On a universal framework of the homogenization problems for infinite dimensional diffusions

Sergio Albeverio * and Minoru W. Yoshida †
April 19, 2010

Abstract

By restricting the universal frame work of the homogenization problem of infinite dimensional diffusions posed in [AY] to the case where the state space of the ergodic process, that corresponds to the original infinite dimensional diffusion for which the homogenization problem is considered, a sufficient condition for the mapping between these processes under which the ergodic process is a unique Markov process that corresponds to a unique Markovian extension of a closable symmetric bilinear form is considered.

1 Introduction

In This note, by restricting the universal frame work of the homogenization problem of infinite dimensional diffusions posed in [AY] to the case where the state space of the ergodic process denoted by $(Y_{\theta}(t))_{t\geq 0}$, that corresponds to $(X^{\theta}(t))_{t\geq 0}$, the original infinite dimensional diffusion, for which the homogenization problem is considered, we discuss a sufficient condition for the mapping between these processes (denoted by $T_{\mathbf{x}}(\theta)$) under which the ergodic process is the one that corresponds to a unique Markovian extension of a closable symmetric bilinear form. Since, the present announcement plays a part of introduction of our subsequent researches on this subject, we give here a statement in a rough style without proof. All the exact and new results on this concern will be found in forthcoming papers.

2 Probability space $(\Theta, \overline{\mathcal{B}}, \overline{\mu})$, the ergodic flow and the core

Suppose that we are given the following:

 $\{(\Theta_{\mathbf{k}}, \mathcal{B}_{\mathbf{k}}, \lambda_{\mathbf{k}})\}_{\mathbf{k} \in \mathbb{Z}^d}$: a system of complete probability (resp. measure) spaces,

^{*}Inst. Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-53115 Bonn (Germany), SFB611; BiBoS; CERFIM, Locarno; Acc. Architettura USI, Mendrisio; Ist. Mathematica, Università di Trento

[†]e-mail wyoshida@ipcku.kansai-u.ac.jp fax +81 6 6330 3770. Kansai Univ., Dept. Mathematics, 564-8680 Yamate-Tyou 3-3-35 Suita Osaka(Japan)

where d is a given natural number. (resp. for each k, λ_k is a σ -finite measure.) $(\Theta, \overline{\mathcal{B}}, \overline{\lambda})$: the probability (resp. complete measure) space that is the completion of $(\prod_{\mathbf{k}} \Theta_{\mathbf{k}}, \bigotimes_{\mathbf{k}} \mathcal{B}_{\mathbf{k}}, \prod_{\mathbf{k}} \lambda_{\mathbf{k}})$, i.e., the completion of the direct product probability (resp. complete measure) space.

 $(\Theta, \overline{\mathcal{B}}, \mu)$: a complete probability space (corresponding to a Gibbs state) defined as follows:

for $\forall D \subset\subset \mathbb{Z}^d$ and for any bounded measurable function φ defined on $\prod_{\mathbf{k}\in D'}\Theta_{\mathbf{k}}$ with some $\forall D'\subset\subset \mathbb{Z}^d$, μ satisfies

$$(\mathbb{E}^D \varphi, \mu) = (\varphi, \mu), \tag{2.1}$$

where

$$(\mathbb{E}^{D}\varphi)(\theta) \equiv \int_{\Theta} \varphi(\theta'_{D} \cdot \theta_{D^{c}}) \mathbb{E}^{D}(d\theta'|\theta_{D^{c}})$$

$$\equiv \int_{\Theta} \varphi(\theta'_{D} \cdot \theta_{D^{c}}) m_{D}(\theta'_{D} \cdot \theta_{D^{c}}) \overline{\lambda}(d\theta'),$$
(2.2)

and

$$m_{D}(\theta'_{D} \cdot \theta_{D^{c}}) \equiv \frac{1}{Z_{D}(\theta_{D^{c}})} e^{-U_{D}(\theta'_{D} \cdot \theta_{D^{c}})}, \quad U_{D} \equiv \sum_{\mathbf{k} \in D^{+}} U_{\mathbf{k}}, \tag{2.3}$$

$$\Theta \ni \theta \longmapsto \theta_{D} \in \prod_{\mathbf{k} \in D} \Theta_{\mathbf{k}}$$

is the natural projection,

 $\theta'_D \cdot \theta_{D^c}$ is the element $\theta'' \in \Theta$ such that

$$\theta_D'' = \theta_D', \qquad \theta_{D^c}'' = \theta_{D^c},$$

$$D^+ = \{ \mathbf{k}' | \text{ support of } U_{\mathbf{k}'} \cap D \neq \emptyset \},$$

also, for each $\mathbf{k} \in \mathbb{Z}^d$, $U_{\mathbf{k}}$ is a given bounded measurable function of which support is in $\prod_{|\mathbf{k}'-\mathbf{k}|\leq L} \Theta_{\mathbf{k}'}$, where the number L (the range of interactions) does not depend on \mathbf{k} , and $Z_D(\theta_{D^c})$ is the normalizing constant.

On $(\Theta, \overline{\mathcal{B}}, \overline{\lambda})$ we are given a measure preserving map $T_{\mathbf{x}}$ (which is also a map on $(\Theta, \overline{\mathcal{B}}, \mu)$, but is not a measure preserving map on it an ergodic flow) as follows:

Suppose that

$$\exists M_1 < \infty \quad \text{and} \quad \forall \mathbf{k} \in \mathbb{Z}^d \quad \text{there exists a } d_{\mathbf{k}} \text{ such that} \quad d_{\mathbf{k}} \leq M_1.$$
 (2.4)

For each $\mathbf{x} \in \prod_{\mathbf{k}} \mathbb{R}^{d_{\mathbf{k}}}$ such that $\mathbf{x} = (\mathbf{x}^{\mathbf{k}})_{\mathbf{k} \in \mathbb{Z}^d}$ with $\mathbf{x}^{\mathbf{k}} = (x_1^{\mathbf{k}}, \dots, x_{d_{\mathbf{k}}}^{\mathbf{k}})$ the map $T_{\mathbf{x}}$ on $(\Theta, \overline{\mathcal{B}}, \overline{\lambda})$ is defined by i)

$$T_{\mathbf{x}}:\Theta\longrightarrow\Theta$$

that is a measure preserving transformation with respect to the measure $\overline{\lambda}$; ii)

$$T_0$$
 = the identity,

for
$$\mathbf{x}, \mathbf{x}' \in \mathbf{x} \in \prod_{\mathbf{k} \in \mathbb{Z}^d} \mathbb{R}^{d_{\mathbf{k}}}$$
 $T_{\mathbf{x}+\mathbf{x}'} = T_{\mathbf{x}} \circ T_{\mathbf{x}'},$

where

$$\mathbf{x} + \mathbf{x}' \equiv (\mathbf{x}^{\mathbf{k}} + \mathbf{x}'^{\mathbf{k}})_{\mathbf{k} \in \mathbb{Z}^d},$$

with

$$\mathbf{x}^{\mathbf{k}} + \mathbf{x}^{\prime \mathbf{k}} = (x_1^{\mathbf{k}} + x_1^{\prime \mathbf{k}}, \dots, x_{d^{\mathbf{k}}}^{\mathbf{k}} + x_{d^{\mathbf{k}}}^{\prime \mathbf{k}}),$$

for

$$\mathbf{x} = (\mathbf{x}^{\mathbf{k}})_{\mathbf{k} \in \mathbb{Z}^d}, \qquad \mathbf{x}^{\mathbf{k}} = (x_1^{\mathbf{k}}, \dots, x_{d_{\mathbf{k}}}^{\mathbf{k}}),$$

$$\mathbf{x}' = (\mathbf{x}^{\mathbf{k}})_{\mathbf{k} \in \mathbb{Z}^d}, \qquad \mathbf{x'}^{\mathbf{k}} = (x'_1^{\mathbf{k}}, \dots, x'_{d_{\mathbf{k}}}^{\mathbf{k}}),$$

and

$$\mathbf{0} \equiv (\mathbf{0}^{\mathbf{k}})_{\mathbf{k} \in \mathbb{Z}^d}, \qquad \mathbf{0}^{\mathbf{k}} = (0, \dots, 0) \in \mathbb{R}^{d_{\mathbf{k}}};$$

iii)

$$(\mathbf{x}, \theta) \in (\prod_{\mathbf{k} \in \mathbb{Z}^d} \mathbb{R}^{d_{\mathbf{k}}}) \times \Theta \longrightarrow T_{\mathbf{x}}(\theta) \in \Theta$$

is $\mathcal{B}(\prod_{\mathbf{k}\in\mathbb{Z}^d}\mathbb{R}^{d_{\mathbf{k}}})\times\overline{\mathcal{B}}/\overline{\mathcal{B}}$ —measurable, where $\prod_{\mathbf{k}\in\mathbb{Z}^d}\mathbb{R}^{d_{\mathbf{k}}}$ is assumed to be the topological space with the direct product topology;

- iv) A function which is $T_{\mathbf{x}}$ invariant for all $\mathbf{x} \in \prod_{\mathbf{k} \in \mathbb{Z}^d} \mathbb{R}^{d_{\mathbf{k}}}$ is a constant function on $(\Theta, \overline{\mathcal{B}}, \mu)$;
- v) For $D \subset \mathbb{Z}^d$, let

$$\prod_{\mathbf{k}\in\mathbb{Z}^d}\mathbb{R}^{d_{\mathbf{k}}}\ni\mathbf{x}\longmapsto\mathbf{x}_D\in\prod_{\mathbf{k}\in D}\mathbb{R}^{d_{\mathbf{k}}}$$

be the natural projection. If $\mathbf{x}_{D^c} = \mathbf{0}_{D^c}$, then

$$(T_{\mathbf{x}}(\theta))_{D^c} = \theta_{D^c}, \quad \forall \theta \in \Theta, \quad \forall D \subset \mathbb{Z}^d.$$

We assume that an existence of a core \mathcal{D}^{Θ} . Namely, there exists \mathcal{D}^{Θ} which is a dense subset of both $L^2(\mu)$ and $L^1(\mu)$, and $\forall \varphi \in \mathcal{D}^{\Theta}$ satisfies $(\mathcal{D}\text{-}1)$ φ is a bounded measurable function having only a finite number of variables θ_D for some $D \subset\subset \mathbb{Z}^d$, $(\mathcal{D}\text{-}2)$

$$\varphi(T_{\mathbf{x}_D}(\theta)) \in C^{\infty}(\prod_{\mathbf{k} \in D} \mathbb{R}^{d_{\mathbf{k}}} \to \mathbb{R}), \quad \forall \theta \in \Theta,$$

(cf. v) in the previous section) where we identify $\mathbf{x}_D \in \prod_{\mathbf{k} \in D} \mathbb{R}^{d_{\mathbf{k}}}$ with an $\mathbf{x} \in (\prod_{\mathbf{k} \in \mathbb{Z}^d} \mathbb{R}^{d_{\mathbf{k}}})$ of which projection to $\prod_{\mathbf{k} \in D} \mathbb{R}^{d_{\mathbf{k}}}$ is \mathbf{x}_D ,

(\mathcal{D} -3) in (\mathcal{D} -2) for each $\theta \in \Theta$, all the partial derivatives of all orders of the function $\varphi(T_{\cdot}(\theta))$ (with the variables \mathbf{x}_{D}) are bounded and

$$\forall \varphi \in \mathcal{D}, \ \exists M < \infty; \ |\nabla_{\mathbf{k}} \varphi(T_{\mathbf{x}}(\theta))| < M, \ \forall \theta \in \Theta, \ \forall \mathbf{x}, \ \forall \mathbf{k} \in \mathbb{Z}^d,$$
 (2.5)

where

$$abla_{\mathbf{k}} = (\frac{\partial}{x_1^{\mathbf{k}}}, \dots, \frac{\partial}{x_{d_{\mathbf{k}}}^{\mathbf{k}}}).$$

3 Probability space $(\Omega, \mathcal{F}, P; \mathcal{F}_t)$ and the processes

Suppose that we are given a system of family of functions $a_{ij}^{\mathbf{k}}$, $\mathbf{k} \in \mathbb{Z}^d$, $1 \leq i, j \leq d_{\mathbf{k}}$ on $(\Theta, \overline{\mathcal{B}}, \overline{\mu})$ such that for each $\mathbf{k} \in \mathbb{Z}^d$ and each $1 \leq i, j \leq d_{\mathbf{k}}$, $a_{ij}^{\mathbf{k}}$ is a measurable function on $\Theta_{\mathbf{k}}$ and there exists $M_2 \in (0, \infty)$ and

$$M_2^{-1} \|\mathbf{x}\|^2 \le \sum_{1 \le i,j \le d_{\mathbf{k}}} a_{ij}^{\mathbf{k}}(\theta_{\mathbf{k}}) x_i x_j \le M_2 \|\mathbf{x}\|^2, \quad \forall \mathbf{k} \in \mathbb{Z}^d, \ \forall \theta_{\mathbf{k}} \in \Theta_{\mathbf{k}},$$

$$\forall \mathbf{x} = (x_1, \dots, x_{d_k}) \in \mathbb{R}^{d_k}, \tag{3.1}$$

also

$$a_{ij}^{\mathbf{k}}(\cdot) = a_{ji}^{\mathbf{k}}(\cdot).$$

We assume that

$$U_{\mathbf{k}}, \ a_{ij}^{\mathbf{k}} \in \mathcal{D}^{\Theta}, \quad \mathbf{k} \in \mathbb{Z}^d, \ 1 \leq i, j \leq d_{\mathbf{k}}.$$

Also, we assume that there exists a common $M < \infty$ by which the evaluation (2.5) holds for all $a_{i,j}^{\mathbf{k}}$ and $U_{\mathbf{k}}$.

Finally, suppose that we are given a complete probability space $(\Omega, \mathcal{F}, P; \mathcal{F}_t)$, $(t \in \mathbb{R}_+)$ with a filteration \mathcal{F}_t . On $(\Omega, \mathcal{F}, P; \mathcal{F}_t)$ suppose that there exists a system of independent 1-dimensional \mathcal{F}_t -adapted Brownian motion processes

$$\{(B^{\mathbf{k},i}(t))_{t\geq 0}\}_{\mathbf{k}\in\mathbb{Z}^d,\,1\leq i\leq d_{\mathbf{k}}}.$$

Now, for each $\theta \in \Theta$, let

$$X^{\theta} \equiv \{ (X^{\theta, \mathbf{k}, i}(t))_{t \ge 0} \}_{\mathbf{k} \in \mathbb{Z}^d, 1 \le i \le d_{\mathbf{k}}}.$$

be the unique solution of

$$X^{\theta,\mathbf{k},i}(t) = X^{\theta,\mathbf{k},i}(0) + \int_0^t \sum_{1 \leq j \leq d_{\mathbf{k}}} \left\{ \frac{\partial}{\partial x_j^{\mathbf{k}}} a_{ij}^{\mathbf{k}} (T_{X^{\theta,\mathbf{k}}(s)}(\theta)) - a_{ij}^{\mathbf{k}} (T_{X^{\theta,\mathbf{k}}(s)}(\theta)) (\frac{\partial}{\partial x_j^{\mathbf{k}}} (\sum_{\mathbf{k}' \in \{\mathbf{k}\}^+} U_{\mathbf{k}'} (T_{X^{\theta}(s)}(\theta)))) \right\} ds$$

$$+ \int_0^t \sum_{1 \leq j \leq d_{\mathbf{k}}} \sigma_{ij}^{\mathbf{k}} (T_{X^{\theta,\mathbf{k}}(s)}(\theta)) dB^{\mathbf{k},j}(s), \qquad t \geq 0, \qquad (3.2)$$

where, as the matrix sense,

$$(\sigma_{ij}^{\mathbf{k}}) = (2a_{ij}^{\mathbf{k}})^{\frac{1}{2}},$$

and

 $X^{\theta,\mathbf{k}}(t) = (X^{\theta,\mathbf{k},1}(t), \dots, X^{\theta,\mathbf{k},d_{\mathbf{k}}}(t)), \quad \{\mathbf{k}\}^+ = \{\mathbf{k}'| \text{ support of } U_{\mathbf{k}'} \cap \{\mathbf{k}\} \neq \emptyset\},$ also, by $X^{\theta}(t)$ we denote the vector

$$(X^{\theta,\mathbf{k}}(t))_{\mathbf{k}\in\mathbb{Z}^d}\in\prod_{\mathbf{k}\in\mathbb{Z}^d}\mathbb{R}^{d_{\mathbf{k}}}.$$

To get the unique solution for (3.2) we assume the following:

Assumption 1. All the coefficients appeared in (3.2) are uniformly bounded and equi-continuous for all $1 \leq i, j \leq d_k$ and $k \in \mathbb{Z}^d$.

Proposition 3.1 Under Assumption 1, for each $\theta \in \Theta$ the SDE (3.2) has a unique solution, and the random variable X^{θ} on $(\Omega, \mathcal{F}, P; \mathcal{F}_t)$ is the one taking values in

$$C([0,\infty) o \prod_{\mathbf{k} \in \mathbb{Z}^d} \mathbb{R}^{d_{\mathbf{k}}}).$$

Definition 3.1 For $\theta \in \Theta$, let $(X_0^{\theta}(t))_{t\geq 0}$ be the stochastic process defined by (3.2) with the initial condition $X_0^{\theta}(0) = \mathbf{0}$. By using $(X_0^{\theta}(t))_{t\geq 0}$ and the map $T_{\mathbf{x}}(\cdot)$ we define a Θ -valued process $(Y_{\theta}(t))_{t\geq 0}$ on $(\Omega, \mathcal{F}, P; \mathcal{F}_t)$ as follows:

$$(Y_{\theta}(t))_{t\geq 0} = (X_0^{\theta}(t))_{t\geq 0}.$$

4 A homeomorhism

The problem of homogenization of the process $(X_0^{\theta}(t))_{t>0}$ is described as follows:

Problem. For each $\theta \in \Theta$, $\mu - a.s.$, we are concerning the scaling limit of $(X_0^{\theta}(t))_{t\geq 0}$ such that

$$\lim_{\epsilon \downarrow 0} \{ \epsilon X_0^{\theta}(\frac{t}{\epsilon^2}) \}_{t \ge 0} \tag{4.1}$$

More precisely, we consider the weak convergence of (4.1), where the sequence of the processes $\{\epsilon X_0^{\theta}(\frac{t}{\epsilon^2})\}_{t\geq 0}$ is understood as the sequence of random variables on $(\Omega \times \Theta, \mathcal{F} \times \overline{\mathcal{B}}, P \times \overline{\mu}; \mathcal{F}_t \times \{\Theta, \emptyset\})$ taking values in the direct product space $\prod_{\mathbf{k} \in \mathbb{Z}^d} C([0, \infty) \to \mathbb{R}^{d_{\mathbf{k}}})$ equipped with the direct product topology.

In order to prove the weak convergence of (4.1), the ergodicity of the process $(Y_{\theta}(t))_{t\geq 0}$ plays a crucial role (cf. [ABRY 1,2,3] and [AY]). Hence, for a concrete analysis on this problem, in any lale, we have to characterize both the probabilistic and analytic properties of $(Y_{\theta}(t))_{t\geq 0}$. In this report, assuming in particular that $\Theta_{\mathbf{k}}, \mathbf{k} \in \mathbb{Z}^d$, are topological spaces, and then we consider a sufficient condition under which $(Y_{\theta}(t))_{t\geq 0}$ is a process corresponding to a unique Markovian extension of a symmetric quadratic form.

Definition 4.1 For each $k \in \mathbb{Z}^d$ and $i = 1, ..., d_k$, define an operator $D^{k,i}: \mathcal{D}^{\Theta} \to \mathcal{D}^{\Theta}$ such that

$$(D^{\mathbf{k},i}\varphi)(\theta) \equiv \frac{\partial}{\partial x_i^{\mathbf{k}}} \varphi(T_{\mathbf{x}}(\theta))|_{\mathbf{x}=0}, \qquad \varphi \in \mathcal{D}^{\Theta}, \quad \theta \in \Theta.$$

Also, define a quadratic form \mathcal{E} on $L^2(\mu)$ such that

$$\mathcal{E}(\varphi,\psi) \equiv \sum_{\mathbf{k} \in \mathbb{Z}^d} \sum_{1 \le i,j \le d_{\mathbf{k}}} \int_{\Theta} (D^{\mathbf{k},i}\varphi)(\theta) \, a_{i,j}^{\mathbf{k}}(\theta)(D^{\mathbf{k},j}\psi)(\theta) \, \mu(d\theta), \quad \varphi, \psi \in \mathcal{D}^{\Theta}.$$

Theorem 4.1 Let $\prod_{\mathbf{k}\in\mathbb{Z}^d}\mathbb{R}^{d_{\mathbf{k}}}$ be the topological space with the direct product topology, and for each M>0 let $C^{X,M}$ be the space of continuous functions with the uniform convergence topology such that

$$C^{X,M} \equiv \{\mathbf{x}(\cdot) \mid \mathbf{x}(\cdot) \in C([0,M] \to \prod_{\mathbf{k} \in \mathbb{Z}^d} \mathbb{R}^{d_{\mathbf{k}}}) \text{ with } \mathbf{x}(0) = \mathbf{0}\}.$$

Suppose that for each $k \in \mathbb{Z}^d$, Θ_k is a topological space and let \mathcal{B}_k be its Borel σ -field, also $\Theta = \prod_k \Theta_k$ be the direct product space with the direct product topology. for each $\theta \in \Theta$ and M > 0 let $C^{\theta,Y,M}$ be the space of continuous functions with the uniform convergence topology such that

$$C^{\theta,Y,M} \equiv \{ \mathbf{y}(\cdot) \mid \mathbf{y}(\cdot) \in C([0,M] \to \Theta) \text{ with } \mathbf{y}(0) = \theta \}.$$

For any $\theta \in \Theta$ and M > 0 if the map f defined by

$$f: C^{X,M} \ni \mathbf{x}(\cdot) \longmapsto T_{\mathbf{x}(\cdot)}(\theta) \in C^{\theta,Y,M}$$

is a continuous onto one to one map of which inverse map f^{-1} is also continuous (i.e. $C^{X,M}$ and $C^{\theta,Y,M}$ are homeomorphic), then the probability law of the process $(Y_{\theta}(t))_{t\geq 0}$ is identical with the probability law of the Markov process which corresponds to a unique Markovian extension of the quadratic form $\mathcal{E}(\varphi,\psi)$ defined by Definition 4.1.

References

[ABRY1] S. Albeverio, M.S. Bernabei, M. Röckner, M.W. Yoshida: Homogenization with respect to Gibbs measures for periodic drift diffusions on lattices. C.R.Acad.Sci.Paris, Ser.I, vol. 341, 675-678 (2005).

- [ABRY2] S. Albeverio, M.S. Bernabei, M. Röckner, M.W.Yoshida: Homogenization of Diffusions on the lattice Z^d with periodic drift coefficients, applying a logarithmic Sobolev inequality or a weak Poincare inequality. Stochastic Analysis and Applications (The Abel Sympo. 2005 Oslo) pp. 53-72, Springer Berlin Heidelberg (2007).
- [ABRY3] S. Albeverio, M.S. Bernabei, M. Röckner, M.W. Yoshida: Homogenization of diffusions on the lattice \mathbf{Z}^d with periodic drift coefficients; Application of Logarithmic Sobolev Inequality. SFB 611 publication No.242, Univ. Bonn 2006.
- [AY] S. Albeverio, M.W. Yoshida: A Universal Consideration on the Homogenization problems of infinite dimensional diffusions Abstract in RIMS conference "Application of renormising groups to mathematical sciences" held in 2009 Sept..