ real anti-symmetric matrices \(\theta = (\theta_{jk})_{j,k=1,\cdots,n}\) and \(\eta = (\eta_{jk})_{j,k=1,\cdots,n}\). Then we introduce an algebra generated by $2n$ elements \(\hat{Q}_j, \hat{P}_j (j = 1, \cdots, n)\) and a unit element I obeying deformed CCR with n degrees of freedom

\[
\begin{align*}
[\hat{Q}_j, \hat{Q}_k] &= i\theta_{jk}I, \quad (2.1) \\
[\hat{P}_j, \hat{P}_k] &= i\eta_{jk}I, \quad (2.2) \\
[\hat{Q}_j, \hat{P}_k] &= i\delta_{jk}I, \quad j, k = 1, \cdots, n. \quad (2.3)
\end{align*}
\]

We call this algebra the QPS or the non-commutative phase space with n degrees of freedom and parameter

\[
\Lambda := (\eta, \theta). \quad (2.4)
\]

We denote it by $\text{QPS}_n(\Lambda)$.

It is obvious that \hat{Q}_j and \hat{Q}_k (resp. \hat{P}_j and \hat{P}_k) with $j \neq k$ do not commute if and only if $\theta_{jk} \neq 0$ (resp. $\eta_{jk} \neq 0$). Hence the parameter Λ “measures” the non-commutativity of \hat{Q}_j’s and \hat{P}_j’s respectively. Moreover $\text{QPS}_n(\Lambda)$ in the case $\theta = \eta = 0$ reduces to the algebra of the CCR with n degrees of freedom. Hence $\text{QPS}_n(\Lambda)$ can be regarded as a deformation of the algebra of the CCR with n degrees of freedom.

Let \mathcal{H} be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ (linear in the second variable) and norm $|| \cdot ||$. Let \mathcal{D} be a dense subspace of \mathcal{H} and \hat{Q}_j, \hat{P}_j be symmetric operators on \mathcal{H}.

Definition 2.1 We say that the triple $\left(\mathcal{H}, \mathcal{D}, \{\hat{Q}_j, \hat{P}_j\}_{j=1}^n\right)$ is a representation (on \mathcal{H}) of the algebra $\text{QPS}_n(\Lambda)$ if $\mathcal{D} \subset \cap_{j,k=1}^n D(\hat{Q}_j \hat{Q}_k) \cap D(\hat{P}_j \hat{P}_k) \cap D(\hat{Q}_j \hat{P}_k) \cap D(\hat{P}_j \hat{Q}_k)$ and it satisfy (2.1)–(2.3) on \mathcal{D} with I being the identity on \mathcal{H} (we sometimes omit the identity I below).

\(^1\)Note that the components x_j and p_j ($j = 1, \cdots, n$) of each element $(x_1, \cdots, x_n, p_1, \cdots, p_n)$ in the classical phase space $\mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n$ can be regarded as multiplication operators acting in $L^2(\mathbb{R}^{2n})$. They form a commutative algebra.
If all \hat{Q}_j and \hat{P}_j ($j = 1, \cdots, n$) are self-adjoint, we say that the representation $\left(\mathcal{H}, \mathcal{D}, \{\hat{Q}_j, \hat{P}_j\}_{j=1}^n \right)$ is self-adjoint.

In every representation $\left(\mathcal{H}, \mathcal{D}, \{\hat{Q}_j, \hat{P}_j\}_{j=1}^n \right)$ of QPS$_n(\Lambda)$, we have commutation relations (2.1)–(2.3) on \mathcal{D}. Hence the following Heisenberg uncertainty relations follow: for all $\psi \in \mathcal{D}$ with $\|\psi\| = 1$ and $j, k = 1, \cdots, n$,

\[
(\Delta \hat{Q}_j)_{\psi} (\Delta \hat{Q}_k)_\psi \geq \frac{1}{2}|\theta_{jk}|,
\]
(2.5)

\[
(\Delta \hat{P}_j)_{\psi} (\Delta \hat{P}_k)_\psi \geq \frac{1}{2}|\eta_{jk}|,
\]
(2.6)

\[
(\Delta \hat{Q}_j)_{\psi} (\Delta \hat{P}_k)_\psi \geq \frac{1}{2}|\delta_{jk}|,
\]
(2.7)

where, for a symmetric operator A and a vector $\psi \in D(A)$ with $\|\psi\| = 1$,

\[
(\Delta A)_{\psi} := \| (A - \langle \psi, A\psi \rangle) \psi \|,
\]

the uncertainty of A in the vector state ψ.

3 A Class of Self-Adjoint Representations of QPS$_n(\Lambda)$ on $L^2(\mathbb{R}^n)$

In this section, we show that there exist self-adjoint representations of QPS$_n(\Lambda)$ on $L^2(\mathbb{R}^n)$. This is done by using the Schrödinger representation of the CCR with n degrees of freedom.

We denote by $C_0^\infty(\mathbb{R}^n)$ the set of infinitely differentiable functions on \mathbb{R}^n with compact support.

Let $\left(L^2(\mathbb{R}^n), C_0^\infty(\mathbb{R}^n), \{q_j, p_j\}_{j=1}^n \right)$ be the Schrödinger representation of the CCR with n degrees of freedom, namely, q_j is the multiplication operator by the jth variable x_j on $L^2(\mathbb{R}^n)$ and $p_j := -iD_j$ with D_j being the generalized partial differential operator in x_j on $L^2(\mathbb{R}^n)$, so that

\[
[q_j, p_k] = i\delta_{jk},
\]
(3.1)

\[
[q_j, q_k] = 0, \quad [p_j, p_k] = 0, \quad j, k = 1, \cdots, n,
\]
(3.2)

on the subspace $C_0^\infty(\mathbb{R}^n)$.

Lemma 3.1 For all $a_j, b_j \in \mathbb{R}, j = 1, \cdots, n$, $\sum_{j=1}^n (a_j p_j + b_j q_j)$ is essentially self-adjoint on $C_0^\infty(\mathbb{R}^n)$.

For an n-tuple $L = (L_1, \cdots, L_n)$ of linear operators $L_j, j = 1, \cdots, n,$ on a Hilbert space and an $n \times n$ matrix $A = (A_{jk})_{j,k=1,\cdots,n}$, we define the n-tuple $AL = ((AL)_1, \cdots, (AL)_n)$ of linear operators by

\[
(AL)_j := \sum_{k=1}^n A_{jk} L_k.
\]
(3.3)
We say that the parameter $\Lambda = (\theta, \eta)$ is normal if there exist $n \times n$ real matrices A, B, C and D satisfying

\begin{align}
A^t D - B^t C &= I_n, \\
A^t B - B^t A &= \theta, \\
C^t D - D^t C &= \eta,
\end{align}

where I_n is the $n \times n$ unit matrix and $^t A$ denotes the transposed matrix of A.

For a normal parameter Λ with (3.4)-(3.6), we can define a $(2n) \times (2n)$ matrix:

$G := \begin{pmatrix} A & B \\ C & D \end{pmatrix}$.

Let

$K(\Lambda) := \begin{pmatrix} \theta I_n & I_n \\ -I_n & \eta \end{pmatrix}$, \hspace{1em} $J_n := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$.

Then we have

$G J_n^t G = K(\Lambda)$.

Conversely, if a $(2n) \times (2n)$ real matrix G of the form (3.7) satisfies (3.9), then A, B, C and D obey relations (3.4)-(3.6).

Thus Λ is normal if and only if there exists a $(2n) \times (2n)$ real matrix G satisfying (3.9). In that case, we call G a generating matrix of Λ.

We remark that, for a normal parameter Λ, its generating matrices are not unique. For example, if G is a generating matrix of Λ, then, for all orthogonal matrix M commuting with $K(\Lambda)$, MG is a generating matrix of Λ too.

Suppose that Λ is normal with (3.4)-(3.6). We set

$q = (q_1, \cdots, q_n), \hspace{1em} p = (p_1, \cdots, p_n)$

and define

$\tilde{q} := A q + B p, \hspace{1em} \tilde{p} := C q + D p$.

Then, by Lemma 3.1, the operators \tilde{q}_j and \tilde{p}_j ($j = 1, \cdots, n$) are essentially self-adjoint on $C_0^\infty(\mathbb{R}^n)$. Hence their closures \tilde{q}_j and \tilde{p}_j are self-adjoint\(^2\). Moreover, we have the following result:

Theorem 3.2 The set $(L^2(\mathbb{R}^n), C_0^\infty(\mathbb{R}^n), \{\tilde{q}_j, \tilde{p}_j\}_{j=1,\cdots,n})$ is a self-adjoint representation of $QPS_n(\Lambda)$.

We call the representation $(L^2(\mathbb{R}^n), C_0^\infty(\mathbb{R}^n), \{\tilde{q}_j, \tilde{p}_j\}_{j=1,\cdots,n})$ the quasi-Schrödinger representation of $QPS_n(\Lambda)$ with generating matrix G of the form (3.7).

\(^2\)For a closable linear operator T, we denote its closure by \overline{T}.
Remark 3.3 One can write
\[
\begin{pmatrix}
\hat{q}_1 \\
n \\
\hat{p}_1 \\
\vdots \\
\hat{q}_n \\
\hat{p}_n
\end{pmatrix} = G
\begin{pmatrix}
q_1 \\
n \\
p_1 \\
\vdots \\
q_n \\
p_n
\end{pmatrix}
\] (3.12)
on \cap_{j=1}^n D(q_j) \cap D(p_j). Equation (3.9) is rewritten as follows:
\[
GJ_n G = J_n + \delta(\Lambda)
\] (3.13)
with
\[
\delta(\Lambda) := \begin{pmatrix}
\theta & 0 \\
0 & \eta
\end{pmatrix}.
\] (3.14)

Hence \'G is symplectic if and only if \(\delta(\Lambda) = 0\) (i.e., \(\theta = \eta = 0\)). Therefore the matrix \(\delta(\Lambda)\) represents a difference from the symplectic relation. Note that the diagonal element \(\theta\) (resp. \(\eta\)) of \(\delta(\Lambda)\) gives the non-commutativity of \(\hat{q}_j\)'s (resp. \(\hat{p}_k\)'s) \((j, k = 1, \ldots, n)\).

3.1 The Schrödinger representation of QPS

It may be interesting to consider a special case of \(\Lambda\). Let \(a \geq 0, b \geq 0\) be constants and
\[
\xi := \frac{1}{\sqrt{1 + \frac{ab}{4}}}.
\] (3.15)

Let \(\gamma\) be an \(n \times n\) real anti-symmetric matrix satisfying
\[
\gamma^2 = -I_n.
\] (3.16)

Then the parameter
\[
\Lambda_S := (\xi^2 a\gamma, \xi^2 b\gamma) \quad \text{(the case } \theta = \xi^2 a\gamma, \eta = \xi^2 b\gamma)\] (3.17)
is normal, since the matrix
\[
G_S := \begin{pmatrix}
\xi I_n & -\frac{1}{2} \xi a\gamma \\
\frac{1}{2} \xi b\gamma & \xi I_n,
\end{pmatrix}
\] (3.18)
is a generating matrix of \(\Lambda_S\), as is easily checked. We denote \(\tilde{q}_j\) and \(\tilde{p}_j\) in the present case by \(\hat{q}_j^{(S)}\) and \(\hat{p}_j^{(S)}\) respectively:
\[
\hat{q}_j^{(S)} := \xi \left(q_j - \frac{1}{2} a(\gamma p)_j \right), \quad \hat{p}_j^{(S)} := \xi \left(p_j + \frac{1}{2} b(\gamma q)_j \right), \quad j = 1, \ldots, n.
\] (3.19)

We call this self-adjoint representation \(\left(L^2(\mathbb{R}^n), C_0^\infty(\mathbb{R}^n), \{\hat{q}_j^{(S)}, \hat{p}_j^{(S)}\}_{j=1,\cdots,n} \right) \) of \(\text{QPS}_n(\Lambda_S)\) the \textit{Schrödinger representation of QPS}_n(\Lambda_S).

55
3.2 Reconstruction of the Schrödinger representation of the CCR with n degrees of freedom

In this subsection, we consider reconstruction of q_j and p_j in terms of \hat{q}_j and \hat{p}_j. By (3.12), this problem may be reduced by the invertibility of the matrix G. From this point of view, we introduce a class of parameters Λ.

We say that Λ is regular if it is normal and has an invertible generating matrix. It follows from (3.9) that, if Λ is regular, then every generating matrix of Λ is invertible.

The next lemma characterizes the regularity of Λ:

Lemma 3.4 Let Λ be normal with a generating matrix G given by (3.7). Then Λ is regular if and only if $I_n + \theta \eta$ and $I_n + \eta \theta$ are invertible. In that case, G is invertible and

\[
(G^{-1})_n G^{-1} = - \begin{pmatrix} (I_n + \eta \theta)^{-1} \eta & -(I_n + \eta \theta)^{-1} \\ (I_n + \theta \eta)^{-1} \theta & (I_n + \theta \eta)^{-1} \end{pmatrix}.
\]

Let Λ be regular with a generating matrix G. Then we can write

\[
G^{-1} = \begin{pmatrix} F_1 & F_2 \\ F_3 & F_4 \end{pmatrix},
\]

where F_1, F_2, F_3 and F_4 are $n \times n$ real matrices.

Let

\[
\hat{q} := (\hat{q}_1, \ldots, \hat{q}_n), \quad \hat{p} := (\hat{p}_1, \ldots, \hat{p}_n).
\]

Theorem 3.5 The following equations hold:

\[
q = F_1 \hat{q} + F_2 \hat{p}, \quad p = F_3 \hat{q} + F_4 \hat{p}.
\]

on $\bigcap_{j=1}^n D(q_j) \cap D(p_j)$.

Theorem 3.5 also implies relations of matrix elements of G^{-1}:

Corollary 3.6

\[
F_1 \theta F_1 + F_2 \eta F_2 + F_1 \eta F_2 - F_2 \theta F_1 = 0,
\]

\[
F_3 \theta F_3 + F_4 \eta F_4 + F_3 \eta F_4 - F_4 \theta F_3 = 0,
\]

\[
F_1 \theta F_3 + F_2 \eta F_4 + F_1 \eta F_4 - F_2 \theta F_3 = I_n.
\]

We now apply Theorem 3.5 to the Schrödinger representation $\{\hat{q}_j^{(S)}, \hat{p}_j^{(S)}\}_{j=1}^n$ of $\text{QPS}_n(\Lambda_S)$:

Corollary 3.7 Let a, b, ξ and γ be as in Subsection 3.1. Suppose that

\[
\chi := 1 - \frac{1}{4} ab \neq 0.
\]
Then
\[q_j = \frac{1}{\xi \chi} \left(\hat{q}_j^{(S)} + \frac{1}{2} a(\gamma \hat{p}^{(S)})_j \right), \quad (3.28) \]
\[p_j = \frac{1}{\xi \chi} \left(\hat{p}_j^{(S)} - \frac{1}{2} b(\gamma \hat{q}^{(S)})_j \right), \quad j = 1, \ldots, n, \quad (3.29) \]
on $C_0^\infty(\mathbb{R}^n)$.

4 General Correspondence Between a Representation of $QPS_n(\Lambda)$ and a Representation of the CCR with n Degrees of Freedom

4.1 Construction of a representation of $QPS_n(\Lambda)$ from a representation of the CCR with n degrees of freedom

The contents in Section 2 suggest a general method to construct a representation of $QPS_n(\Lambda)$ from a representation of the CCR with n degrees of freedom.

Let $\left(\mathcal{H}, \mathcal{D}, \{Q_j, P_j\}_{j=1}^n \right)$ be a representation of the CCR with n degrees of freedom, namely, \mathcal{H} is a Hilbert space, \mathcal{D} is a dense subspace of \mathcal{H} and Q_j and P_j ($j = 1, \ldots, n$) are symmetric operators on \mathcal{H} such that $\mathcal{D} \subset \cap_{j,k=1}^n D(Q_j Q_k) \cap D(P_j P_k) \cap D(Q_j P_k) \cap D(P_k Q_j)$ and $\{Q_j, P_j\}_{j=1}^n$ obeys the CCR with n degrees of freedom on \mathcal{D}: for $j, k = 1, \ldots, n$,
\[[Q_j, Q_k] = 0, \quad [P_j, P_k] = 0, \quad [Q_j, P_k] = i\delta_{jk} \quad (4.1) \]
on \mathcal{D}. Let
\[Q = (Q_1, \ldots, Q_n), \quad P = (P_1, \ldots, P_n). \]

Let Λ be normal and A, B, C, D be $n \times n$ real matrices obeying (3.4)-(3.6). By an analogy with (3.11), we define the n-tuples
\[\hat{Q} := (\hat{Q}_1, \ldots, \hat{Q}_n), \quad (4.2) \]
and
\[\hat{P} := (\hat{P}_1, \ldots, \hat{P}_n), \quad (4.3) \]
by
\[\hat{Q} := AQ + BP, \quad \hat{P} := CQ + DP. \quad (4.4) \]

Theorem 4.1 The set $\left(\mathcal{H}, \mathcal{D}, \{\hat{Q}_j, \hat{P}_j\}_{j=1}^n \right)$ defined by (4.4) is a representation of $QPS_n(\Lambda)$.

We remark that the representation $\left(\mathcal{H}, \mathcal{D}, \{\hat{Q}_j, \hat{P}_j\}_{j=1}^n \right)$ of $QPS_n(\Lambda)$ is not necessarily self-adjoint even in the case where all Q_j and P_j ($j = 1, \ldots, n$) are self-adjoint.

As in the case of quasi-Schrödinger representations of $QPS_n(\Lambda)$ discussed in Section 2, we have the following fact:
Theorem 4.2 Let Λ be regular with generating matrix G given by (3.7) and F_1, F_2, F_3 and F_4 be as in (3.21). Then
\[Q = F_1\hat{Q} + F_2\hat{P}, \quad (4.5) \]
\[P = F_3\hat{Q} + F_4\hat{P}. \quad (4.6) \]
on \mathcal{D}.

4.2 Construction of a representation of the CCR with n degrees of freedom from a representation of $\text{QPS}_n(\Lambda)$

We next consider constructing a representation of the CCR with n degrees of freedom from a representation of $\text{QPS}_n(\Lambda)$. A method for that is suggested by Theorem 4.2.

Let $(\mathcal{H}, \mathcal{D}, \{\hat{Q}_j, \hat{P}_j\}_{j=1}^{n})$ be a representation of $\text{QPS}_n(\Lambda)$ on a Hilbert space \mathcal{H} with \mathcal{D} dense in \mathcal{H}. Throughout this subsection, we assume the following:

(A) The parameter Λ is regular with generating matrix G given by (3.7).

Let F_1, F_2, F_3 and F_4 be as in (3.21). Then we can define $Q(\Lambda) = (Q_1(\Lambda), \cdots, Q_n(\Lambda))$ and $P(\Lambda) = (P_1(\Lambda), \cdots, P_n(\Lambda))$ by
\[Q(\Lambda) := F_1\hat{Q} + F_2\hat{P}, \quad (4.7) \]
\[P(\Lambda) := F_3\hat{Q} + F_4\hat{P}. \quad (4.8) \]

Theorem 4.3 Assume (A). Then $(\mathcal{H}, \mathcal{D}, \{Q_j(\Lambda), P_j(\Lambda)\}_{j=1}^{n})$ is a representation of the CCR with n degrees of freedom.

The next theorem shows that every representation of $\text{QPS}_n(\Lambda)$ with condition (A) comes from a representation of the CCR with n degrees of freedom:

Theorem 4.4 Assume (A). Let $Q(\Lambda)$ and $P(\Lambda)$ be defined by (4.7) and (4.8) respectively. Then
\[\hat{Q} = AQ(\Lambda) + BP(\Lambda), \quad \hat{P} = CQ(\Lambda) + DP(\Lambda) \quad (4.9) \]
on \mathcal{D}.

5 Irreducibility

For a Hilbert space \mathcal{H}, we denote by $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators B on \mathcal{H} with $D(B) = \mathcal{H}$. Let A be a linear operator on \mathcal{H}. We say that A strongly commutes with $B \in \mathcal{B}(\mathcal{H})$ if $BA \subset AB$ (i.e., for all $\psi \in D(A)$, $B\psi \in D(A)$ and $BA\psi = AB\psi$). For a set A of linear operators on \mathcal{H}, we define

\[A' := \{B \in \mathcal{B}(\mathcal{H})|BA \subset AB, \forall A \in A\}. \quad (5.1) \]
We call \(A' \) the strong commutant of \(A \).

We say that \(A \) is irreducible if \(A' = \{cI|c \in \mathbb{C}\} \) (\(\mathbb{C} \) is the set of complex numbers).

Lemma 5.1 Let \(S \) be a self-adjoint operator on a Hilbert space \(\mathcal{H} \) and \(B \in \mathfrak{B}(\mathcal{H}) \) such that \(BS \subset SB \). Then, for all \(t \in \mathbb{R} \), \(Be^{itS} = e^{itS}B \).

Theorem 5.2 Assume (A) in Subsection 3.2. Let \(\left(\mathcal{H}, \mathcal{D}, \{Q_j, P_j\}_{j=1}^n \right) \) be a representation of the CCR with \(n \) degrees of freedom. Suppose that, for each \(j = 1, \ldots, n \), \(Q_j \) and \(P_j \) are essentially self-adjoint on \(\mathcal{D} \) and \(\{Q_j, P_j\}_{j=1}^n \) is irreducible. Then the representation \(\left(\mathcal{H}, \mathcal{D}, \{\bar{Q}_j, \bar{P}_j\}_{j=1}^n \right) \) of \(\text{QPS}_n(\Lambda) \) given by (4.4) is irreducible.

We can apply Theorem 5.2 to the quasi-Schrödinger representation \(\{\bar{q}_j, \bar{p}_j\}_{j=1}^n \) of \(\text{QPS}_n(\Lambda) \) discussed in Section 2.

Theorem 5.3 Assume (A). Then \(\{\bar{q}_j, \bar{p}_j\}_{j=1}^n \) is irreducible.

6 Weyl Representations of \(\text{QPS}_n(\Lambda) \)

6.1 Definition and basic facts

As is well known, a Weyl representation of the CCR with \(n \) degrees of freedom on a Hilbert space \(\mathcal{H} \) is defined to be a set \(\{Q_j, P_j\}_{j=1}^n \) of \(2n \) self-adjoint operators on \(\mathcal{H} \) obeying the Weyl relations:

\[
e^{itQ_j}e^{isP_k} = e^{-ist\delta_{jk}}e^{isP_k}e^{itQ_j}, \quad \text{(6.1)}
\]
\[
e^{itQ_j}e^{isQ_k} = e^{isQ_k}e^{itQ_j}, \quad \text{(6.2)}
\]
\[
e^{itP_j}e^{isP_k} = e^{isP_k}e^{itP_j}, \quad j, k = 1, \ldots, n, s, t \in \mathbb{R}. \quad \text{(6.3)}
\]

Based on an analogy with Weyl representations of CCR, we introduce a concept of Weyl representation of \(\text{QPS}_n(\Lambda) \).

Definition 6.1 Let \(\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n \) be a set of self-adjoint operators on a Hilbert space \(\mathcal{H} \). We say that \(\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n \) is a Weyl representation of \(\text{QPS}_n(\Lambda) \) if

\[
e^{it\hat{Q}_j}e^{is\hat{P}_k} = e^{-ist\delta_{jk}}e^{is\hat{P}_k}e^{it\hat{Q}_j}, \quad \text{(6.4)}
\]
\[
e^{it\hat{Q}_j}e^{is\hat{Q}_k} = e^{-ist\theta_{jk}}e^{is\hat{Q}_k}e^{it\hat{Q}_j}, \quad \text{(6.5)}
\]
\[
e^{it\hat{P}_j}e^{is\hat{P}_k} = e^{-ist\eta_{jk}}e^{is\hat{P}_k}e^{it\hat{P}_j}, \quad j, k = 1, \ldots, n, s, t \in \mathbb{R}. \quad \text{(6.6)}
\]

We call these relations the deformed Weyl relations with parameter \(\Lambda \).

For a linear operator \(A \) on a Hilbert space, we denote its spectrum by \(\sigma(A) \).
Proposition 6.2 Let \(\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n \) be a Weyl representation of \(QPS_n(\Lambda) \). Then it is a self-adjoint representation of \(QPS_n(\Lambda) \). Moreover, for each \(j = 1, \cdots, n \), \(\hat{Q}_j \) and \(\hat{P}_j \) are purely absolutely continuous with
\[
\sigma(\hat{Q}_j) = \mathbb{R}, \quad \sigma(\hat{P}_j) = \mathbb{R}, \quad j = 1, \cdots, n.
\]

(6.7)

Remark 6.3 The converse of Proposition 6.2 does not hold. Indeed, there exists a self-adjoint representation of \(QPS_n(\Lambda) \) which is not a Weyl one [4].

Proposition 6.4 The set \(\{e^{it\hat{Q}_j}, e^{it\hat{P}_j} | t \in \mathbb{R}, j = 1, \cdots, n\} \) is irreducible if and only if so is \(\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n \).

7 Uniqueness Theorems on Weyl Representations of \(QPS_n(\Lambda) \)

For each regular parameter \(\Lambda \), every Weyl representation of \(QPS_n(\Lambda) \) on a separable Hilbert space is unitarily equivalent to a direct sum of a quasi-Schrödinger representation \(\{\overline{\hat{q}}_j, \overline{\hat{p}}_j\}_{j=1}^n \) of \(QPS_n(\Lambda) \):

Theorem 7.1 Assume (A). Let \(\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n \) be a Weyl representation of \(QPS_n(\Lambda) \) on a separable Hilbert space \(\mathcal{H} \). Then there exist closed subspaces \(\mathcal{H}_\ell \) such that the following (i)-(iii) hold:

(i) \(\mathcal{H} = \oplus_{\ell=1}^N \mathcal{H}_\ell \) (\(N \) is a positive integer or \(\infty \)).

(ii) For each \(j = 1, \cdots, n \), \(\hat{Q}_j \) and \(\hat{P}_j \) are reduced by each \(\mathcal{H}_\ell, \ell = 1, \cdots, N \). We denote by \(\hat{Q}_j^{(\ell)} \) (resp. \(\hat{P}_j^{(\ell)} \)) the reduced part of \(\hat{Q}_j \) (resp. \(\hat{P}_j \)) to \(\mathcal{H}_\ell \).

(iii) For each \(\ell \), there exists a unitary operator \(U_\ell : \mathcal{H}_\ell \to L^2(\mathbb{R}^n) \) such that
\[
U_\ell \hat{Q}_j^{(\ell)} U_\ell^{-1} = \overline{\hat{q}}_j, \quad U_\ell \hat{P}_j^{(\ell)} U_\ell^{-1} = \overline{\hat{p}}_j, \quad j = 1, \cdots, n,
\]
where \(\{\overline{\hat{q}}_j, \overline{\hat{p}}_j\}_{j=1}^n \) is the quasi-Schrödinger representation of \(QPS_n(\Lambda) \) defined by (3.11).

Theorem 7.1 tells us that, under the assumption there, every Weyl representation \(\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n \) of \(QPS_n(\Lambda) \) is unitarily equivalent to a direct sum of the quasi-Schrödinger representation \(\{\overline{\hat{q}}_j, \overline{\hat{p}}_j\}_{j=1}^n \), because the operator
\[
U := \oplus_{\ell=1}^N U_\ell : \mathcal{H} \to \oplus N L^2(\mathbb{R}^n),
\]
is unitary and
\[
U \hat{Q}_j U^{-1} = \oplus N \overline{\hat{q}}_j, \quad U \hat{P}_j U^{-1} = \oplus N \overline{\hat{p}}_j.
\]

Remark 7.2 There exist self-adjoint representations of \(QPS_n(\Lambda) \) which are not unitarily equivalent to \(\{\overline{\hat{q}}_j, \overline{\hat{p}}_j\}_{j=1}^n \) [4].
Theorem 7.1 and the irreducibility of the representation \(\{ \tilde{q}_j, \tilde{p}_j \}_{j=1}^n \) immediately lead us to the following fact:

Corollary 7.3 Assume (A). Let \(\{ \hat{Q}_j, \hat{P}_j \}_{j=1}^n \) be an irreducible Weyl representation of \(\text{QPS}_n(\Lambda) \) on a separable Hilbert space \(\mathcal{K} \). Then there exists a unitary operator \(W : \mathcal{K} \rightarrow L^2(\mathbb{R}^n) \) such that

\[
W \hat{Q}_j W^{-1} = \tilde{q}_j, \quad W \hat{P}_j W^{-1} = \tilde{p}_j, \quad j = 1, \ldots, n.
\]

Applying this corollary to the case where \(\{ \hat{Q}_j, \hat{P}_j \}_{j=1}^n \) is a quasi-Schrödinger representation of \(\text{QPS}_n(\Lambda) \), we obtain the following result:

Corollary 7.4 Let \(\Lambda \) be regular. Let \(G \) and \(G' \) be two generating matrices of \(\Lambda \): \(G \) is given by (3.7) and

\[
G' = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix},
\]

where \(A', B', C' \) and \(D' \) are \(n \times n \) real matrices. Let \(\{ \hat{q}_j', \hat{p}_j' \}_{j=1}^n \) be the quasi-Schrödinger representation of \(\text{QPS}_n(\Lambda) \) with generating matrix \(G' \):

\[
\hat{q}' := A'q + B'p, \quad \hat{p}' = C'q + D'p.
\]

Then there exists a unitary operator \(V : L^2(\mathbb{R}^n) \rightarrow L^2(\mathbb{R}^n) \) such that

\[
V \hat{q}_j' V^{-1} = \tilde{q}_j, \quad V \hat{p}_j' V^{-1} = \tilde{p}_j, \quad j = 1, \ldots, n. \tag{7.2}
\]

Corollary 7.4 shows that, for each regular parameter \(\Lambda \), quasi-Schrödinger representations of \(\text{QPS}_n(\Lambda) \) are unique up to unitary equivalences.

Acknowledgement

This work is supported by the Grant-In-Aid No.21540206 for Scientific Research from Japan Society for the Promotion of Science (JSPS).

References

