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Comparing Expressiveness of First-Order Modal
u-calculus and First-Order CTL*

Keishi Okamoto

Abstract

In this paper we introduce a first-order extension of propositional
modal p-calculus (first-order modal p-calculus) and a first-order exten-
sion of CTL* (first-order CTL"), and then compare their expressiveness.
More precisely we show that first-order CTL" is strictly less expressive
than first-order modal p-calculus. It is known that CTL" is strictly less
expressive than propositional modal u-calculus, hence our result shows
that our two first-order extensions of CTL* and PMyu preserve an expres-
siveness relation.

1 Introduction

Formal verification is an important research area in computer science, and many
people verify safety critical systems with formal verification. In formal verifica-
tion, 1) a verification target is formalized as a theory and a model of a logic, 2)
a verification item is formalized as a formula of the logic, 3) and then a verifier
checks whether the formalized verification target satisfies the formalized verifi-
cation item with theorem proving and model checking, which is based on the
logic. [Propositional] temporal logics[3, 9] and propositional modal u-calculus
PM_y[7] have been often used for this purpose. As verification targets and ver-
ification items are becoming complicated, extensions, in particular first-order
extensions, of propositional temporal logics have been introduced (2, 4, 5, 10].
The author and Kashima introduced a first-order extension of PMy in [6, 8].

There are many propositional temporal logics, linear temporal logic LTL,
computation tree logic CTL and CTL* etc., thus their expressiveness results
have been proved. For example, it is known that CTL is strictly less expressive
than CTL* (see [1]), and that CTL* is strictly less expressive than PMy (see [3]).
PMy is a yardstick for comparing expressiveness of propositional temporal log-
ics. Then the author thinks that our first-order extension of PMyu can be also a
yardstick for comparing expressiveness of first-order extensions of propositional
temporal logics. '

In this paper we compare expressiveness of a first-order extension of PMu
and a first-order extension of CTL*, more precisely show that the first-order

extension of CTL* is strictly less expressive than the first-order extension of
PMu.



2 First-Order Modal p-calculus

In this section, we define a first-order extension of propositional modal p-
calculus and call the logic first-order modal p-calculus (FOMp).

2.1 Syntax of FOMu

Definition 1 A signature o for first-order modal p-calculus consists of two
infinite sets IVar and PVar, and a set Pred,, for each natural number n > 0.

We call elements of IVar individual variables and write z,y,... for them,
and also call those of PVar proposilional variables and write X, Y, ... for them.
We call elements of Pred,, n-ary predicate symbols and write P,Q, ... for them.

Definition 2 Let o be a signature of FOMu. Then the o-formulas of FOMp
are the following:

1. X € PVar = X is a o-formula,
2. P € Pred,, and T € [Var = P(Z) is a o-formula,
3. ¢ and ¢ are o-formulas = —p,pV ¥,0p are o-formulas.

4. x € 1Var and ¢ is a o-formula = Vz.p is a o-formula,
5

. If X € PVar, ¢ is a o-formula and no free occurrence of X in ¢ is negative
= uX.p is a o-formula.

We use usual abbreviations ¢ A ¥, ¢ D 1, 3z. ¢ and two abbreviations

[ ng déf —|Dﬁ(’0,

o vX. o ¥ —uX. —p|(-X)/X]

where ¢[(—X)/X] denotes the syntactic substitution of a formula ~X for free
occurrences of a propositional variable X in ¢.

2.2 Semantics of FOMyu

We define a structure of FOMy, and it is the same as structure of first-order
modal logic.

Definition 3 Let o be a signature of FOMu. A o-structure is the quadruple
(S,R, D, I) where

1. S is a non-empty set (of states).
2. D is a non-empty set,

3. R is a binary relation on S and



4- I 15 a function of the type Pred, x S — p(D™) for every n € N.

A structure (S, R, D, I) of FOMy is an extension of a Kripke frame (S, R) of
propositional modal p-calculus, in which a state s represents a first-order struc-
ture (D, I(—,s)).

FOMy has two kinds of variables, namely individual variables and proposi-
tional variables, hence we define a valuation of FOMy as the mixture of those
of first-order logic and modal p-calculus.

Definition 4 Let A = (S,R,D,I) be a o-structure. A valuation in A is a
function' V which takes an element x € IVar to an element of D, and an element
X € PVar Lo an elemenl of p(S).

In the sequel, we fix a o-structure A = (S,R,D,I) and a valuation V in A
unless stated otherwise.

Now we prepare functions to define denotations of formulas. Let z,y € IVar,
d€ D, X,Y € PVar and T € p(S) of S. Then we define functions V[d/z] and
V[T /X] as follows.

d, fy==z
Viy), ify#z

T, ifYy =X
V(Y), ifY#X

VId/z|(Y) =V(Y), V]d/z|(y)= {

VIT/X|W) = V), VIT/XI(Y) = {

Finally we define denotations of formulas. In modal p-calculus, the deno-
tation of a formula is defined as the set of states at which the formula is true.
Therefore we extend that idea to FOM.

Definition 5 Let ¢ be a formula of FOMy, then we define the denotation
[¢]% (€ ©(S)) of ¢ as follows:

1 [X]4 € V(X) for X € PVar,

2. [P@)]¢ € {s€ S| V(@) e I(Ps))}. where P € Pred,, and z € [Var,
3. [l € S\ [l

4 Lo vuld = [old v vl

5 [zl & Nueplel¥ia/e)s

6. [Opl¢ € {seS|VteS. Ris,t) = te[o]d),

7 pXel E T C S| [elrx ST



Let A = (S, R, D, I) be a structure, (v, V) a valuation in A and s € S. Then
we define a satisfaction relation I+ as follows:

A Vst iR s € [o]%

Remark 6 Let ¢ be a formula, A a structure and V a valuation in A.

1.

2.

3

By the definition of [uX.@]¢, the denotation [uX.@]{ is the lease fixed-
point of the function which takes an element T of p(S) to ﬂcp}]““}[T/x].

By the definition of the formula vX.p,
vX.old =\ HT S S | [l x 2 T},

hence [vX.p]{ is the greatest fixed-point of the function which takes an
element T of p(S) lo [[go]]““}[T/X].

First-Order CTL*

In this section, we define a logic FOCTL* which is a first-order extension of
CTL*, i.e., we define syntax and semantics of FOCTL*.

3.1

Syntax of FOCTL"

A signature of FOCTL* is the same as that of FOMy, and let o be a signature
of FOCTL*.

Definition 7 We mutually define the state o-formulas and the path o-formulas
of FOCTL* as follows:

1.
2.

X N>

©

X € PVar = X is a slale o-formula,

P € Pred, and T € IVar = P(Z) is a state o-formula,

. @, are state o-formulas = -, ¢ V ¢' are state o-formulas,

. @ 1s a state o-formula and x € IVar = Vz.p is a state o-formula,

¥ is a path o-formula = Ev is a state o-formula,

Every stale o-formula is a palh o-formula,

¥. Y are path o-formulas = — and ¢ V¢’ are path o-formulas.
¥ 18 a path o-formula and x € IVar = Vx.9 is a path o-formula.

Y, ¥ are path o-formulas = Xy and YUY are path o-formnulas.

We use an abbreviation A def —E-1% for a path formula 1. When a signature
o is not important or clear from context, we often write a state (path) formula
for state (respectively path) o-formula. We say that 8 is a formula of FOCTL*
if it is a state formula or a path formula of FOCTL*.



3.2 Semantics of FOCTL*

In this subsection we define semantics of FOCTL*, i.e., we define structures and
a satisfaction relation for FOCTL*. A definition of structure of FOCTL* is the
same as that of FOMu. But a definition of the satisfaction relation is different
from that of FOMp. |

Definition 8 1. A structure of FOCTL* is defined in the same way as
FOMyu. namely it is a quadruple (S, R, D,I) satisfying the conditions in
Definition 3.

2. A valuation of FOCTL* is defined in the same way as FOMpu, namely it
18 a funclion V salisfying the condilions in Definilion 4.

3. For a structure (S,R,D,I) of FOCTL*, a full path in S is a marimal

sequence Sg, 81+, of elements of S such that (s;,8,+1) € R.
For a full path m = sy,s;,--- and a natural number i, we write 7 for
Siy Si41y 0"

Since there are two kinds of formulas in FOCTL*, namely state formulas
and path formulas, a definition of a satisfaction relation for state formulas is
different from that for path formulas. Thus we mutually define the satisfaction
relation I for state formulas and path formulas.

Definition 9 Lel A= (S, R, D,I) be a struclure of FOCTL*, V a valualion in
A, s€ S and m a full path in S. Let X be a propositional variable, P an n-ary
predicate symbol and T individual variables. Let @, @' be state formulas, and 1,
Y path formulas. Put I1 is the set of full paths in S and 7(0) denotes the first
element of m. Then we define a satisfaction relation It as follows:

1. AVsEX & sevix),

2. A V,slF P(z) €5 v(z) e I(P,s).

3. AV,slk~p &5 A V,slk ¢ does not hold,

4. A VislF oV PN AV sk or A, Vsl ¢,

5. A V,slkVr.p PN A, V([d/z],s Ik ¢ Jor any d € D,
6. A V,sIFEyp €5 3r € 1T such thal 7(0) = s and A, V,x Ik,
def

7. AV,mlky & AV, n(0) I+ for a state formula 1,

8 AV,nlk—p &5 AV 7k does not hold,

9. AV pvy &S AVriky or AV, 7IF .

10. A,V,mlkVep €5 A Vd/z], 7 F ¢ for any d € D,



1. AV,nlF Xy &5 AV, 7y,

12. AV,mlF Uy €5 35> 0.4V, k¢ and 0 < VEk < 1. AV, 7% I ¢

4 Comparison of Expressiveness of FOMy and
FOCTL*

In this section we compare expressiveness of FOMyu and FOCTL*. More pre-
cisely we show that FOCTL* is strictly less expressive than FOMpu. On the
other hand FOMp (FOCTL*) is a first-order extension of PMpu (respectively
CTL*), and it is known that CTL* is strictly less expressive than PMp (See
Theorem 4.1.4 in [3] which is a linear temporal version of the statement.) Thus
FOMyu and FOCTL* preserve a expressiveness relation.

4.1 Definitions of Comparing Expressiveness

For a signature o of FOCTL*, hence of FOMu, FOCTL* (o] (FOMg[o]) denotes
the set of o-formulas of FOCTL* (respectively FOMy).

Definition 10 Let o be a signature.

1. We say that a state formula ¢ of FOCTL*[o] can be expressed in the set
FOMuylo] if there is a formula 6 of FOMpulo] such that A, V', s' Ik ¢ &
A V' s Ik 8 for any structure A = (S',R', D', I'), valuation V' in A’
and an element s' € S’.

2. We say that a path formula v of FOCTL*[o] can be expressed in the set
FOMufo] if there is a formula 8 of FOMpu[o] such that A, V', s' I+ Ay &
ALV s I+ 8 for any structure A = (S',R',D’,I'), valuation V' in A’
and an element s' € S’.

3. We say that the set FOCTL*|o] is less expressive than FOMyulo] if any
formula of FOCTL*[o] can be expressed in FOMulo]. When FOCTL*|o]
is less expressive than FOMulo), we write FOCTL*[o] < FOMyulo].

4. We say thal FOCTL* is less expressive than FOMpu if FOCTL*[g] <
FOMulo] for any signature 0. When FOCTL* is less expressive than
FOMyu, we write FOCTL* < FOMy.

Proposition 11 FOCTL* is less expressive than FOMu.

Proof We can prove the proposition in a similar way to the fact that CTL* is
less expressive than PMpu. (See pp. 367 in [3] for example.) O

Definition 12 Let o be a signature.



1. We say that a formula 6 of the set FOMu[o] cannot be expressed in the set
FOCTL*[o] if, for cach state formula ¢ of FOCTL*[a], there is a structure
A" = (8" R',D",I'}, a valuation V' in A" and an element s' € S’ such
that A"\ V' s'"IF 6 & A, V' s IF .

2. We say that FOCTL*(o] is strictly less expressive than FOMu[o] (or
FOMylo] is strictly more expressive than FOCTL*[0]) if FOCTL*[o] <
I'OMyplo], and there is a formula ¢ of FOMu|o] which cannot be expressed
in FOCTL*. We write FOCTL*[o] < FOMulo] when FOCTL*[o] is
strictly less expressive than FOMyulo].

3. We say that FOCTL* is strictly less expressive than FOMu (or FOMpu
s strictly more expressive than FOCTL*) if FOCTL* < FOMyu, and
FOCTL*[o] < FOMyulo] for some signature o. We write FOCTL* <
I'OMp when FOCTL* is strictly less expressive than FOMyu.

4.2 Expressiveness of FOMyu

In this subsection we give an expressiveness result of FOMy, in particular that
of a formula vX.9o AOOX. In Lemma 14, we introduce a structure A, so that
we will compare expressiveness of FOMpy and FOCTL* in the next subsection.

Lemma 13 Let R= {(i,i+ 1) | i € N}, D be a non-empty set, I an interpre-
lalion. Lel 'V be a valualion in the structure A = (N,R,D,I) and ¢ a formula
which does not contain a free propositional variable X. Then

[vX.oANOOX]$ = {i e N| A, V,i+ 2kl o for any ke N}.

Proof (C) We show that i € [vX.o AOOX]{ = i+ 2k € [¢]{ for all k € N.

Put [vX.o AOOX]{ = M. Since M is the [greatest] fixed-point of the
function which takes an element T € p(N) to the element [p A DDX]]{}‘[T/X],
We have the following equality:

M = [ AOOX]P 10/ x) (= [elyx) 0 [COXI5 10, x)- (%)

Assume that s € M. Theni € [[<p]]{}[M/X] by (x), hence i € [p]7}. Again by
(x),1 € [[DDX]]"’}[M/X], this implies that i1+ 2 € [[X]]{,‘[M/X]. Thus we have that
i+ 2 € M. By repeating this argument, we have that i + 2k € M (in particular
i+ 2k € [¢]{}) for any k € N.

(2) Put M" = {i € N| A V,i+2k - ¢ for all k € N}. Since [vX.p A
OOX]{ is the [greatest] fixed-point of the function which takes an element
T € p(N) to the element [p A DDX]](,‘[T/X], it is enough to show that M’ C
Lo ADOX] 00/ x)-

Assume that 4 € M’. Then i + 2k € [p]{ for any k € N, in particular
i € [l when k= 0. Hence i € [[go]](}[M,/X]. On the other hand,

i€EM = i+2e M & e [00X][3 X



Thus i € [ ADOX 00 x) (= [l x) N [BOX I x)-
O

In the following, we consider a signature which consists of a single unary
predicate symbol P.

Lemma 14 Let R = {(i,i+ 1) | i € N} and D a non-empty set, and let Ij; be
an interpretation such that

L(Pi) = {O), ifk=1i,

D, otherwise.

Put A = (N,R, D, I},) and let V be a valuation in A such that V(X) = N for
any propositional variable X. Then Ag,V,0IF vX. P(z) AOOX 4 k is odd.

Proof

Ap, V,0IF vX. P(z) ANOOX
& 0€ [vX.P(z) AODOX]3*
o 0e{ieN|AV,i+2jlIF P(z) for any € N} (Lemmal3)
& kisodd

O
We remark that a valuation in a structure Ax can be a valuation in a struc-
ture A; for any natural numbers k, !, hence a valuation in A’s makes sense.

4.3 FOCTL" is strictly less expressive than FOMy

In this subsection we show that FOCTL* is strictly less expressive than FOMp.
Similarly it is known that CTL* is strictly less expressive than PMpu.

Our proof of Theorem 18 is a first-order (and branching) extension of The-
orem 4.1.4 in (3], hence we must also consider formulas of the form Vz.p and a
valuation V. This requires modification of induction statements in proofs, thus
we introduce a binary relation ~ on the set of valuations in a structure.

Definition 15 Let (S’,R',D’,I') be a structure and V the set of valuations in
it and V,V' € V. We define a binary relation ~ on V as follows: V' ~ V" if
there is a finite subset IVarg of I'Var such that

1. V(z) = V"(z) for any z € IVar \ IVarg and
2. VI(X)=V"(X) for any X € PVar.

Lemma 16 Let A; = (N, R, D, I;) be the structure for each natural number j
and the valuation V defined in Proposition 14.

1. For any state formula ¢ of FOCTL*[{P}], natural numbers k,i > 0 and
valuation V! ~V, A, V',ilkp & App, V,i+ 11k .



2. For any path formula ¢ of FOCTL*[{P}], natural numbers k,i > 0 and
valuation V! ~ V, A, V', 7 Ik ¢ & Agyr, VI, 1t - o where 1 =
0,1,2,....

Proof Let ¢ be a state formula and v a path formula. We prove the lemma by
mutual induction on the construction of ¢ and 9. Let V' be a valuation with
Vi~ V. .

~ Casel ¢ = X € PVar: By the definition of V', Ak, V’,i IF X for any
k,i € N. In particular Ag,V',ilF X & Agy1,V,i+11F X,

Case 2 ¢ = P(z): (Recall that P is the unique predicate symbol.) By the
definition of Iy, Ax,V',i Ik P(x) & k # i for any k,7 € N. Then the following
holds for any k,7 € N,

A,V ilFP(z) @ k#i © k+1#i+1 & A, V,i+ 11k P(2)

Case 3 p = —¢' or ¢’ V" for some state formulas ¢’ and ¢’: We skip proofs
for these cases.

Case 4 ¢ = Vz.¢' for some state formula ¢’:

A, V', i lF Va:.go’
& A, V'[d/z],ilk ¢’ forany d€ D
& Apy,V'[d/z),i+1I-¢ foranyde D (V'[d/z] ~ V,IH)
& Agp,V,i+ 1Yz
Since the number of the logical symbol V in ¢ is finite, valuations occurring

in the induction must be the form V'[d;/z1]...[dn/zn] (~ V) for some elements
dy, -+ ,dn of D and individual variables z;,--- ,Z,. Thus our induction works.

Case 5 ¢ = E¢ for some path formula :
Ao, VilFEY & AV, "ty
< Ak:+17 V,) 7ri+1 I+ 'W (IH)
& Axi1,V,i+1-Ey

Case 6 19 is a path formula which is also a state formula: Proofs for these
cases are similar to those of the cases 1, 2, 3, 4 and 5.

Case 7 = =)' or ¢’ V" for some path formulas ¥’ and ¢": We skip proofs
for these cases.

Case 8 1 = Vz.9' for some path formula 1': A proof for this case is similar
to that of the case 4.

Case 9 9 = X' for some path formula 9':
A, VI, T IF Xy & A, VI, 7t -y
= Ak-}-la VI, 7ri+2 I+ ’le (IH)
& Ape, V1 IE Xy



Case 10 ¥ = 1, U, for some path formulas ¥1, ¥2:

A, V', 7t - 1 Uy

30 > i Ag, Vo I & (i < V5 <8 Ag, Vw1 4]

3’ > i [Aear, VI T o & (6 < VG <8 Ak, VIR (TH)
3" > i+ 1[Aks1, Vo1 IFha&(i+1<Vj < i A1, V', I )]
Ak, V, m I Uy

t¢ ¢

O
Lemma 17 shows limitations of expressiveness of FOCTL* with respect to
the structure Ag.

Lemma 17 lLet A; = (N,R, D, I;) be the structure for each natural number j
and the valuation V defined in Proposition 14.

1. For every state formula @ of FOCTL*[{P}], there is a natural number |
such that Ag,V',0lF ¢ & ALV 01k ¢ for any natural number k > 1
and valuation V' ~ V.

2. We write ™ = 1,1+ 1,1+ 2,--- for the path m = 0,1,2,---. For every
path formula 1 of FOCTL*[{P}], there is a natural number | such that
AL V70 -y & A,V 7% Ik ¢ for any natural number k > | and
valuation V! ~ V.

Proof We prove the lemma by mutual induction on the construction of the
formula ¢ and 7.

Case 1 ¢ = X for some propositional variable X: By the definition of V’,
we have that Ay, V’,01F X for any k > 0. Thus put I =0.

Case 2 ¢ = P(z) for some individual variable z: (Recall that P is the unique
predicate symbol.) By the definition of I, we have that Ak, V',0 Ik P(z) &
k # 0. Thus put [ = 1.

Case 3 ¢ = ~¢' or ¢’ V" for some state formulas ¢’ and ¢": We skip proofs
for these cases.

Case 4 ¢ = Vz.¢o' for some state formula ¢': By induction hypothesis, for
the formula ¢', there is a natural number lyr such that A, VI, 0 IF ¢ &
.Alw,,V' ,0 I ¢’ for any valuation V! ~ V and natural number k > l,. Put
l=1ly and k' > 1.

A, V', 01 V2.’

A, V'(d/z),01F ¢’ foralld € D

A, V'[d/x],01F ¢ foralld € D (k' 1>y, V'[d/z] ~ V)
o ALV, 0z

t ¢

Case 5 ¢ = E1 for some path formula ¥: By induction hypothesis, for
the path formula 4, there is a natural number Ly such that A, V70 Iy &

10



Ay, V', 7% Ik 4 for any valuation V' ~ V and natural number k > l,. Put
I =1, and k' > 1.

A, V' OIFEYy & Ag,V 70k
s AV, Oy (K,1>1y)
o ALV, 0IFEy

Case 6 9 is a path formula which is also a state formula: Proofs for these
cases are similar to those of the cases 1, 2, 3, 4 and 5.

Case 7 = —' or ' V" for some path formulas 9" and ": We skip proofs
for these cases.

Case 8 1 = Vz.¢' for some path formula ¢’: A proof for this case is similar
to that of the case 4.

Case 9 ¢ = X1’ for some path formula ¢": By induction hypothesis, for the
path formula 4/, there is a natural number ly such that A, V' 7% - ¢ &

A[w,,VI,ﬂ'O I ¢’ for any valuation V/ ~ V and natural number k& > ly,. Put
I=1y +1and k2> L.

A, V! 7% IF Xy’ A, V' 7t Ik

A1, V', 7% 19" (k > 1,Lemma 16)
A,V 7k’ (k—=1,1—12>1y)
ALV, mtiEy'  (Lemma 16)

ALV 7% I Xy

sttt

Case 10 ¥ = 1); Uy, for some path formulas 9;,1,: By induction hypoth-
esis, we can choose a natural number ly, (ly,) for ¥ (respectively 1) such
that, for every path formula @ of FOCTL*[{P}], there is a natural number [
such that Ag, V', 70 Ik ¥, < A, V', 70 IF ¢, (respectively Ag, V', 70 IF ¢y &
A, V', 70 I 4)3) for any natural number k > ! and valuation V' ~ V. Sim-
ilarly, without referring a natural number ly, uy,, We can choose a natural
number Ixy, (Ixy,) for the formula X4, (respectively X1)3). Then we put
I = max{lxy,,lxy,}-

By induction on k, we prove that

ALV 7%k, Uy @ Ag, V', 7% I- 4, U, for any natural number &k > [

11



12

Base Case: We prove that A, V', 70 - ¢; Uty & Ay, V/, 70 1F 4 U,

A1, V10 Ik 4 Uy ‘

A, Vil IF g or Ay, VV,mh I 4y A (1 Uthy)

A1, VI, 70 IF Xtpy or Ay, V', mh IF oy A (1 Udg)
ALV, 10 Ik Xypp or Ay, Vit IE 1 A (1 Uthg) (12 Ixy,)
ALV mb kg or A, Vet IE iy A (v Uddg)

ALV 70 I U or Ay, Vet IF 9y A (9 U )

ALV 70k, Uy or Ay, V/,mt IF 9, Uy

ALV 709, Uy or A, V', 7% I, Uy (Lemma 16)
ALV, 70 Ik Uy

O R O

ALV, 70 - Uy
3 > 0.]A, V', 7t IF by and 0 < V§ < 4.(A, V!, 77 I 4hy)]
3> 0.[Aj41, V', 7 - 92 and
0<Vj<i(A,V', 7 IFy;)] (Lemma 16)

& 3> 0.[A, V', 7 HIF 4 and

ALV Ik, and 0 < V§ < i.(AL, V70 I 4y))
& 3> 0.[A41, V', 7 IF ¢ and

A, Vot Ik and 0 < V5 < i.(AL V7 IF )] (1> Ixy,)
& 3> 0.[A4, V', 7 HIF ¢ and

Air, Vml Ik and 0 < Vj < i.(Aie, V/, 77t IR ;)] (Lemma 16)
& 3> 0[A41, V, 7 I ¢y and

A1, Vot Ik 4y and 1 < V5’ < i+ L(Aiy, Vo md Ik 1))
& Fi>0[A, V', mt IF gy and 0 < V5 < i+ 1.(Ag1, V', 77 I )]
= A, V70 -9, U,y

t e

Induction Step: Assume that Ag, V', 70 IF 1 Uy & A, V', 70 I 2h U
for any natural number &’ with I < k¥’ < k. Then we prove that Ag,;, V/, 7% IF
Pi Uy & ALV 701k, Uy,

A1, V70 IF 9 Uy
Ak, VI, mh I g or Agyr, VIt IE 1 A (91 Uthy)
Az+1,V',7r1 I 1), or .Ak+1,V/,7I'1 Fyr A1 Ug) (K+1,14+12> lx,pz)
A1, VI hg or Appr, VV i IE 1 A (191 U )
(k+1,l4+1 > Ixy,, Lemma 16 and 1.H.)
A, V!, 7% Ik 9 Uy
ALV, 7% 14, Uy (Base Case)

t ¢

t ¢



Theorem 18 For a unary predicate symbol P, FOCTL*[{P}] is strictly less
expressive than FOMu[{P}]. In particular the formula vX. P(z) A OOX of
FOMu[{P}] cannot be expressed in FOCTL*[{P}], namely, for each state for-
mula ¢ of FOCTL*(c], there is a structure A" = (S',R',D’,I'), a valuation
V' in A’ and an element s’ € S’ such that A", V' s I vX.P(z) AOOX ¢
ALV s .

Proof Assume that the formula vX. P(z) A OOX can be expressed as a
state formula ¢ of FOCTL*[{P}], namely that A, V',s' IF ¢ & A V' s Ik
vX.P(z) NOOX for any structure A’ = (S, R, D', I'), valuation V' in A" and
element s’ € §'.

Recall that we have introduced the structure Ay = (N, R, D, ;) and the
valuation V in Lemma 14. By Lemma, 17, there is a natural number [ such that,
for any valuation V' ~ V and natural numbers k, k' > [,

A, V', 0IF vX. P(z) AOOX & A, V',00F ¢
< A,V',0lk¢ (k>1,Lemma 17)
& Ap,V',0lk¢ (K >1,Lemma 17)
& A, V', 0IFvX. P(z) AOOX

But this contradicts to the fact (Lemma 14) that

A, V',0IF vX. P(z) AOOX & kis odd.

Thus the formula vX. P(z) ADOX cannot be expressed in FOCTL*[{ P}], hence
FOCTL*[{P}] is strictly less expressive than FOMu[{P}]. O

Corollary 19 FOCTL* is strictly less expressive than FOMys.
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