
The group of endotrivial modules for symmetric and
alternating groups

Nadia Mazza, Lancaster University

Survey of two collaborations:
with Jon Carlson and Dan Nakano & with Jon Carlson and Dave Hemmer

Endotrivial modules are ubiquitous representations of modular group algebras of fi-
nite groups. Given a finite group $G$ and a field $k$ of prime characteristic $p$ , a finitely
generated $kG$-module $M$ is endotntvial if the endomorphism algebra $End_{k}M$ of k-linear
transformations $Marrow M$ splits as $kG$-module as the direct sum of the one-dimensional
trivial module $k$ and a projective module. These modules have been noticed long ago,
and Everett Dade coined the expression in 1978. He was studying what he called
endo-permutation modules over finite p-groups, and it turned out that the endotrivia]

modules constituted the building bricks of the endo-permutation modules. He remarked
that the endo-permutation modules show up naturally as sources of simple modules for
finite p-solvable groups. Thus, he started a classification program of these and hence
also of endotrivial modules for finite p-groups. Both programs have been completed,
respectively in 2004 and in 2006. Since the concept of endotrivial module extends well
to arbitrary finite groups, we now aim at their classification in this broader context.
Let us briefly outline a few motivations therefore. Recall that $End_{k}M$ is isomorphic as
$kG$-module to the tensor product $M^{*}\otimes_{k}M$ , where $M^{*}=Hom_{k}(M, k)$ is the k-linear
dual of $M$ . Hence, the endotrivial modules are invertible elements in the Green ring
$\underline{A}(G)$ of the stable module category $\underline{mod}(kG)$ of $G$ . They also induce self-equivalences
of $\underline{mod}(kG)$ , and have several other “cohomological“ properties.

A key fact is that the set $T(G)$ of isomorphism classes of endotrivial modules form
a subgroup of the Picard group of $\underline{A}(G)$ , since the tensor product over the groud field
of two endotrivial modules is also endotrivial. We call $T(G)$ the group of endotrivial
modules of $G$ . The composition law in $T(G)$ is induced by the tensor product $\otimes_{k}$

”

with diagonal group action, that is, $[M]+[N]=[M\otimes_{k}N]$ for endotrivial modules $M$

and $N$ . Whence $T(G)$ is abelian and we have $0=[k|$ and $-[M]=[M^{*}]$ . The upshot
of this point of view is that the classification of endotrivial $kG$-modules reduces to the
computation of the structure of $T(G)$ . Moreover, it has been shown that $T(G)$ is finitely
generated and hence can be written as a direct sum $T(G)=TT(G)\oplus TF(G)$ , where
$TT(G)$ is the torsion subgroup and $TF(G)$ is torsion free. Thus, $TT(G)$ is a finite
abelian group, whereas $TF(G)$ is isomorphic to a direct sum of $n$ copies of $\mathbb{Z}$ . In this
notation, the torsion-free rank $n$ is given by the following rule: if $m$ is the number of
conjugacy classes of maximal elementary abelian p-subgroups of $G$ of order $p^{2}$ , then
$n=m$ if $G$ has p-rank at most 2, and $n=m+1$ otherwise. In particular, $T(G)$ is finite
if $G$ has cyclic Sylow p-subgroups, or possibly quaternion in case $p=2$ .
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This decomposition of $T(G)$ allows one to split the problem of the classification of
endotrivial modules into two parts: finding $TT(G)$ on one hand and determining $TF(G)$

on the other.
Endotrivial modules have been classified for several families of finite groups, including

p-groups, groups with normal or cyclic Sylow p-subgroups, groups of Lie type in defining
characteristic, and now also the symmetric and alternating groups, for all primes.

The paradigm of a non trivial endotrivial module is the syzygy of the trivial module.
That is, the syzygy of $k$ (also called the Heller translate) is the kernel $\Omega(k)=\Omega^{1}(k)$

of a projective cover $P_{0}arrow k$ of $k$ . Iteratively, we then may construct other instances
of endotrivial modules by taking $\Omega^{n}(k)=\Omega(\Omega^{n-1}(k))$ , for all non negative integers $n$ ;
also, we set $\Omega^{n}(k)=(\Omega^{-n}(k))^{*}$ , for all $n<0$ , and $\Omega^{0}(k)=k$ . It turns out that the set

$\langle[\Omega(k)]\rangle=\{[\Omega^{n}(k)]|n\in \mathbb{Z}\}$ form a direct summand in $T(G)$ .

In fact, often one has $\langle[\Omega(k)]\rangle=TF(G))$ because relatively few groups have maximal
elementary abelian p-subgroups of order $p^{2}$ . In any case the subgroup $([\Omega(k)]\rangle$ of $T(G)$

contains a “large” part of $T(G)$ , as the case of the symmetric and alternating groups
demonstrate. It should also be pointed out that, except when $p=2$ and the Sylow
2-subgroups are quaternion groups of order 8, then $T(G)$ is independent of the size of
the field $k$ , in the sense that the modules are defined over $F_{p}$ .

In view of the results obtained up to now, the strategy employed for the classification
of endotrivial modules of a given finite group $G$ , with Sylow p-subgroup $P$ and normaliser
$N=N_{G}(P)$ , decomposes as follows.

(i) Using the classification, determine $T(P)$ and $T(N)$ .
(ii) Compute the number of G-conjugacy classes of maximal elementary abelian p-

subgroups of $G$ of order $p^{2}$ , whence get the isomorphism type of $TF(G)$ .
(iii) Tackle $TT(G)$ , using the fact that the restriction map $T(G)arrow T(N)$ induced

by the inclusion $Narrow G$ is injective. A partial converse is given by the Green
correspondence.

A key fact to keep in mind when working out the second half of point (i) is that
$T(N)$ is generated by the isomorphism classes of N-stable endotrivial $kP$-modules. In
other words, one only needs to determine which are the indecomposable endotrivial
$kP$-modules that are invariant under N-conjugacy; these will extend to $N$ and generate
the whole group $T(N)$ . In addition, from the classification of endotrivial $kP$-modules,
$TT(P)$ is trivial, unless $P$ is cyclic (of order at least 3), quaternion or semidihedral.
Hence, in the (common) case that $TT(P)=\{[k]\}$ , then $TT(G)$ is generated by the
indecomposable trivial source modules whose restriction to $P$ splits as the direct sum of
$k$ and some projective module. If $G$ is the symmetric group, then these representations
are among the so-called Young modules.

Part (ii) reduces to a “simple“ computation of conjugacy classes, and by a previous
observation, if $TF(G)\cong \mathbb{Z}$ , then $TF(G)=\langle[\Omega(k)]\rangle$ . Note that if the torsion-free rank

34



of $T(G)$ is greater than 1, then the question of finding generators for a possible $TF(G)$

is still open, unless $G=N$ or $G$ has a dihedral Sylow 2-subgroup.
Part (iii) is certainly the trickiest one, and there is no general approach to it. Nev-

ertheless, knowing something about the representation theory of $G$ in general might be
helpful. In the case of the symmetric and alternating groups, several research articles
were key in the determination of $T(G)$ (see reference list).

By applying this strategy to the case of the symmetric and alternating groups, and
in addition, some subtler argument, voluntarily omitted in this report, we obtained the
following results.

Theorem $A$ : Let $S_{n}$ be the symmetric group on $n$ letters.
(a) If $p=2$ , then

$T(S_{n})\cong\{$ $\mathbb{Z}\mathbb{Z}^{2}\{0\}$

if $n\leq 3$ ,
if $n=4,5$ ,
if $n\geq 6$ .

(b) If $p\geq 3$ and $1\leq n<2p$ , then

$T(S_{n})\cong\{$
$\mathbb{Z}/2(p-1)\mathbb{Z}\{0\}$

if $n<p$ ,
if $n=p,$ $p+1$ ,

$\mathbb{Z}/2(p-1)\mathbb{Z}\oplus(\mathbb{Z}/2\mathbb{Z})$ if $p+2\leq n<2p$ .
(c) If $p\geq 3$ and $2p\leq n<p^{2}$ , then

$T(S_{n})\cong\{$ $\mathbb{Z}\oplus(\mathbb{Z}\mathbb{Z}\oplus(\mathbb{Z}/2\mathbb{Z})2\mathbb{Z})^{2}$

if $2p\leq n<3p$ ,
if $3p\leq n<p^{2}$

(d) If $p\geq 3$ and $p^{2}\leq n$ , then

$T(S_{n})\cong\{\begin{array}{ll}\mathbb{Z}^{2}\oplus \mathbb{Z}/2\mathbb{Z} if p^{2}\leq n<p^{2}+p,\mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z} if p^{2}+p\leq n.\end{array}$

Theorem $B$ : Let $A_{n}$ be the alternating group on $n$ letters.
(a) If $p=2$ , then

$T(A_{n})\cong\{\begin{array}{ll}\{0\} if n\leq 3,\mathbb{Z}\mathbb{Z}^{2}\mathbb{Z}\oplus(\mathbb{Z}/3\mathbb{Z}) if n=4,5,\end{array}$

if $n=6,7$ ,
if $n\geq 8$ .

(b) If $p\geq 3$ and $1\leq n<2p$ , then

$T(A_{n})\cong\{$
$\mathbb{Z}/(p-1)\mathbb{Z}\oplus(\mathbb{Z}/2\mathbb{Z})\{0\}$

if $n<p$ ,
if $n=p,p+1$ ,

$\mathbb{Z}/2(p-1)\mathbb{Z}$ if $p+2\leq n<2p$ .
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(c) If $p\geq 3$ and $2p\leq n<p^{2}$ , then

$T(A_{n})\cong\{$

$\mathbb{Z}\mathbb{Z}\oplus\oplus\{_{\mathbb{Z}/2\mathbb{Z})}^{\mathbb{Z}/4\mathbb{Z})_{2}}$

if $p=3$ and $n=6,7$ ,
if $p>3$ and $n=2p,$ $2p+1$ ,

$\mathbb{Z}\mathbb{Z}\oplus(\mathbb{Z}/2\mathbb{Z})$
if $2p+2\leq n<3p$ ,
if $3p\leq n<p^{2}$

(d) If $p\geq 3$ and $p^{2}\leq n$ , then

$T(A_{n})\cong\{$

$\mathbb{Z}^{2}$ if $p^{2}\leq n<p^{2}+p$ ,
$\mathbb{Z}$ if $p^{2}+p\leq n$ .

Rather than a technical outline of the proof of this result, we end this report with a
few remarks tying the endotrivial modules with the well-known representation theory
of the symmetric groups. First, it is easy to see that the factor $\mathbb{Z}/2\mathbb{Z}$ showing up
everywhere in the description of $T(S_{n})$ and nowhere in $T(A_{n})$ is the class of the sign
representation (which is of course an endotrivial module). Another fact to point out is
that the case $p=2$ turns out to be easier than the other situations. The reason is that,
except for some small degrees, the Sylow 2-subgroups are self-normalising and $T(P)$ is
torsion-free. Incidentally, we obtain that the Specht module $S^{(3,1)}$ corresponding to the
natural representation of $S_{4}$ is an endotrivial $F_{2}S_{4}$ -module and extends an $F_{2}D_{8}$-module
(where $D_{8}$ is a Sylow 2-subgroup of $S_{4}$ , hence dihedral of order 8). More precisely, $S^{(3,1)}$

extends the kernel of the augmentation map $\Omega_{D_{8}/X}(k)=ker(F_{2}[D_{8}/X]arrow F_{2})$ , also
called relative syzygy, for $X$ a non-central subgroup of $D_{8}$ of order 2. From $S_{4}$ to $S_{5}$ , a
“branching game” yields the corresponding modules. Let us also outline the fact that

$S_{4}$ and $S_{5}$ are the unique instances of arbitrary finite groups $G$ with non-normal Sylow
p.subgroups and torsion-free groups $TF(G)$ of rank greater than 1 for which explicit
generators for $T(G)$ are known. Last but not least, we appealed to the algebra software
Magma. It lead us to discover the main surprising fact to us: for $2p\leq n<p^{2}$ , and
$p>2$ , the group $TT(S_{n})$ is generated by the classes of the sign representation AND that
of an endotrivial module $Y$ of dimension $>1$ . Explicitly, if $n=2p+a$, with $0\leq a<p$ ,
then $Y$ is isomorphic to the Young module corresponding to the partition $(p+a,p)$ .

Full details of the results summarised in this report are in the articles:
$\bullet$ J. Carlson, N. Mazza and D. Nakano, Endotr,vial modules for the symmetric

and altemating groups, Proc. Edinburgh Math. Soc., to appear.
$\bullet$ J. Carlson, D. Hemmer and N. Mazza, The group of endotrivial modules for the

symmetric and altemating groups, Proc. Edinburgh Math. Soc., to appear.
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Finally, a few suggested related papers for further reading
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