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Abstract

After the proof by R. Apéry of the irrationality of {(3) in 1976, a number of articles have
been devoted to the study of Diophantine properties of values of the Riemann zeta function
at positive integers. A survey has been written by S. Fischler for the Bourbaki Seminar in
November 2002 [6].

Here, we review more recent results, including contributions by P. Bundschuh, S. Bruil-
tet, C. Elsner, S. Fischler, S. Gun, M. Hata, C. Krattenthaler, R. Marcovecchio, R. Murty,
Yu.V. Nesterenko, P. Philippon, P. Rath, G. Rhin, T. Rivoal, S. Shimomura, I. Shiokawa,
C. Viola, W. Zudilin. We plan also to say a few words on the analog of this theory in finite
characteristic, with works of G. Anderson, W.D. Brownawell, M. Pappanikolas, D. Thakur,
Chieh-Yu Chang, Jing Yu.

1 Special values of the Riemann zeta function

Several zeta functions exist, including Riemann zeta function, Multizeta functions, Weier-
straf} zeta function, those of Fibonacci, Hurwitz, Carlitz, Dedekind, Hasse-Weil, Lerch, Selberg,
Witten, Milnor and the zeta functions of dynamical systems. . .

1.1 The Riemann zeta function

We first review the Riemann zeta function, which was previously introduced by L. Euler:
1
O pori
n>1

for s € R, s > 2. He showed the Fuler product :
1 4
¢(s) =I,,1 —

“Notes written by N. Hirata from the text of the slides of the lecture given at the Conference on Analytic
number theory and related topics, RIMS, Kyoto, Japan, organized by H. Tsumura. The author wishes to express
his deep gratitude to Noriko Hirata and Hirofumi Tsumura.

This text is available on the web site of the author at the address
http://www.math. jussieu.fr/~miw/articles/pdf/ZetaValuesRIMS2009.pdf
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In 1739, Euler calculated the special value of ((s) for s even integers. He found

7r2 7r4
(@=% W=g5 ©O)=gz B =gz

and proved 72%¢(2k) € Q for k > 1.

More precisely, he proved that the values of the Riemann zeta function at even integers are
related with the Bernoulli numbers by

_ k—102k—1 B2k 2k
@2k) = (-2

for k > 1, where By, is the n-th Bernoulli number, a rational number defined by

z i 2"
e —1 ZBn;L_!.

n=0

In 1882, F. Lindemann showed that « is transcendental, hence, the value ¢ (2k) is also
transcendental (k =1,2,3,---). We have in general:

Theorem 1 (Hermite-Lindemann) For any non-zero compler number z, one at least of
the two numbers z and exp z is transcendental.

Corollary 2 Let 8 be non-zero algebraic (complex) number. Then e is also transcendental.

Corollary 3 Let a be non-zero algebraic (complex) number. Suppose log o # 0. Then loga
18 transcendental.

The transcendence of 7 follows from e = —1.

1.2 The values of the Riemann zeta function at odd integers

The next question deals with the values of the Riemann zeta function at positive odd integers
¢(2k+1) for k=1,2,3, ...

The following irrationality question is still open:

C(2k+1)

oo are both irrational.

Conjecture 1 For all k € Zsg, the numbers ((2k + 1) and

We may ask a more difficult problem:

Conjecture 2 The numbers

are algebraically independent.

In particular, the numbers {(2k + 1) and ¢(2k + 1)/m%k+1 for k > 1 are conjectured to be all
transcendental.

The first non-trivial result on ((2k + 1) has been obtained by R. Apéry in 1978:
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Theorem 4 (Apéry, 1978) The number

@)= % = 1.202056 903 159 594 285 399 738 161 511 - -

n>1

is irrational.
The next breakthrough is due to T. Rivoal [6].

Theorem 5 (Rivoal 2000) Let e > 0. For any sufficiently large odd integer a, the dimension

1-
of the Q-vector space spanned by the numbers 1, {(3), ¢(5), --- ,{(a) is at least ————6—5 log a.

1+ log

Corollary 6 There are infinitely many k € Zso, such that ((2k + 1) are irrational.

W. Zudilin then refined the result to show:

Theorem 7 (Zudilin 2004) At least one of the 4 numbers

¢(3), <M, <(9), «<(11)

18 irrational.

He also showed that there exists an odd integer 5 < j < 69, such that the three numbers
1,¢(3),¢(j) are linearly independent over Q. See the survey [6] on the irrationality of zeta
values by S. Fischler.

2 Irrationality measures

Definition 1 (irrationality exponent) Let ¥ € R. Assume that ¥ is irrational. Define
u = u(9) > 0 as the least positive exponent such that for any € > 0 there exists a constant
go = qo(€) > 0 for which

holds for all integers p and q with q > qq.

According to Dirichlet’s box principle, u(#) > 2 for all irrational real numbers 6. On the other
hand, p = p(9) is finite if and only if 9 is not a Liouville number.

Here is a table of some of the most recent results.

9 year author n(9) <

T 2008 V.Kh. Salikhov 7.6063085

¢(2) = 7%/6 | 1996 | G. Rhin and C. Viola | 5.441243
RE) 2001 | G. Rhin and C. Viola | 5.513891

log 2 2008 R. Marcovecchio 3.57455391
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Tt is easy to see that a bound p(92) < & for some ¥ € R implies p(9) < 2«. Hence, the result of
G. Rhin and C. Viola 1(¢(2)) < 5.441--- implies only p(7) < 11.882---. However, an upper
bound for p(19) does not yield any bound for u(9?). '

Historically, the upper estimates for the irrationality exponent of 7 are as follows:

o K. Mahler (1953) : 7 is not a Liouville number and u(m) < 30.
e M. Mignotte (1974) : u(7r) < 20

e G.V. Chudnovsky (1984) : u(m) < 14.5.

e M. Hata (1992) : p(7) < 8.0161.

e V.Kh. Salikhov (2008) : u(m) < 7.6063.

For ¢(2) and ((3), we have the following records.

o R. Apéry (1978), F. Beukers (1979) : p(¢(2)) < 11.85 and u(¢(3)) < 13.41.
e R. Dvornicich and C. Viola (1987) : u(¢(2)) < 10.02 and u(¢(3)) < 12.74.
e M. Hata (1990) : u(C(2)) < 7.52 and p(¢(3)) < 8.83.

e G. Rhin and C. Viola (1993) : x(¢(2)) < 7.39.

G. Rhin and C. Viola (1996) : u(¢(2)) < 5.44.

e G. Rhin and C. Viola (2001) : u(¢(3)) < 5.51.

The Hermite-Lindemann Theorem implies the transcendence of 7 (hence, of ((2)) and of log 2.
Transcendence measures of log 2 have been investigated by K. Mahler, A. Baker, A.O. Gel’fond,
N.I Fel’ldman. As far as the irrationality exponent of log 2 is concerned, the recent results are:
e G. Rhin (1987) : u(log?2) < 4.07.
e E.A. Rukhadze (1987) : u(log2) < 3.89.

e R. Marcovecchio (2008) : u(log2) < 3.57.

See the references [10, 12, 13, 14].
In the proof by T. Rivoal of his Theorem 5, a linear independence criterion of Yu.V. Nesterenko

was an essential tool. We state here only a qualitative form:

Theorem 8 (Nesterenko, 1985) Let m be a positive integer and o a positive real number
satisfying o > m — 1. Assume there is a sequence (Ln)n>0 of linear forms in ZXo + ZX1 +
...+ ZX,, of height < e™, such that

|La(1, 01, ., Om)| = 7o,
Then 1,91, ..., are linearly independent over Q.
Recently, S. Fischler and W. Zudilin [7] obtained a refinement of Nesterenko’s linear indepen-

dence criterion 8, which was the source of the paper [2] by A. Chantanasiri, and which they
used to prove: '
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Theorem 9 (Fischler and Zudilin, 2009) There erist positive odd integers i < 139 and
j <1961, such that the numbers 1, ((3), {(i), ((j) are linearly independent over Q.

Similarly, there exist positive odd integers i < 93 and j < 1151, such that the numbers 1,
log2, {(i), ¢(j) are linearly independent over Q.

Multizeta values are defined by

¢(s1y..-,8k) = Z Tl—-—

Sk
n . .n
ny>->nE2>1 1 k

for s1,...,sk positive integers with s; > 2. The reference [1] provides information on recent
developments. Also M. Hoffman’s web site
http://www.usna.edu/Users/math/meh/biblio.html

is a much valuable source of information. A further reference by J. Bliimlein, D.J. Broadhurst
and J.A.M. Vermaseren The Multiple Zeta Value Data Mine is arXiv:0907.2557v1

3 Gamma and Beta values

3.1 Gamma and Beta functions

Let us recall the definition of the Fuler Gamma function:

®© dt ad z\ "1
[(z) = / e i — = 7171 (1 + - e/,
0 t 7!;[1 n)

Here, v is Euler constant (also called Euler-Mascheront constant):

n—oo 3

The FEuler Beta function is defined by

B(a,b) = ?—((i?i—(bb)) = /: %711 — z)°"dz.

1 1 1
v= lim <1+§+—+-~-+-ﬁ-—1ogn> = 0.5772156649...

3.2 Weierstrafl functions

Let Q = Zw; + Zw; be a lattice in C. The canonical product attached to Q is the Weierstraf
sigma function
o(z)=oq(z)=z [] (l - f—) ele/w)+(z/2%)
we\{0} w
/
The logarithmic derivative of the sigma function is the Weierstrafl zeta function 7= ¢ and
o

the derivative of { is —gp, where p is the Weierstraf§ elliptic function:

P2 =40 -~ pp—g3, plz+w)=p(z) (WeQ).

The Weierstral zeta function is quasi—periodic: for any w € Q there exists an associated
quasi-period 1 such that

(e +w) = () +71.
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The first transcendence results on the periods and quasi-periods are due to C.L. Siegel and
then to Th. Schneider. Linear independence results over the field of algebraic numbers have
been investigated by D.W. Masser. Algebraic independence results are due to G.V. Chudnovskii
and Yu.V. Nesterenko. :

3.3 Transcendence

In 1934, Th. Schneider showed that the numbers I'(1/4)%/7® and T'(1/3)3/n? are transcenden-
tal. Indeed, they are not Liouville numbers by means of lower bounds for linear combinations
of elliptic logarithms (by A. Baker, J. Coates, M. Anderson in the CM case, by Philippon-
Waldschmidt in the general case, refinements are due to N. Hirata-Kohno, S. David, E. Gau-
dron). S. Lang observed that lower bounds for linear forms in elliptic logarithms are useful for
solving Diophantine equations (integer points on elliptic curves).

For a historical survey, see the articles by S. David and N. Hirata-Kohno [3, 4, 5].

Th. Schneider also showed in 1948 that for a € Q and b € Q with a,b,a +b ¢ Z , the

number B(a,b) = _II;%Z)—I;-_(bb))

genus, related with the Jacobian of Fermat curves.

is transcendental. The proof involves Abelian integrals of higher

3.4 Algebraic independence

In 1978, G.V. Chudnovsky proved that two at least of the numbers g2, g3, w1, w2, 71, N2
are algebraically independent. As a corollary, the numbers 7 and I'(1/4) = 3.6256099082. ..
are algebraically independent. A transcendence measure for I'(1/4) has been obtained by
P. Philippon and refined by S. Bruiltet.

Theorem 10 (Philippon and Bruiltet) For P € Z[X,Y] with degree d and height H, we
have
log |P(r,T(1/4))| > —10°% (log H + dlog(d + 1))d? (log(d + 1))*.

Corollary 11 The number I'(1/4) is not a Liouville number:

p 1
I'(1/4) - E’ > o

The results due to K.G. Vasil’ev in 1996, P. Grinspan in 2002 show that two at least of the
three numbers 7, I'(1/5) and I'(2/5) are algebraically independent.

The proof by Chudnovsky’s method involves a simple factor of dimension 2 of the Jacobian
of the Fermat curve X5 4+ Y% = Z5 which is an Abelian variety of dimension 6.

Further developments are again made by Yu.V. Nesterenko. Let us consider Ramanujan

functions:

Definition 2 (Ramanujan functions) Ramanujan functions are defined for g € C with 0 <
lal <1 by

nqn n5qn
_— qn )

00 00 ngqn 00
Plg)=1-24 = =1-504
(a) ;1*‘1’“ Q@) 1+24o§;11_qn, R(g) =1- 50 ;1
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Since Eisenstein series are given for ¢ € C with 0 < |q| <1 by

41\, 2k 1

we have

P(q) = E2(9), Q(q) = E4(q), R(q) = Es(q)-

Here are examples of special values.

When 7 = i we have ¢ = e~2" and

r(1/4)

w] = = 2.6220575542...
! V8m

In this case 3 4

=2 _q(¥1 —

Plo==, Q@=3(2), R@=0.
When 7 = p, we have ¢ = —e~™3 and
r(1/3)°

w) = 213, = 2.428650648...
In this case
_2¥3 T (@
= , —) -

Q(q) =0, R(q)

P(g) = — =

Theorem 12 (Nesterenko, 1996) For any g € C with 0 < |g| < 1, three at least of the four
numbers q, P(q),Q(q), R(q) are algebraically independent.

K. Mahler showed that the functions P(q),Q(g), R(q) are algebraicaly independent over C(q).
An important tool in the proof of Nesterenko’s Theorem is that these functions satisfy the

following system of differential equations for D = ¢ -

DP _, Q@ ,.DQ
195 =P- 35, 35 =P-

We have the following consequences of Theorem 12:

dg’
R DR Q?
5 =

Corollary 13 The three numbers m,, €™ and I'(1/4) are algebraically independent.
Corollary 14 The three numbers m,, e™3 and T'(1/3) are algebraically independent.

Corollary 15 The following special value of Weierstraf sigma function
o (1/2) = 25/4m1/2e™/8(1/4) 72

is transcendental.

Another consequence of Nesterenko’s Theorem 12 concerns the Fibonacci zeta function, which
is defined for Re(s) > 0 by
1
Cr(s) =) —

n>1" "
where {F},} is the Fibonacci sequence: Fp =0, F1 =1, Fopy1=Fa+ Fho1 (n > 1).

Theorem 16 (Elsner, Shimomura, Shiokawa, 2006) The values (r(2),(r(4),(r(6) are
algebraically independent. :
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4 Conjectures

4.1 Gamma values

We come back to Gamma values. Here are the three standard relations among the values of
the Gamma function.

1) Translation :
I'(a+1) = al'(a),

2) Reflexion :
T@I1-a)= —

" sin(7a)’

3) Multiplication : for any positive integer n, we have

n—1 .

H r (a + —]E> = (27r)(”"1)/2n_na+(1/2)I‘(na).
n

k=0

It is expected that these relation among Gamma values are essentially the only ones:

Conjecture 3 (Rohrlich’s Conjecture) Any multiplicative relation

7b/? H I'(a)™ €@
aeQ

with b and mg in Z lies in the ideal generated by the standard relations.

1 9 11
el v 1 =4 3/2
(1) ()r (52) -

Examples are

and
H T(k/n) (2m)?(™/2/ /5 if n = p" is a prime power,
n) =
1<k<n (2m)$(m)/2 otherwise.
(km)=1.

S. Lang suggested a stronger conjecture than Rohrlich’s one:

Conjecture 4 (Lang) Any algebraic dependence relation among the numbers (27) /2T (a)
with a € Q lies in the ideal generated by the standard relations. In other terms, the Gamma
function defines a universal odd distribution.

From the Rohrlich-Lang Conjecture 4, one deduces the following statement:

Consequence
For any q > 1, the transcendence degree of the field generated by numbers

m, T(a/q) 1<a<gq, (a,q)=1

is 1+ (q)/2.
A variant of the Rohrlich-Lang Conjecture 4 is:
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Conjecture 5 (Gun, Murty, Rath, 2009) For any ¢ > 1, the numbers
logT(a/qg) 1<a<g, (a,q) =1

are linearly independent over the field Q of algebraic numbers.

A consequence is that for any q > 1, there is at most one primitive odd character x modulo q
for which L'(1,x) = 0.

Other transcendence related results involving zeta and Gamma values are as folows:

Theorem 17 (Bundschuh, 1979) For p/q € Q with 0 < |p/q| < 1, the number

00

> ) @/9"

n=2
is transcendental.

Further, for p/q € Q\ Z, the number

s transcendental.

4.2 Arithmetic nature of the sum of the values of a rational function at the
positive integers

An interesting problem is to investigate the arithmetic nature of the numbers of the form

A(n) A
Z —— when — €Q(X).
S B(n) B
In case B has distinct rational zeroes, by decomposing A/B in simple fractions, one gets linear
combinations of logarithms of algebraic numbers; thus we can use Baker’s Theorem on the

linear independence of logarithms of algebraic numbers. The example A(X)/B(X) = 1/X3
shows that the general case is hard.

Using Nesterenko’s Theorem 12, one deduces from the work by P. Bundschuh in 1979 the
following result:

Theorem 18 The number

. |
1 1 rig -7
S = s T et 50766740474, ..
2 eT—e T

(e o]
is transcendental. Hence, the number Z

1 is transcendental over Q for s = 4.
n=2

ns —

Notice that
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since this is a telescoping series:

o0

The transcendence of the number Z Tsl for even integers s > 4 would follow from

n=2 -
Schanuel’s Conjecture.

See also the works by S.D. Adhikari, N. Saradha, T.N. Shorey and R. Tijdeman in 2001,
and by S. Gun, R. Murty and P. Rath in 2009.

4.3 Hurwitz zeta function

Definition 3 (Hurwitz zeta function) For z € C,z # 0 and Re(s) > 1, the function

> 1
(6.5 = " s
(n+2)°
is called Hurwitz zeta function.

It generalizes the Riemann zeta function, since {(s,1) = ((s). The following Conjecture by
S. Chowla and J.W. Milnor deals with the values of the Hurwitz zeta function.

Conjecture 6 (Chowla-Milnor) For k and q integers > 1, the p(q) numbers

((k,a/q) (1<a<gq,(a,q)=1)

are linearly independent over Q.

The Chowla-Milnor Conjecture 6 for ¢ = 4 implies the irrationality of the numbers
¢(2n + 1)/x?"H1

for n > 1. A stronger form of Conjecture 6 has been proposed in 2009 by S. Gun, R. Murty
and P. Rath:

Conjecture 7 (Strong Chowla-Milnor Conjecture) For k and g integers > 1, the 1 4+
©(q) numbers
1 and ((k,a/q) (1<a<g(aq)=1)

are linearly independent over Q.

For k > 1 odd, the number ¢(k) is irrational if and only if the strong Chowla-Milnor Conjecture
7 holds for this value of k and for at least one of the two values ¢ = 3 and ¢ = 4.

Hence, the strong Chowla-Milnor Conjecture 7 holds. for k¥ = 3 (by Apéry) and also for
infinitely many k by T. Rivoal’s Theorem 5.
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4.4 Polylogarithms and digamma functions

The next conjecture, dealing with the values of polylogarithms, has been proposed by S. Gun,
R. Murty and P. Rath. We first define:

oy P

Definition 4 (Polylogarithms) The function Lix(z Z . defined fork > 1 and|z| < 1

is called the polylogarithm function.
By definition, we have Li;(z) = log(1 — z) and Lig(1) = {(k) for & > 2.

Conjecture 8 (Polylogarithms Conjecture of Gun, Murty and Rath) Let £k > 1 be
an integer and oy, ...,an algebraic numbers such that Lig(c1),...,Lik(an) are linearly in-
dependent over Q. Then these numbers Lix(a1),...,Lix(an) are linearly independent over the
field Q of algebraic numbers.

If this Polylog Conjecture 8 is true, then the Chowla-Milnor Conjecture 7 is true for all k¥ and
all q.

Definition 5 (Digamma function) For z € C,z # 0,—1,-2,..., the digamma function is
defined by
d IV(2)
w(z) - E IOgF(Z) - F(Z) :
We have

and

v(1+2) =—7+Z ~1) ()" L

n=2

Some special values of the digamma function are

Y1) =~-7, ¥ (-;—) = —2log(2) —

2k-1

1 1
¢<2k—§>——210g 7+Zn+1/2

1

¢(Z>=—%*3log(2)—v and ¢(Z)=g—3log(2)—

An example of a linear dependence relation among special values of the digamma function is
$(1) +¥(1/4) — 39(1/2) + ¥(3/4) = 0.

R. Murty and N. Saradha stated the following conjecture in 2007:

Conjecture 9 Let K be a number field over which the g-th cyclotomic polynomial is irre-

ducible. Then the ¢(q) numbers ¥(a/q) with 1 < a < q and ged(a,q) =1 are linearly indepen-
dent over K.
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4.5 Baker periods

R. Murty and N. Saradha defined Baker periods as follows.

Definition 6 (Baker period) Baker periods are elements of the Q-vector space spanned by
the logarithms of algebraic numbers.

Remark 1
By Baker’s transcendence Theorem, a Baker period is either zero or else transcendental.

Remark 2

R. Murty and N. Saradha showed that one at least of the two following statements is true:
(1) Euler’s Constant v is not a Baker’s period

(2) The ¢(g) numbers 1(a/g) with 1 < a < ¢ and gcd(a,g) = 1 are linearly independent over
K, whenever K be a number field over which the g-th cyclotomic polynomial is irreducible.

4.6 Euler Constant

Few results concerning the arithmetic nature of Euler’s constant «y are known.
(1) Jonathan Sondow showed

/1 1
/Zkzt—}-k ) 7=sl_i,f{‘+2(;5*;a>

n=1

© 1 1, 2, 2
7_/1 2t(t+1)3F2(3, t+2)dt'

(2) A.L. Aptekarev (2007) obtained approximations to 7.
(3) T. Rivoal (2009) gave an approximation to the function vy + logz (consequently, approxi-
mations to v and to ¢(2) — ¥?).

and

The following problems are open:

Conjecture 10 (1) Is the number v irrational? Is it transcendental?
(2) (Kontsevich — Zagier) : is y a “period”?

5 Finite characteristic

We conclude with a few words concerning the finite characteristic situation, including the
Carlitz zeta values. Set A = Fg[t], let Ay be the subset of monic polynomials in A, P be the
subset of prime polynomials in A4, set K = Fy(t) and Koo = Fg((1/1)).

Definition 7 (Carlitz zeta values) For s € Z, define

G =Y =Tla-r"" e ke

a€A4 pEP
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Definition 8 (Thakur Gamma function) For z € K, set

re) = IT (1+2).

acA;

Independence results on the values of Thakur Gamma function in positive characteristic are
known: linear independence of values of Gamma function has been investigated by W.D. Brow-
nawell and M. Papanikolas (2002), algebraic independence results by W.D. Brownawell, M. Pa-
panikolas and Gerg Anderson (2004).

Definition 9 (Carlitz zeta values at even A—integers) Define
0 n
79—t
~ — (¢ — $9)1/(g-1) "
7=(t-19) };[1(1 tq"“—t>6K°°'

For m a multiple of g — 1, the Carlitz - Bernoulli numbers are

7~™C4(m) € A.
G. Anderson, D. Thakur and Jing Yu obtained the following theorem.

Theorem 19 (Anderson, Thakur , Yu) For m a positive integer, (a(m) is transcendental
over K. Moreover, for m a positive integer not a multiple of ¢ — 1, the quotient (4(m)/7™ is
transcendental over K.

Further results are described in the report [11] by F. Pellarin, as well as in the following

related preprints:

e Chieh-Yu Chang, Matthew A. Papanikolas and Jing Yu, Geometric Gamma values and zeta
values in positive characteristic, in arXiv:0905.2876.

e Chieh-Yu Chang, Matthew A. Papanikolas, Dinesh S. Thakur and Jing Yu, Algebraic indepen-
dence of arithmetic gamma values and Carlitz zeta values in arXiv:0909.0096.

e Chieh-Yu Chang. Periods of third kind for rank 2 Drinfeld modules and algebraic independence
of logarithms in arXiv:0909.0101:
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