Comparing Expressiveness of First-Order Modal μ -calculus and First-Order CTL*

Keishi Okamoto

Abstract

In this paper we introduce a first-order extension of propositional modal μ -calculus (first-order modal μ -calculus) and a first-order extension of CTL* (first-order CTL*), and then compare their expressiveness. More precisely we show that first-order CTL* is strictly less expressive than first-order modal μ -calculus. It is known that CTL* is strictly less expressive than propositional modal μ -calculus, hence our result shows that our two first-order extensions of CTL* and PM μ preserve an expressiveness relation.

1 Introduction

Formal verification is an important research area in computer science, and many people verify safety critical systems with formal verification. In formal verification, 1) a verification target is formalized as a theory and a model of a logic, 2) a verification item is formalized as a formula of the logic, 3) and then a verifier checks whether the formalized verification target satisfies the formalized verification item with theorem proving and model checking, which is based on the logic. [Propositional] temporal logics[3, 9] and propositional modal μ -calculus PM μ [7] have been often used for this purpose. As verification targets and verification items are becoming complicated, extensions, in particular first-order extensions, of propositional temporal logics have been introduced [2, 4, 5, 10]. The author and Kashima introduced a first-order extension of PM μ in [6, 8].

There are many propositional temporal logics, linear temporal logic LTL, computation tree logic CTL and CTL* etc., thus their expressiveness results have been proved. For example, it is known that CTL is strictly less expressive than CTL* (see [1]), and that CTL* is strictly less expressive than PM μ (see [3]). PM μ is a yardstick for comparing expressiveness of propositional temporal logics. Then the author thinks that our first-order extension of PM μ can be also a yardstick for comparing expressiveness of first-order extensions of propositional temporal logics.

In this paper we compare expressiveness of a first-order extension of PM μ and a first-order extension of CTL*, more precisely show that the first-order extension of CTL* is strictly less expressive than the first-order extension of PM μ .

2 First-Order Modal μ -calculus

In this section, we define a first-order extension of propositional modal μ -calculus and call the logic first-order modal μ -calculus (FOM μ).

2.1 Syntax of FOM μ

Definition 1 A signature σ for first-order modal μ -calculus consists of two infinite sets IVar and PVar, and a set Pred_n for each natural number $n \geq 0$.

We call elements of *IVar individual variables* and write x, y, \ldots for them, and also call those of *PVar propositional variables* and write X, Y, \ldots for them. We call elements of $\mathcal{P}red_n$ n-ary predicate symbols and write P, Q, \ldots for them.

Definition 2 Let σ be a signature of $FOM\mu$. Then the σ -formulas of $FOM\mu$ are the following:

- 1. $X \in PVar \Rightarrow X$ is a σ -formula,
- 2. $P \in \mathcal{P}red_n$ and $\bar{x} \in IVar \Rightarrow P(\bar{x})$ is a σ -formula,
- 3. φ and ψ are σ -formulas $\Rightarrow \neg \varphi, \varphi \lor \psi, \Box \varphi$ are σ -formulas.
- 4. $x \in IVar$ and φ is a σ -formula $\Rightarrow \forall x. \varphi$ is a σ -formula,
- 5. If $X \in PVar$, φ is a σ -formula and no free occurrence of X in φ is negative $\Rightarrow \mu X \cdot \varphi$ is a σ -formula.

We use usual abbreviations $\varphi \land \psi, \varphi \supset \psi, \exists x. \varphi$ and two abbreviations

- $\Diamond \varphi \stackrel{\text{def}}{=} \neg \Box \neg \varphi$,
- $\nu X. \varphi \stackrel{\text{def}}{=} \neg \mu X. \neg \varphi[(\neg X)/X]$

where $\varphi[(\neg X)/X]$ denotes the syntactic substitution of a formula $\neg X$ for free occurrences of a propositional variable X in φ .

2.2 Semantics of $FOM\mu$

We define a structure of FOM μ , and it is the same as structure of first-order modal logic.

Definition 3 Let σ be a signature of $FOM\mu$. A σ -structure is the quadruple (S, R, D, I) where

- 1. S is a non-empty set (of states).
- 2. D is a non-empty set,
- 3. R is a binary relation on S and

4. I is a function of the type $\mathcal{P}red_n \times S \to \wp(D^n)$ for every $n \in \mathbb{N}$.

A structure $\langle S, R, D, I \rangle$ of FOM μ is an extension of a Kripke frame $\langle S, R \rangle$ of propositional modal μ -calculus, in which a state s represents a first-order structure $\langle D, I(-,s) \rangle$.

 $FOM\mu$ has two kinds of variables, namely individual variables and propositional variables, hence we define a valuation of $FOM\mu$ as the mixture of those of first-order logic and modal μ -calculus.

Definition 4 Let $A = \langle S, R, D, I \rangle$ be a σ -structure. A valuation in A is a function V which takes an element $x \in IV$ ar to an element of D, and an element $X \in PV$ ar to an element of $\wp(S)$.

In the sequel, we fix a σ -structure $\mathcal{A} = \langle S, R, D, I \rangle$ and a valuation V in \mathcal{A} unless stated otherwise.

Now we prepare functions to define denotations of formulas. Let $x, y \in IVar$, $d \in D$, $X, Y \in PVar$ and $T \in \wp(S)$ of S. Then we define functions V[d/x] and V[T/X] as follows.

$$V[d/x](Y) = V(Y), \quad V[d/x](y) = \begin{cases} d, & \text{if } y = x \\ V(y), & \text{if } y \neq x \end{cases}$$
$$V[T/X](y) = V(y), \quad V[T/X](Y) = \begin{cases} T, & \text{if } Y = X \\ V(Y), & \text{if } Y \neq X \end{cases}$$

Finally we define denotations of formulas. In modal μ -calculus, the denotation of a formula is defined as the set of states at which the formula is true. Therefore we extend that idea to $FOM\mu$.

Definition 5 Let φ be a formula of $FOM\mu$, then we define the denotation $[\![\varphi]\!]_V^A (\in \wp(S))$ of φ as follows:

- 1. $[X]_V^A \stackrel{\text{def}}{=} V(X)$ for $X \in PVar$.
- 2. $[P(\bar{x})]_V^A \stackrel{\text{def}}{=} \{ s \in S \mid V(\bar{x}) \in I(P,s) \}$. where $P \in \mathcal{P}red_n$ and $\bar{x} \in IVar$,
- 3. $\llbracket \neg \varphi \rrbracket_{V}^{\mathcal{A}} \stackrel{\text{def}}{=} S \setminus \llbracket \varphi \rrbracket_{V}^{\mathcal{A}}$
- 4. $[\varphi \lor \psi]_V^A \stackrel{\text{def}}{=} [\varphi]_V^A \cup [\psi]_V^A$
- 5. $\llbracket \forall x. \varphi \rrbracket_V^{\mathcal{A}} \stackrel{\text{def}}{=} \bigcap_{d \in D} \llbracket \varphi \rrbracket_{V[d/x]}^{\mathcal{A}}$
- $6. \ \llbracket \Box \varphi \rrbracket_V^{\mathcal{A}} \stackrel{\mathrm{def}}{=} \big\{ \, s \in S \mid \, \forall t \in S, \, R(s,t) \, \Rightarrow \, t \in \llbracket \varphi \rrbracket_V^{\mathcal{A}} \, \big\},$
- 7. $\llbracket \mu X.\varphi \rrbracket_V^{\mathcal{A}} \stackrel{\text{def}}{=} \bigcap \{ T \subseteq S \mid \llbracket \varphi \rrbracket_{V[T/X]}^{\mathcal{A}} \subseteq T \}.$

Let $\mathcal{A} = \langle S, R, D, I \rangle$ be a structure, (v, V) a valuation in \mathcal{A} and $s \in S$. Then we define a satisfaction relation \Vdash as follows:

$$\mathcal{A}, V, s \Vdash \varphi \iff s \in \llbracket \varphi \rrbracket_V^{\mathcal{A}}$$

Remark 6 Let φ be a formula, A a structure and V a valuation in A.

- 1. By the definition of $[\![\mu X.\varphi]\!]_V^A$, the denotation $[\![\mu X.\varphi]\!]_V^A$ is the lease fixed-point of the function which takes an element T of $\wp(S)$ to $[\![\varphi]\!]_{V[T/X]}^A$.
- 2. By the definition of the formula $\nu X.\varphi$,

$$\llbracket \nu X. \varphi \rrbracket_V^{\mathcal{A}} = \bigcup \{ T \subseteq S \mid \llbracket \varphi \rrbracket_{V[T/X]}^{\mathcal{A}} \supseteq T \},$$

hence $[\![\nu X.\varphi]\!]_V^A$ is the greatest fixed-point of the function which takes an element T of $\wp(S)$ to $[\![\varphi]\!]_{V[T/X]}^A$.

3 First-Order CTL*

In this section, we define a logic FOCTL* which is a first-order extension of CTL*, i.e., we define syntax and semantics of FOCTL*.

3.1 Syntax of FOCTL*

A signature of FOCTL* is the same as that of FOM μ , and let σ be a signature of FOCTL*.

Definition 7 We mutually define the state σ -formulas and the path σ -formulas of $FOCTL^*$ as follows:

- 1. $X \in PVar \Rightarrow X$ is a state σ -formula,
- 2. $P \in \mathcal{P}red_n$ and $\bar{x} \in IVar \Rightarrow P(\bar{x})$ is a state σ -formula,
- 3. φ, φ' are state σ -formulas $\Rightarrow \neg \varphi, \varphi \lor \varphi'$ are state σ -formulas,
- 4. φ is a state σ -formula and $x \in IVar \Rightarrow \forall x. \varphi$ is a state σ -formula,
- 5. ψ is a path σ -formula \Rightarrow $\mathbf{E}\psi$ is a state σ -formula,
- 6. Every state σ -formula is a path σ -formula,
- 7. ψ . ψ' are path σ -formulas $\Rightarrow \neg \psi$ and $\psi \lor \psi'$ are path σ -formulas.
- 8. ψ is a path σ -formula and $x \in IVar \Rightarrow \forall x.\psi$ is a path σ -formula.
- 9. ψ , ψ' are path σ -formulas $\Rightarrow \mathbf{X}\psi$ and $\psi \mathbf{U}\psi'$ are path σ -formulas.

We use an abbreviation $\mathbf{A}\psi \stackrel{\mathrm{def}}{=} \neg \mathbf{E} \neg \psi$ for a path formula ψ . When a signature σ is not important or clear from context, we often write a state (path) formula for state (respectively path) σ -formula. We say that θ is a formula of FOCTL* if it is a state formula or a path formula of FOCTL*.

3.2 Semantics of FOCTL*

In this subsection we define semantics of FOCTL*, i.e., we define structures and a satisfaction relation for FOCTL*. A definition of structure of FOCTL* is the same as that of FOM μ . But a definition of the satisfaction relation is different from that of FOM μ .

Definition 8 1. A structure of FOCTL* is defined in the same way as $FOM\mu$. namely it is a quadruple $\langle S, R, D, I \rangle$ satisfying the conditions in Definition 3.

- 2. A valuation of FOCTL* is defined in the same way as $FOM\mu$, namely it is a function V satisfying the conditions in Definition 4.
- 3. For a structure $\langle S, R, D, I \rangle$ of $FOCTL^*$, a full path in S is a maximal sequence $s_0, s_1 \cdots$, of elements of S such that $(s_i, s_{i+1}) \in R$.

For a full path $\pi = s_0, s_1, \cdots$ and a natural number i, we write π^i for s_i, s_{i+1}, \cdots .

Since there are two kinds of formulas in FOCTL*, namely state formulas and path formulas, a definition of a satisfaction relation for state formulas is different from that for path formulas. Thus we mutually define the satisfaction relation \Vdash for state formulas and path formulas.

Definition 9 Let $A = \langle S, R, D, I \rangle$ be a structure of FOCTL*, V a valuation in A, $s \in S$ and π a full path in S. Let X be a propositional variable, P an n-ary predicate symbol and \bar{x} individual variables. Let φ , φ' be state formulas, and ψ , ψ' path formulas. Put Π is the set of full paths in S and $\pi(0)$ denotes the first element of π . Then we define a satisfaction relation \Vdash as follows:

- 1. $A, V, s \Vdash X \iff s \in V(X)$,
- 2. $A, V, s \Vdash P(\bar{x}) \iff V(\bar{x}) \in I(P, s)$.
- 3. $A, V, s \Vdash \neg \varphi \iff A, V, s \Vdash \varphi \text{ does not hold.}$
- 4. $A, V, s \Vdash \varphi \lor \varphi' \iff A, V, s \Vdash \varphi \text{ or } A, V, s \Vdash \varphi'$
- 5. $A, V, s \Vdash \forall x. \varphi \iff A, V[d/x], s \Vdash \varphi \text{ for any } d \in D$,
- 6. $A, V, s \Vdash \mathbf{E}\psi \iff \exists \pi \in \Pi \text{ such that } \pi(0) = s \text{ and } A, V, \pi \Vdash \psi,$
- 7. $A, V, \pi \Vdash \psi \iff A, V, \pi(0) \Vdash \psi \text{ for a state formula } \psi$,
- 8. $A, V, \pi \Vdash \neg \psi \iff A, V, \pi \Vdash \psi \text{ does not hold,}$
- 9. $A, V, \pi \Vdash \psi \lor \psi' \iff A, V, \pi \Vdash \psi \text{ or } A, V, \pi \Vdash \psi'$.
- 10. $A, V, \pi \Vdash \forall x. \psi \iff A, V[d/x], \pi \Vdash \psi \text{ for any } d \in D$,

11. $\mathcal{A}, V, \pi \Vdash \mathbf{X}\psi \stackrel{\mathrm{def}}{\iff} \mathcal{A}, V, \pi^1 \Vdash \psi$

12. $A, V, \pi \Vdash \psi \mathbf{U} \psi' \iff \exists j \geq 0. A, V, \pi^j \Vdash \psi' \text{ and } 0 \leq \forall k < j. A, V, \pi^k \Vdash \psi$

4 Comparison of Expressiveness of FOM μ and FOCTL*

In this section we compare expressiveness of FOM μ and FOCTL*. More precisely we show that FOCTL* is strictly less expressive than FOM μ . On the other hand FOM μ (FOCTL*) is a first-order extension of PM μ (respectively CTL*), and it is known that CTL* is strictly less expressive than PM μ (See Theorem 4.1.4 in [3] which is a linear temporal version of the statement.) Thus FOM μ and FOCTL* preserve a expressiveness relation.

4.1 Definitions of Comparing Expressiveness

For a signature σ of FOCTL*, hence of FOM μ , FOCTL*[σ] (FOM μ [σ]) denotes the set of σ -formulas of FOCTL* (respectively FOM μ).

Definition 10 Let σ be a signature.

- 1. We say that a state formula φ of $FOCTL^*[\sigma]$ can be expressed in the set $FOM\mu[\sigma]$ if there is a formula θ of $FOM\mu[\sigma]$ such that $\mathcal{A}', V', s' \Vdash \varphi \Leftrightarrow \mathcal{A}', V', s' \Vdash \theta$ for any structure $\mathcal{A} = \langle S', R', D', I' \rangle$, valuation V' in \mathcal{A}' and an element $s' \in S'$.
- 2. We say that a path formula ψ of $FOCTL^*[\sigma]$ can be expressed in the set $FOM\mu[\sigma]$ if there is a formula θ of $FOM\mu[\sigma]$ such that $\mathcal{A}', V', s' \Vdash \mathbf{A}\psi \Leftrightarrow \mathcal{A}', V', s' \Vdash \theta$ for any structure $\mathcal{A} = \langle S', R', D', I' \rangle$, valuation V' in \mathcal{A}' and an element $s' \in S'$.
- 3. We say that the set $FOCTL^*[\sigma]$ is less expressive than $FOM\mu[\sigma]$ if any formula of $FOCTL^*[\sigma]$ can be expressed in $FOM\mu[\sigma]$. When $FOCTL^*[\sigma]$ is less expressive than $FOM\mu[\sigma]$, we write $FOCTL^*[\sigma] \leq FOM\mu[\sigma]$.
- 4. We say that $FOCTL^*$ is less expressive than $FOM\mu$ if $FOCTL^*[\sigma] \leq FOM\mu[\sigma]$ for any signature σ . When $FOCTL^*$ is less expressive than $FOM\mu$, we write $FOCTL^* \leq FOM\mu$.

Proposition 11 FOCTL* is less expressive than $FOM\mu$.

Proof We can prove the proposition in a similar way to the fact that CTL* is less expressive than PM μ . (See pp. 367 in [3] for example.)

Definition 12 Let σ be a signature.

- 1. We say that a formula θ of the set $FOM\mu[\sigma]$ cannot be expressed in the set $FOCTL^*[\sigma]$ if, for each state formula φ of $FOCTL^*[\sigma]$, there is a structure $\mathcal{A}' = \langle S', R', D', I' \rangle$, a valuation V' in \mathcal{A}' and an element $s' \in S'$ such that $\mathcal{A}', V', s' \Vdash \theta \Leftrightarrow \mathcal{A}', V', s' \Vdash \varphi$.
- 2. We say that $FOCTL^*[\sigma]$ is strictly less expressive than $FOM\mu[\sigma]$ (or $FOM\mu[\sigma]$ is strictly more expressive than $FOCTL^*[\sigma]$) if $FOCTL^*[\sigma] \leq FOM\mu[\sigma]$, and there is a formula φ of $FOM\mu[\sigma]$ which cannot be expressed in $FOCTL^*$. We write $FOCTL^*[\sigma] \leq FOM\mu[\sigma]$ when $FOCTL^*[\sigma]$ is strictly less expressive than $FOM\mu[\sigma]$.
- 3. We say that $FOCTL^*$ is strictly less expressive than $FOM\mu$ (or $FOM\mu$ is strictly more expressive than $FOCTL^*$) if $FOCTL^* \leq FOM\mu$, and $FOCTL^*[\sigma] \leq FOM\mu[\sigma]$ for some signature σ . We write $FOCTL^* \leq FOM\mu$ when $FOCTL^*$ is strictly less expressive than $FOM\mu$.

4.2 Expressiveness of FOM μ

In this subsection we give an expressiveness result of FOM μ , in particular that of a formula $\nu X.\varphi \wedge \square \square X$. In Lemma 14, we introduce a structure \mathcal{A}_k so that we will compare expressiveness of FOM μ and FOCTL* in the next subsection.

Lemma 13 Let $R = \{(i, i+1) \mid i \in \mathbb{N}\}$, D be a non-empty set, I an interpretation. Let V be a valuation in the structure $A = \langle \mathbb{N}, R, D, I \rangle$ and φ a formula which does not contain a free propositional variable X. Then

$$\llbracket \nu X. \varphi \wedge \square \square X \rrbracket_V^A = \{ i \in \mathbb{N} \mid A, V, i + 2k \Vdash \varphi \text{ for any } k \in \mathbb{N} \}.$$

Proof (\subseteq) We show that $i \in \llbracket \nu X.\varphi \wedge \square \square X \rrbracket_V^A \Rightarrow i + 2k \in \llbracket \varphi \rrbracket_V^A$ for all $k \in \mathbb{N}$. Put $\llbracket \nu X.\varphi \wedge \square \square X \rrbracket_V^A = M$. Since M is the [greatest] fixed-point of the function which takes an element $T \in \wp(\mathbb{N})$ to the element $\llbracket \varphi \wedge \square \square X \rrbracket_{V[T/X]}^A$, We have the following equality:

$$M = \llbracket \varphi \wedge \Box \Box X \rrbracket_{V[M/X]}^{\mathcal{A}} \ (= \llbracket \varphi \rrbracket_{V[M/X]}^{\mathcal{A}} \cap \llbracket \Box \Box X \rrbracket_{V[M/X]}^{\mathcal{A}}). \quad (*)$$

Assume that $i \in M$. Then $i \in \llbracket \varphi \rrbracket_{V[M/X]}^{\mathcal{A}}$ by (*), hence $i \in \llbracket \varphi \rrbracket_{V}^{\mathcal{A}}$. Again by (*), $i \in \llbracket \Box \Box X \rrbracket_{V[M/X]}^{\mathcal{A}}$, this implies that $i+2 \in \llbracket X \rrbracket_{V[M/X]}^{\mathcal{A}}$. Thus we have that $i+2 \in M$. By repeating this argument, we have that $i+2k \in M$ (in particular $i+2k \in \llbracket \varphi \rrbracket_{V}^{\mathcal{A}}$) for any $k \in \mathbb{N}$.

(2) Put $M' = \{i \in \mathbb{N} \mid A, V, i + 2k \Vdash \varphi \text{ for all } k \in \mathbb{N}\}$. Since $[\![\nu X.\varphi \land \square X]\!]_V^A$ is the [greatest] fixed-point of the function which takes an element $T \in \wp(\mathbb{N})$ to the element $[\![\varphi \land \square \square X]\!]_{V[T/X]}^A$, it is enough to show that $M' \subseteq [\![\varphi \land \square \square X]\!]_{V[M'/X]}^A$.

Assume that $i \in M'$. Then $i + 2k \in \llbracket \varphi \rrbracket_V^A$ for any $k \in \mathbb{N}$, in particular $i \in \llbracket \varphi \rrbracket_V^A$ when k = 0. Hence $i \in \llbracket \varphi \rrbracket_{V[M'/X]}^A$. On the other hand,

$$i \in M' \Rightarrow i + 2 \in M' \Leftrightarrow i \in \llbracket \Box \Box X \rrbracket_{V[M'/X]}^{A}$$

Thus
$$i \in \llbracket \varphi \wedge \Box \Box X \rrbracket_{V[M'/X]}^{\mathcal{A}} \ (= \llbracket \varphi \rrbracket_{V[M'/X]}^{\mathcal{A}} \cap \llbracket \Box \Box X \rrbracket_{V[M'/X]}^{\mathcal{A}}).$$

In the following, we consider a signature which consists of a single unary predicate symbol P.

Lemma 14 Let $R = \{(i, i+1) \mid i \in \mathbb{N}\}$ and D a non-empty set, and let I_k be an interpretation such that

$$I_k(P,i) = \begin{cases} \emptyset, & \text{if } k = i, \\ D, & \text{otherwise.} \end{cases}$$

Put $A_k = \langle \mathbb{N}, R, D, I_k \rangle$ and let V be a valuation in A such that $V(X) = \mathbb{N}$ for any propositional variable X. Then $A_k, V, 0 \Vdash \nu X$. $P(x) \land \square \square X \Leftrightarrow k$ is odd.

Proof

$$\mathcal{A}_k, V, 0 \Vdash \nu X. P(x) \land \Box \Box X$$

$$\Leftrightarrow \quad 0 \in \llbracket \nu X. P(x) \wedge \Box \Box X \rrbracket_{V}^{A_{k}}$$

$$\Leftrightarrow 0 \in \{i \in \mathbb{N} \mid A_k, V, i + 2j \Vdash P(x) \text{ for any } \in \mathbb{N}\}$$
 (Lemma13)

 \Leftrightarrow k is odd

We remark that a valuation in a structure A_k can be a valuation in a structure A_l for any natural numbers k, l, hence a valuation in A_k 's makes sense.

4.3 FOCTL* is strictly less expressive than FOM μ

In this subsection we show that FOCTL* is strictly less expressive than FOM μ . Similarly it is known that CTL* is strictly less expressive than PM μ .

Our proof of Theorem 18 is a first-order (and branching) extension of Theorem 4.1.4 in [3], hence we must also consider formulas of the form $\forall x.\varphi$ and a valuation V. This requires modification of induction statements in proofs, thus we introduce a binary relation \sim on the set of valuations in a structure.

Definition 15 Let $\langle S', R', D', I' \rangle$ be a structure and \mathcal{V} the set of valuations in it and $V, V' \in \mathcal{V}$. We define a binary relation \sim on \mathcal{V} as follows: $V' \sim V''$ if there is a finite subset $IVar_0$ of IVar such that

- 1. V'(x) = V''(x) for any $x \in IVar \setminus IVar_0$ and
- 2. V'(X) = V''(X) for any $X \in PVar$.

Lemma 16 Let $A_j = \langle \mathbb{N}, R, D, I_j \rangle$ be the structure for each natural number j and the valuation V defined in Proposition 14.

1. For any state formula φ of $FOCTL^*[\{P\}]$, natural numbers $k, i \geq 0$ and valuation $V' \sim V$, $A_k, V', i \Vdash \varphi \Leftrightarrow A_{k+1}, V', i+1 \Vdash \varphi$.

2. For any path formula ψ of FOCTL*[{P}], natural numbers $k, i \geq 0$ and valuation $V' \sim V$, $A_k, V', \pi^i \Vdash \psi \Leftrightarrow A_{k+1}, V', \pi^{i+1} \Vdash \psi$ where $\pi = 0, 1, 2, \ldots$

Proof Let φ be a state formula and ψ a path formula. We prove the lemma by mutual induction on the construction of φ and ψ . Let V' be a valuation with $V' \sim V$.

Case $1 \varphi \equiv X \in PVar$: By the definition of V', $A_k, V', i \vdash X$ for any $k, i \in \mathbb{N}$. In particular $A_k, V', i \vdash X \Leftrightarrow A_{k+1}, V', i+1 \vdash X$.

Case 2 $\varphi \equiv P(x)$: (Recall that P is the unique predicate symbol.) By the definition of I_k , \mathcal{A}_k , V', $i \Vdash P(x) \Leftrightarrow k \neq i$ for any $k, i \in \mathbb{N}$. Then the following holds for any $k, i \in \mathbb{N}$.

$$A_k, V', i \Vdash P(x) \Leftrightarrow k \neq i \Leftrightarrow k+1 \neq i+1 \Leftrightarrow A_{k+1}, V', i+1 \Vdash P(x)$$

Case 3 $\varphi \equiv \neg \varphi'$ or $\varphi' \lor \varphi''$ for some state formulas φ' and φ'' : We skip proofs for these cases.

Case 4 $\varphi \equiv \forall x.\varphi'$ for some state formula φ' :

$$\mathcal{A}_{k}, V', i \Vdash \forall x. \varphi'$$

$$\Leftrightarrow \mathcal{A}_{k}, V'[d/x], i \Vdash \varphi' \quad \text{for any } d \in D$$

$$\Leftrightarrow \mathcal{A}_{k+1}, V'[d/x], i+1 \Vdash \varphi' \quad \text{for any } d \in D \quad (V'[d/x] \sim V, IH)$$

$$\Leftrightarrow \mathcal{A}_{k+1}, V', i+1 \Vdash \forall x. \varphi'$$

Since the number of the logical symbol \forall in φ is finite, valuations occurring in the induction must be the form $V'[d_1/x_1]...[d_n/x_n]$ ($\sim V$) for some elements d_1, \dots, d_n of D and individual variables x_1, \dots, x_n . Thus our induction works.

Case 5 $\varphi \equiv \mathbf{E}\psi$ for some path formula ψ :

$$\mathcal{A}_{k}, V', i \Vdash \mathbf{E}\psi' \quad \Leftrightarrow \quad \mathcal{A}_{k}, V', \pi^{i} \Vdash \psi'$$

$$\Leftrightarrow \quad \mathcal{A}_{k+1}, V', \pi^{i+1} \Vdash \psi' \quad (\mathrm{IH})$$

$$\Leftrightarrow \quad \mathcal{A}_{k+1}, V', i+1 \Vdash \mathbf{E}\psi'$$

Case 6 ψ is a path formula which is also a state formula: Proofs for these cases are similar to those of the cases 1, 2, 3, 4 and 5.

Case 7 $\psi \equiv \neg \psi'$ or $\psi' \lor \psi''$ for some path formulas ψ' and ψ'' : We skip proofs for these cases.

Case 8 $\psi \equiv \forall x.\psi'$ for some path formula ψ' : A proof for this case is similar to that of the case 4.

Case 9 $\psi \equiv \mathbf{X}\psi'$ for some path formula ψ' :

$$\mathcal{A}_{k}, V', \pi^{i} \Vdash \mathbf{X}\psi' \quad \Leftrightarrow \quad \mathcal{A}_{k}, V', \pi^{i+1} \Vdash \psi'$$

$$\Leftrightarrow \quad \mathcal{A}_{k+1}, V', \pi^{i+2} \Vdash \psi' \quad (\mathrm{IH})$$

$$\Leftrightarrow \quad \mathcal{A}_{k+1}, V', \pi^{i+1} \Vdash \mathbf{X}\psi'$$

Case 10 $\psi \equiv \psi_1 \mathbf{U} \psi_2$ for some path formulas ψ_1, ψ_2 :

$$\mathcal{A}_k, V', \pi^i \Vdash \psi_1 \mathbf{U} \psi_2$$

- $\Leftrightarrow \quad \exists i' > i.[\mathcal{A}_k, V', \pi^{i'} \Vdash \psi_2 \& \left(i < \forall j < i'.\mathcal{A}_k, V', \pi^{j} \Vdash \psi_1\right)]$
- $\Leftrightarrow \exists i' > i.[\mathcal{A}_{k+1}, V', \pi^{i'+1} \Vdash \psi_2 \& (i < \forall j < i'.\mathcal{A}_{k+1}, V', \pi^{j+1} \Vdash \psi_1)] \quad (\text{IH})$
- $\Leftrightarrow \exists i'' > i + 1.[\mathcal{A}_{k+1}, V', \pi^{i''} \Vdash \psi_2 \& (i + 1 < \forall j < i''.\mathcal{A}_{k+1}, V', \pi^j \Vdash \psi_1)]$
- $\Leftrightarrow \mathcal{A}_{k+1}, V', \pi^{i+1} \Vdash \psi_1 \mathbf{U} \psi_2$

Lemma 17 shows limitations of expressiveness of FOCTL* with respect to the structure A_k .

Lemma 17 Let $A_j = \langle \mathbb{N}, R, D, I_j \rangle$ be the structure for each natural number j and the valuation V defined in Proposition 14.

- 1. For every state formula φ of $FOCTL^*[\{P\}]$, there is a natural number l such that $A_k, V', 0 \Vdash \varphi \Leftrightarrow A_l, V', 0 \Vdash \varphi$ for any natural number $k \geq l$ and valuation $V' \sim V$.
- 2. We write $\pi^i = i, i+1, i+2, \cdots$ for the path $\pi = 0, 1, 2, \cdots$. For every path formula ψ of $FOCTL^*[\{P\}]$, there is a natural number l such that $A_k, V', \pi^0 \Vdash \psi \Leftrightarrow A_l, V', \pi^0 \Vdash \psi$ for any natural number $k \geq l$ and valuation $V' \sim V$.

Proof We prove the lemma by mutual induction on the construction of the formula φ and ψ .

Case 1 $\varphi \equiv X$ for some propositional variable X: By the definition of V', we have that $\mathcal{A}_k, V', 0 \Vdash X$ for any $k \geq 0$. Thus put l = 0.

Case $2 \varphi \equiv P(x)$ for some individual variable x: (Recall that P is the unique predicate symbol.) By the definition of I_k , we have that $A_k, V', 0 \Vdash P(x) \Leftrightarrow k \neq 0$. Thus put l = 1.

Case $3 \varphi \equiv \neg \varphi'$ or $\varphi' \lor \varphi''$ for some state formulas φ' and φ'' : We skip proofs for these cases.

Case $4 \varphi \equiv \forall x.\varphi'$ for some state formula φ' : By induction hypothesis, for the formula φ' , there is a natural number $l_{\varphi'}$ such that $\mathcal{A}_k, V', 0 \Vdash \varphi' \Leftrightarrow \mathcal{A}_{l_{\varphi'}}, V', 0 \Vdash \varphi'$ for any valuation $V' \sim V$ and natural number $k \geq l_{\varphi'}$. Put $l = l_{\varphi'}$ and $k' \geq l$.

$$\mathcal{A}_{k'}, V', 0 \Vdash \forall x.\varphi'$$

- \Leftrightarrow $A_{k'}, V'[d/x], 0 \Vdash \varphi'$ for all $d \in D$
- $\Leftrightarrow \ \mathcal{A}_l, V'[d/x], 0 \Vdash \varphi' \text{ for all } d \in D \quad (k', l \ge l_{\varphi'}, V'[d/x] \sim V)$
- $\Leftrightarrow \mathcal{A}_l, V', 0 \Vdash \forall x. \varphi'$

Case 5 $\varphi \equiv \mathbf{E}\psi$ for some path formula ψ : By induction hypothesis, for the path formula ψ , there is a natural number l_{ψ} such that $\mathcal{A}_{k}, V', \pi^{0} \Vdash \psi \Leftrightarrow$

 $\mathcal{A}_{l_{\psi}}, V', \pi^0 \Vdash \psi$ for any valuation $V' \sim V$ and natural number $k \geq l_{\psi}$. Put $l = l_{\psi}$ and $k' \geq l$.

$$\mathcal{A}_{k'}, V', 0 \Vdash \mathbf{E}\psi \quad \Leftrightarrow \quad \mathcal{A}_{k'}, V', \pi^0 \Vdash \psi$$

$$\Leftrightarrow \quad \mathcal{A}_{l}, V', \pi^0 \Vdash \psi \quad (k', l \ge l_{\psi})$$

$$\Leftrightarrow \quad \mathcal{A}_{l}, V', 0 \Vdash \mathbf{E}\psi$$

Case 6 ψ is a path formula which is also a state formula: Proofs for these cases are similar to those of the cases 1, 2, 3, 4 and 5.

Case 7 $\psi \equiv \neg \psi'$ or $\psi' \lor \psi''$ for some path formulas ψ' and ψ'' : We skip proofs for these cases.

Case 8 $\psi \equiv \forall x.\psi'$ for some path formula ψ' : A proof for this case is similar to that of the case 4.

Case $9 \ \psi \equiv \mathbf{X} \psi'$ for some path formula ψ' : By induction hypothesis, for the path formula ψ' , there is a natural number $l_{\psi'}$ such that $\mathcal{A}_k, V', \pi^0 \Vdash \psi' \Leftrightarrow \mathcal{A}_{l_{\psi'}}, V', \pi^0 \Vdash \psi'$ for any valuation $V' \sim V$ and natural number $k \geq l_{\psi'}$. Put $l = l_{\psi'} + 1$ and $k \geq l$.

$$\mathcal{A}_{k}, V', \pi^{0} \Vdash \mathbf{X}\psi' \quad \Leftrightarrow \quad \mathcal{A}_{k}, V', \pi^{1} \Vdash \psi'$$

$$\Leftrightarrow \quad \mathcal{A}_{k-1}, V', \pi^{0} \Vdash \psi' \quad (k \geq 1, \text{Lemma 16})$$

$$\Leftrightarrow \quad \mathcal{A}_{l-1}, V', \pi^{0} \Vdash \psi' \quad (k-1, l-1 \geq l_{\psi'})$$

$$\Leftrightarrow \quad \mathcal{A}_{l}, V', \pi^{1} \Vdash \psi' \quad (\text{Lemma 16})$$

$$\Leftrightarrow \quad \mathcal{A}_{l}, V', \pi^{0} \Vdash \mathbf{X}\psi'$$

Case $10 \ \psi \equiv \psi_1 \ \mathbf{U} \ \psi_2$ for some path formulas ψ_1, ψ_2 : By induction hypothesis, we can choose a natural number $l_{\psi_1} \ (l_{\psi_2})$ for ψ_1 (respectively ψ_2) such that, for every path formula ψ of FOCTL*[{P}], there is a natural number l such that $\mathcal{A}_k, V', \pi^0 \Vdash \psi_1 \Leftrightarrow \mathcal{A}_l, V', \pi^0 \Vdash \psi_1$ (respectively $\mathcal{A}_k, V', \pi^0 \Vdash \psi_2 \Leftrightarrow \mathcal{A}_l, V', \pi^0 \Vdash \psi_2$) for any natural number $k \geq l$ and valuation $V' \sim V$. Similarly, without referring a natural number $l_{\mathbf{X}\psi_1} \ (l_{\mathbf{X}\psi_2})$ for the formula $\mathbf{X}\psi_1$ (respectively $\mathbf{X}\psi_2$). Then we put $l = \max\{l_{\mathbf{X}\psi_1}, l_{\mathbf{X}\psi_2}\}$.

By induction on k, we prove that

 $A_l, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \Leftrightarrow A_k, V', \pi^0 \Vdash \psi_1 \cup \psi_2$ for any natural number $k \geq l$.

Base Case: We prove that $A_l, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \Leftrightarrow A_{l+1}, V', \pi^0 \Vdash \psi_1 \cup \psi_2$.

$$\begin{array}{c} \mathcal{A}_{l+1}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Leftrightarrow \mathcal{A}_{l+1}, V', \pi^1 \Vdash \psi_2 \text{ or } \mathcal{A}_{l+1}, V', \pi^1 \Vdash \psi_1 \wedge (\psi_1 \cup \psi_2) \\ \Leftrightarrow \mathcal{A}_{l+1}, V', \pi^0 \Vdash \mathbf{X}\psi_2 \text{ or } \mathcal{A}_{l+1}, V', \pi^1 \Vdash \psi_1 \wedge (\psi_1 \cup \psi_2) \\ \Leftrightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \mathbf{X}\psi_2 \text{ or } \mathcal{A}_{l+1}, V', \pi^1 \Vdash \psi_1 \wedge (\psi_1 \cup \psi_2) \quad (l \geq l_{\mathbf{X}\psi_2}) \\ \Leftrightarrow \mathcal{A}_{l}, V', \pi^1 \Vdash \psi_2 \text{ or } \mathcal{A}_{l+1}, V', \pi^1 \Vdash \psi_1 \wedge (\psi_1 \cup \psi_2) \quad (l \geq l_{\mathbf{X}\psi_2}) \\ \Leftrightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \text{ or } \mathcal{A}_{l+1}, V', \pi^1 \Vdash \psi_1 \wedge (\psi_1 \cup \psi_2) \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \text{ or } \mathcal{A}_{l+1}, V', \pi^1 \Vdash \psi_1 \cup \psi_2 \\ \Leftrightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \text{ or } \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \quad (\text{Lemma 16}) \\ \Leftrightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l}, V', \pi^0 \vdash \psi_1 \cup \psi_2 \\ \Rightarrow \mathcal{A}_{l},$$

Induction Step: Assume that $\mathcal{A}_{k'}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \Leftrightarrow \mathcal{A}_l, V', \pi^0 \Vdash \psi_1 \cup \psi_2$ for any natural number k' with $l \leq k' \leq k$. Then we prove that $\mathcal{A}_{k+1}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \Leftrightarrow \mathcal{A}_l, V', \pi^0 \Vdash \psi_1 \cup \psi_2$.

 $\Rightarrow \mathcal{A}_{l+1}, V', \pi^0 \Vdash \psi_1 \cup \psi_2$

$$\mathcal{A}_{k+1}, V', \pi^0 \Vdash \psi_1 \cup \psi_2$$

$$\Leftrightarrow \mathcal{A}_{k+1}, V', \pi^1 \Vdash \psi_2 \text{ or } \mathcal{A}_{k+1}, V', \pi^1 \Vdash \psi_1 \wedge (\psi_1 \cup \psi_2)$$

$$\Leftrightarrow \mathcal{A}_{l+1}, V', \pi^1 \Vdash \psi_2 \text{ or } \mathcal{A}_{k+1}, V', \pi^1 \Vdash \psi_1 \wedge (\psi_1 \cup \psi_2) \quad (k+1, l+1 \geq l_{\mathbf{X}\psi_2})$$

$$\Leftrightarrow \mathcal{A}_{l+1}, V', \pi^1 \Vdash \psi_2 \text{ or } \mathcal{A}_{l+1}, V', \pi^1 \Vdash \psi_1 \wedge (\psi_1 \cup \psi_2)$$

$$\quad (k+1, l+1 \geq l_{\mathbf{X}\psi_1}, \text{ Lemma 16 and I.H.})$$

$$\Leftrightarrow \mathcal{A}_{l+1}, V', \pi^0 \Vdash \psi_1 \cup \psi_2$$

$$\Leftrightarrow \mathcal{A}_{l}, V', \pi^0 \Vdash \psi_1 \cup \psi_2 \quad (\text{Base Case})$$

Theorem 18 For a unary predicate symbol P, $FOCTL^*[\{P\}]$ is strictly less expressive than $FOM\mu[\{P\}]$. In particular the formula $\nu X.P(x) \wedge \square\square X$ of $FOM\mu[\{P\}]$ cannot be expressed in $FOCTL^*[\{P\}]$, namely, for each state formula φ of $FOCTL^*[\sigma]$, there is a structure $A' = \langle S', R', D', I' \rangle$, a valuation V' in A' and an element $s' \in S'$ such that $A', V', s' \Vdash \nu X.P(x) \wedge \square\square X \Leftrightarrow A', V', s' \Vdash \varphi$.

Proof Assume that the formula $\nu X. P(x) \wedge \square \square X$ can be expressed as a state formula φ of FOCTL*[$\{P\}$], namely that $\mathcal{A}', V', s' \Vdash \varphi \Leftrightarrow \mathcal{A}', V', s' \vdash \nu X. P(x) \wedge \square \square X$ for any structure $\mathcal{A}' = \langle S', R', D', I' \rangle$, valuation V' in \mathcal{A}' and element $s' \in S'$.

Recall that we have introduced the structure $A_k = \langle \mathbb{N}, R, D, I_k \rangle$ and the valuation V in Lemma 14. By Lemma 17, there is a natural number l such that, for any valuation $V' \sim V$ and natural numbers $k, k' \geq l$,

$$\mathcal{A}_{k}, V', 0 \Vdash \nu X. P(x) \land \Box \Box X \iff \mathcal{A}_{k}, V', 0 \Vdash \varphi$$

$$\Leftrightarrow \mathcal{A}_{l}, V', 0 \Vdash \varphi \quad (k \geq l, \text{Lemma 17})$$

$$\Leftrightarrow \mathcal{A}_{k'}, V', 0 \Vdash \varphi \quad (k' \geq l, \text{Lemma 17})$$

$$\Leftrightarrow \mathcal{A}_{k'}, V', 0 \Vdash \nu X. P(x) \land \Box \Box X$$

But this contradicts to the fact (Lemma 14) that

$$A_k, V', 0 \Vdash \nu X. P(x) \land \square \square X \Leftrightarrow k \text{ is odd.}$$

Thus the formula νX . $P(x) \land \Box \Box X$ cannot be expressed in FOCTL*[$\{P\}$], hence FOCTL*[$\{P\}$] is strictly less expressive than FOM $\mu[\{P\}]$.

Corollary 19 FOCTL* is strictly less expressive than FOM μ .

References

- [1] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. *Model Checking*. The MIT Press, Cambridge, Massachusetts, 1999.
- [2] Bruno Dutertre. On first order interval temporal logic. Technical Report CSD-TR-94-3, University of London, February 1995.
- [3] Fred Kröger and Stephan Merz. Temporal Logic and State Systems. Texts in Theoretical Computer Science. Springer, 2008.
- [4] David Harel. First-Order Dynamic Logic. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1979.
- [5] Ian M. Hodkinson, Frank Wolter, and Michael Zakharyaschev. Decidable and undecidable fragments of first-order branching temporal logics. In *LICS*, pages 393–402, 2002.

- [6] Ryo Kashima and Keishi Okamoto. General models and completeness of first-order modal μ -calculus. Journal of Logic and Computation, 18(4):497–507, August 2008.
- [7] Dexter Kozen. Results on the propositional μ -calculus. Theoretical Computer Science, 27:333-354, 1983.
- [8] Keishi Okamoto. Formal verification in a first-order extension of modal μ -calculus. Computer Software, 26(1):103-110, February 2009.
- [9] Stirling, C. Modal and temporal logics. In *Handbook of Logic in Computer Science*, volume 2 (Background: Computational Structures), pages 477–563. Clarendon Press, Oxford, 1992.
- [10] Frank Wolter. First order common knowledge logics. Studia Logica, 65:249–271, 2000.