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On the Dade -Tasaka correspondence between blocks of finite groups
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1 Introduction

In this report we state a generalization of Tasaka’s isotypy between blocks of finite
groups obtained by the Dade character correspondence. Let p be a prime and (K, O, k) be
a p-modular system such that X is a splitting filed for all finite groups which we consider
in this talk. Let S denote O or k. For a finite abelian group F, we denote by F' the
character group of F and by Fq the subgroup of F' of order q for g € n(F), where n(F) is
the set of all primes dividing |F|. Let G be a finite group and N be a normal subgroup
of G. We denote by Irr(G) the set of ordinary irreducible characters of G and Irr®(N) be
the set of G-invariant irreducible characters of N. For ¢ € Irr(V), we denote by Irr(G|¢)
the set of irreducible characters x of G such that ¢ is a constituent of the restriction x
of x to N.

Hypothesis 1 G is a finite group which is a normal subgroup of a finite group E such
that the factor group F = E/G is a cyclic group of order r. X is a generator of F.
Ey = {z € E | T is a generator of F} where T = £G. E' is a subgroup of E such that
E'G=E,G =GnNE and Ej = E'N Ey. Moreover (Ej)™ N E| is the empty set, for all
T€E-FE.

Under the above hypothesis, in [2], E.C. Dade constructed a bijection between Irrf (G)

and Irr® (G') which is a generalization of the cyclic case of the Glauberman correspondence
([3] or, [6], Chap.13).

Theorem 1 ([2], Theorem 6.8, Theorem 6.9) Assume Hypothesis 1 and |F| # 1. For each
prime q € w(F), we choose some non-trivial character Ay € Fy. There is a bijection
P(E,G,E',G"): Ir®(G) = It” (G') (= ¢ = $(an)

which satisfies the following conditions. Ifr is odd, then there are a unique integer e, = £1
and a unique bijection ¢ = g1y of Irr(E|p) onto Irr(E'|¢’) such that

(11) . ( H (I—Aq)'d))E,ZEqs H (l—Aq)'w(E’)a

gen(F) gen(F)
for any ¢ € Irr(E|@). Ifr is even, and we choose €5 = %1 arbitrarily, then there is a unique

bijection ¢ — Y1y of Irr(E|¢p) onto Irr(E’|¢’) such that (1.1) holds for all ¢ € Irr(E|¢).
In both cases we have

(M) () = Mgy
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for any A € F and and ¢ € Irr(E|¢). Furthermore, the resulting bijection is independent
of the choice of the non-trivial character A\q € Fy, for any q € n(F).

Assume Hypothesis 1. We call p(E, G, E',G') the Dade correspondence, where
p(E,G, E',G') denotes the identity map of Irr® (G) when |F| = 1. Following the notations
in 7], for ¢' € Irr®'(G), we set $e) = P(E,G,E',G')7}(¢#), and for ¢/ € Irr(E'|¢)), we
set ‘»Z’(E = v if ¢ = Y(gy. From (1.1) ¢’ is a constituent of (WZE))E' for some \ € F,
hence gg((;:) is a constituent of ¢¢r. In particular if ¢ is the trivial character of G, then
¢(q') is the trivial character of G’.

The Generalized Glauberman case: Let G and A be finite groups such that A is
cyclic, A acts on G via automorphism and that (|Cg(A)|,|4]) = 1. Weset E = G x A,
G'=Cg(A)and E' = G'x A< E. By [2], Lemma 7.5, E,G, E' and G’ satisfy Hypothesis
1. Moreover by [2], Proposition 7.8, if (|A|,|G|) = 1, then p(E, G, E',G') coincides with
the Glauberman correspondence.

Theorem 2 (Horimoto[4]) Assume the generalized Glauberman case. Suppose thatp ) |A|
and that a Sylow p-subgroup of G is contained in G'. Then there is an isotypy between
b(G) and b(G') induced by the Dade correspondence where b(G) is the principal block of
G.

Isotypy is a concept introduced in [1}.

Hypothesis 2 Assume Hypothesis 1. (p,7) = 1. b is an E-invariant block of G covered
by r distinct blocks of E.

Hypothesis 3 Assume Hypothesis 1. (p,r) = 1. b is an E'-invariant block of G' covered
by r distinct blocks of E'.

Theorem 3 (Tasaka (7], Theorem 5.5) Assume Hypotheses 2 and 3, and r is a prime
power. Moreover assume some ¢ € Irr(b), ¢y € Irr(V'). If r is odd, or r = 2, or b is
the principal block of G, then there is an isotypy between b and b’ induced by the Dade
correspondence.

In this report we state that the arguments in [7] can be extended to the general case
(see Theorem 8 below).

2 Dade correspondence and blocks

Let G be a finite group. We denote by Go(KG) the Grothendieck group of the group
algebra KG. If L is a KG-module, then let [L] denote the element in G4(KG) determined
by the isomorphism class of L. For ¢ € Irr(G), we denote by ¢. For a block b of G,
we denote by Irr(b) the set of irreducible characters belonging to b, and by R (G,b) the
additive group of generalized characters belonging to b. For other notations, see [5] and

[8).

Note that under the Hypothesis 2, any irreducible character in Irr(b) is E- invariant.
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Theorem 4 (see [7], Proposition 3.5)
(i) Assume Hypothesis 2. Then {¢(g)|¢ € Irr(b)} is contained in a block by of G'.
(ii) Assume Hypothesis 3. Then {¢’(G)|¢’ € Irr(b')} is contained in a block b’(G) of G.

Assume Hypothesis 2. We denote by by a block of E covering b. For each ¢ € Irr(b),
we denote ¢ by a unique extension of ¢ which belongs to by. For any i € Z, we denote by
b; be the block of E which contains A\*¢ where ¢ € Irr(b).

Proposition 1 (see [7], Proposition 3.5, (3)) Assume Hypotheses 2 and 3, and assume
Y = by using the notation in Theorem 4. Then there ezists a block (bo)(Ery of E' such
that Irr ((bo)(e/)) = {(9)(&r) | ¢ € Irr(b)}. Ifr is odd, then (bo) (g is uniquely determined,
and if r is even, we have ezactly two choices for (50)(5;:).

With the notation in the above proposition, we denote by (IAJi)( gy the block of E’
containing Ai(<f>)( g) ( @ € Irr(b)). Moreover, when r is even, we fix one of two (50)( B

3 Local structure

Lemma 1 ([7], Lemma 3.3)) Assume pf r. For a block b of G, b satisfies Hypothesis 2 if
and only if there exists s € Ey such that C(s)b is invertible in Z(OED).

Assume Hypothesis 2. By the above lemma and [7], Lemma 2.4, there exists an

—

element s € Ej such that C(s)b € Z(OEb)*. Hence there exists a defect group D of b
centralized by s, and hence contained in G'. Let P < D. Then by [7], Lemma 3.9, Cg(P),
Cg(P), Cg/(P) and Cg (P) satisfy Hypothesis 1. Here we note F = Cg(P)/Cg(P). Let
e € Bl(Cg(P),b). Then we see that BrgE(C/'(s\)b)e* € (Z(kCg(P)e*))*. This implies that
e is covered by r blocks of Cg(P’). Similarly assume Hypothesis 3. Let D’ be a defect
group of &’ and €’ € Bl(Cg(P'),b') for a subgroup P’ of D’. Then €' is covered by r blocks
of CE/ (P').

Theorem 5 (see (7], Proposition 3.11) Using the same notations as in Theorem 4 we
have the following.

(i) Assume Hypothesis 2. Let D be a defect group of b obtained in the above and let
P < D. Let e € B(Cg(P),b). Then e, (p)) € BUCq (P),b)). In particular, b
have a defect group containing D.

(i1) Assume Hypothesis 8. Let D' be a defect group of b’ and let P' < D'. Let e €
Bl(Cq/ (P'),b'). Then e’(CG(P,)) € Bl(C’G(P’),b’(G)). In particular, b’((;) have a defect group
containing D’'.

Assume Hypotheses 2 and 3, and ¥’ = b(g). The Dade correspondence p(E, G, E',G’)
gives a bijection between Irr(b) and Irr(b') by Theorem 4. By Theorem 5, b and b’ have a

common defect group D. Let (D, bp) be a maximal b-Brauer pair. For P < D, let (P,bp)
be a b-Brauer pair contained in (D, bp). We set

(bp) = (bP)(cy (P))-
By the above theorem (bp)’ is associated with b’ and (D, (bp)’) is a maximal b'-Brauer
pair. The following holds.

Theorem 6 (see [7], Theorem 5.2) Assume Hypotheses 2 and 3, and assume b’ = b(g).
Then the Brauer categories Bg(b) and B (b') are equivalent.
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4 Perfect isometry and isotypy

Assume Hypotheses 2 and 3, and ¥’ = by using the notations in Theorem 4. With
the notations in the previous section, we put

r—1

bi= > (b)enbi (Vi€ 2)
=0

Then (b;)? = b; and b; € (OGbY)E" for each i. For each prime g € n(F), let A €F,bea
non-trivial character as in Theorem 1. Set | = |7(F)|. Moreover we set for ¢t (1 <t <)
distinct primes ¢, ¢z, -+ ,q: € 7(F)

,\ql .. .)‘qt = A\™{a1.+ 9} (m{q1,""qt} € Z)

where ) is a generator of F'. Then we have

ITa=-x=1+> 0 >  I™Maraw

gen(F) t=1 {g1,+,qe}Cn(F)

where {q1, -+ ,g:} runs over the set of t-element subsets of m(F).

Proposition 2 (see [7], Proposition 4.4) With the above notations we have

l
[boKG] +> (-1 > [brmgq, .0y KG]

t=1 {91, .qe}Cr(F)

= Y eplLog, ®x Ly
¢€EIrr(b)

in Go(K(G' x G)).

From the above proposition and [1], Proposition 1.2, we have the following.

Theorem 7 (see [7], Theorem 4.5) Assume Hypotheses 2 and 3, and that b’ = bgry. Set
p o= Z¢€Irr(b) €sd(c - Then p induces a perfect isometry R, : Rx(G,b) - Rx(G', V)
which satisfies Ru($) = €pd(gr)-

Let D be a common defect group of b and b'. For P < D, RP be the perfect isometry
between Rx(Cg(P),bp) and Rx(Ceq(P), (bp)(c, (py)) obtained by the Dade correspon-
dence.

Theorem 8 (see [7], Theorem 5.5) Assume Hypotheses 2 and 3, and assume b’ = bg).
Then b and b are isotypic with the local system (RF ){P(cyclic)<D}-

Example Suppose p = 5. Let G = Sz(22"*1), the Suzuki group, A = (o) where o is
the Frobenius automorphism of G with respect to GF(22"*!)/GF(2). Set G' = Sz(2) =
Cg(A), E = GxA, E' = G'xA. Suppose that 5f2n+1. Then (2n+1,|G’|) = 1. Moreover
a Sylow 5-subgroup of G has order 5. By the above theorem, the Dade correspondence
gives an isotypy between b(G) and b(G'). Moreover, if 5 | (227! 4 2"+1 4 1), then b(G)
and b(G') are splendidly Morita equivalent.
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