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INTRODUCTION

There is a very extensive literature on S-unit equations and their applications. The
purpose of this paper is to give a short overview of our recent effective results concerning
S-unit equations in two unknowns and their generalizations. For earlier, more detailed
surveys on the subject we refer to Gy\’ory $($ 1980, $1992a$ , 1996 $)$ , Shorey and Tijdeman
(1986), Evertse, Gy\’ory, Stewart and Tijdeman (1988) and Sprind\v{z}uk (1993).

In Section 1, the best explicit bounds to date are presented for the solutions of S-unit
equations in two unknowns. As a consequence, in Sections 2 and 3 new effective upper
bounds are formulated in connection with the abc-conjecture in number fields. Section
4 is devoted to a common generalization of S-unit equations over $\mathbb{Q}$ and binomial Thue
equations with unknown exponents. Finally, in Section 5 some generalizations of S-
unit equations are considered e.g. for polynomial equations in two variables where the
unknowns are taken from the division group of a multiplicative subgroup of finite rank
of $\overline{\mathbb{Q}}^{*}$ .

1. $S$-UNIT EQUATIONS IN TWO UNKNOWNS

Let $K$ be an algebraic number field with ring of integers $O_{K}$ and unit group $O_{K}^{*}$ . Let
$M_{K}$ denote the set of places on $K,$ $S$ a finite subset of $M_{K}$ containing the set $S_{\infty}$ of
infinite places, and $\mathfrak{p}_{1},$

$\ldots,$
$\mathfrak{p}_{t}$ the prime ideals of $O_{K}$ corresponding to the finite places

in $S$ . An element $\alpha\in K$ is called S-integer if ord$\mathfrak{p}(\alpha)\geq 0$ for all prime ideals $\mathfrak{p}$ of $O_{K}$

different from $\mathfrak{p}_{1},$

$\ldots,$
$\mathfrak{p}_{t}$ . The S-integers form a subring of $K$ which is denoted by $O_{S}$ .

It contains $O_{K}$ as a subring, and for $t=0$ it is just $O_{K}$ . The unit group $O_{S}^{*}$ of $O_{S}$ is
called the group of S-units. Let $s$ denote the cardinality of $S$ .

Many diophantine problems can be reduced to S-unit equations of the form

(1.1) $\alpha x+\beta y=1$ in $x,$ $y\in O_{S}^{*}$ ,

where $\alpha,$
$\beta$ are non-zero elements of $K$ . The group $O_{S}^{*}$ is of rank $s-1$ . If $\{\epsilon_{1}, \ldots, \epsilon_{s-1}\}$

is a fundamental system of S-units then $x$ and $y$ can be written in the form

$x=(\epsilon_{1}^{a_{1}}\cdots\epsilon_{s-1}^{a_{s-1}},$ $y=\rho\epsilon_{1}^{b_{1}}\cdots\epsilon_{s-1}^{b_{s-1}}$ ,

where $\zeta,$
$\rho$ are unknown roots of unity in $K$ and $a_{i},$

$b_{i}$ are unknown rational integers for
$i=1,$ $\ldots,$ $s-1$ . Hence equation (1.1) can be regarded as an exponential diophantine
equation.
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It was implicitly proved by Siegel (1921) for ordinary units and by Mahler (1933) for
S-units that equation (1.1) has only finitely many solutions. The first explicit proof is
due to Lang (1960). These proofs are ineffective, i.e. they do not provide any algorithm
for determining the solutions of (1.1).

1.1. Effective results. The first explicit bounds for the heights of the solutions of (1.1)
were given by Gy\’ory (1974, 1979). Further bounds were obtained by Kotov and Threlina
(1979), Schmidt (1992), Sprind\v{z}uk (1993), Bugeaud and Gy\’ory (1996), Haristoy (2003),
Gy\’ory and Yu (2006) and Gy\’ory (2008). All these results were proved by using Baker’s
theory of logarithmic forms.

An alternative effective method was elaborated by Bombieri (1993) and Bombieri
and Cohen (1997, 2003) for deriving upper bounds for the heights of the solutions. This
method is based on an extension of the Thue-Siegel method, Dyson lemma and some
geometry of numbers.

Bugeaud (1998) combined the above-mentioned effective methods to bound the solu-
tions of (1.1).

The effective results concerning (1.1) led to many important applications, among oth-
ers to Thue equations, decomposable form equations, superelliptic equations, recurrence
sequences, polynomials and binary forms of given discriminant, power integral bases,
irreducible polynomials, certain arithmetic graphs and the abc-conjecture; cf. Gy\’ory
$($ 1980, $1992a$ , 1996, 2008 $)$ , Shorey and Tijdeman (1986), Evertse, Gy\’ory, Stewart and
Tijdeman (1988), Gy\’ory and Yu (2006) and the references given there.

1.2. Bounds for the solutions. Keeping the above notation, let $n$ denote the degree
of the number field $K$ over $\mathbb{Q}$ , and let $P= \max_{1\leq i\leq t}N(\mathfrak{p}_{i})$ with the convention that
$P=1$ if $t=0$ . It follows from prime number theory that $t\leq 2nP/\log^{*}P$ . We use here
the notation

$\log^{*}a=\max(\log a, 1)$ for $a\geq 1$ .
Let $R$ and $R_{S}$ be the regulator and S-regulator of $K$ , respectively. We have

$R_{S}=i_{S}R \prod_{i}\log N(\mathfrak{p}_{i})$
,

where $i_{S}$ is a positive divisor of $h$ , the class number of $K$ .
For $\gamma\in\overline{\mathbb{Q}}$ , we denote by $h(\gamma)$ the absolute logarithmic height of $\gamma$ . Put

$H= \max(h(\alpha), h(\beta), 1)$

where $\alpha,$ $\beta$ denote the coefficients in (1.1).
Using the theory of logarithmic forms Bugeaud and Gy\’ory (1996) proved that all

solutions $x,$ $y$ of (1.1) satisfy

(1.2) $\max(h(x), h(y))\leq C_{1}PR_{S}(\log^{*}R_{S})^{2}H$,

where $C_{1}=(c_{1}ns)^{c_{2^{S}}}$ with explicitly given positive absolute constants $c_{1},$ $c_{2}$ .
By means of a combination of the methods of Bugeaud and Gy\’ory (1996) as well as

of Bombieri (1993) and Bombieri and Cohen (1997, 2003), Bugeaud (1998) derived the
estimate
(1.3) maix$(h(x), h(y)) \leq C_{2}P(\log^{*}P)R_{S}\max(C_{3}P(\log^{*}P)R_{S}, H)$

for the solutions $x,$ $y$ of (1.1), where $C_{2},$ $C_{3}$ are constants of the same form as $C_{1}$ .
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We note that (1.2) and (1.3) are best possible in terms of $H$ . Further, in terms of $S$ ,
$s^{s}$ is the dominating factor in (1.2) and (1.3) whenever $t>\log P$ .

We now present some recent improvements of (1.2) and (1.3).

Theorem 1 (Gy\’ory and Yu, 2006). All solutions $x,$ $y$ of equation (1.1) satisfy

(1.4) $\max(h(x), h(y))\leq C_{4}PR_{S}(\log^{*}R_{S})H$,

where $C_{4}=(c_{3}ns)^{c_{4}s}$ with explicitly given positive absolute constants $c_{3},$ $c_{4}$ .

It should be remarked that the values of the absolute constants $c_{3},$ $c_{4}$ in $C_{4}$ are much
smaller than those occurring in $C_{1},$ $C_{2}$ and $C_{3}$ .

Theorem 2 (Gy\’ory, 2008). Every solution $x,$ $y$ of (l.l)satisfies

(1.5) $\max(h(x), h(y))\leq C_{5}(P/\log^{*}P)R_{S}H$,

where $C_{5}=c_{3}^{s}$ with an explicit constant $c_{3}$ depending only on $n,$ $h$ and $R$ .

For $t>0,$ $(1.5)$ is a modified, more precise version of Theorem 2 of Gy\’ory and Yu
(2006). It provides the first bound not having the factor $s^{s}$ . This fact is important for
certain applications, for example for the abc-conjecture. The appearance of $s^{s}$ in (1.4)

is due to the use of Minkowski’s theorem on successive minima.
The new ingredients in the proofs of Theorems 1 and 2 are among other things some

improved estimates for S-units, a recent theorem of Loher and Masser (2004) on multi-
plicatively independent algebraic numbers, some refined arguments of Gy\’ory (1979) for
(1.5) and Bugeaud and Gy\’ory (1996) for (1.4), and recent estimates of Matveev (2000)

and Yu (2007) on logarithmic forms.
Consider now the special case $K=\mathbb{Q}$ . Then (1.1) can be written in the form

(1.6) $Aa+Bb+Cc=0$ ,

where $A,$ $B,$ $C$ are relatively prime non-zero integers, and $a,$ $b,$ $c$ are relatively prime
unknown integers composed of fixed primes $p_{1},$ $\ldots,p_{t}$ . Let $P$ be the greatest of these
primes, and suppose that

$\max(|A|, |B|, |C|)\leq H,$ $|abc|>1$ .

The explicit version of (1.5) gives the following.

Corollary 1 to Theorem 2. If (1.6) holds then we have

(1.7) $\log\max(|a|, |b|, |c|)<2^{10t+22}t^{4}(P/\log P)(\prod_{p|abc}\log p)\log^{*}H$
.

The radical of $(a, b, c)\in(\mathbb{Z}\backslash \{0\})^{3}$ is defined as

$N=N(a, b, c)= \prod_{p|abc}p$
.

Put $N^{*}= \max(N, 16)$ , and denote by $\log_{i}$ the i-th iterate of the logarithmic function.
Then we have

(1.8) $\{\begin{array}{l}P\leq N, \prod_{p|abc}\log p\leq(\log N/t)^{t}t<1.5\log N/\log_{2}N^{*}.\end{array}$
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The first and second inequalities are obvious, while for the third one we refer to $Gy\acute{\acute{o}}ry$

(2008).
The inequalities (1.7) and (1.8) give immediately an upper bound for $\max(|a|, |b|, |c|)$

which depends on $H$ and $N$ only. It is a natural question: what is the best possible
upper bound? In case of $A=B=C=1$ the answer is provided by the abc-conjecture.

2. ABC-CONJECTURE

Oesterl\’e and, in a refined form, Masser (1985) proposed the following.

abc-conjecture. For any given $\epsilon>0$ , and for any coprime positive integers $a,$ $b,$ $c$ with

(2.1) $a+b=c$ and mdical $N=N(a, b, c)$ ,

(2.2) $c\ll_{\epsilon}N^{1+\epsilon}$

holds.

It is known that (2.2) is already best possible in terms of $\epsilon$ .
For any positive integer $m$ we shall denote by $P(m)$ and $\omega(m)$ the greatest prime

factor and the number of distinct prime factors of $m$ with the convention that $P(1)=1$ .
Baker (1998, 2004) and Granville (1998) formulated such refinements of the abc-

conjecture which involve also $\omega(abc)$ . The following completely explicit version is due to
Baker (2004).

A refined version of the abc-conjecture. If (2.1) holds then

$c< \frac{6}{5}N(\log N)^{t}/t!$ ,

where $t=\omega(abc)$ .

The abc-conjecture has a very extensive literature. It has many extraordinary conse-
quences. Further, it unifies and motivates a number of results and problems in number
theory. For details, we refer the reader to the abc-conjecture home page created and
maintained by Nitaj, http: $//www.math.unicaen.fr/\sim nitaj/abc.html$ .

Although the conjecture seems completely out of reach, there are some effective results
towards its truth. By means of the theory of logarithmic forms Stewart and Tijdeman
(1986) and Stewart and Yu (1991, 2001) obtained upper bounds for $c$ as a function of
$N=N(a, b, c)$ . Stewart and Yu (2001) proved that if

$p’= \min(P(a), P(b), P(c))$ ,

then (2.1) implies that

(2.3) $p’N^{c_{4}\log_{3}N^{*}/\log_{2}N}$

and

(2.4) $c_{5}N^{1/3}(\log N)^{3}$

are upper bounds for $\log c$ , where $c_{4},$ $c_{5}$ are effectively computable positive absolute
constants. Chi (2005) showed that in (2.3) one can take $c_{4}=710$ .

Together with (1.8), our Corollary 1 to Theorem 2 gives the following.
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Corollary 2 to Theorem 2. If $a,$ $b,$ $c$ are coprime positive integers with $a+b=c$,

$abc>1,$ $P=P(abc),$ $t=\omega(abc)$ and $N=N(a, b, c)$ , then $\log c$ is bounded above by the
following bounds:

(2.5) $2^{10t+22}t^{4}(P/ \log P)(\prod_{p|abc}\log p)$
,

(2.6) $(2^{10t+22}/t^{t-4})N(\log N)^{t}$ ,

(2.7) $2^{23}(P/\log P)N^{653\log_{3}N^{*}/\log_{2}N^{*}}$ ,

and, if $\epsilon>0$ and $N$ is large enough with respect to $\epsilon$ ,

(2.8) $2^{23}N^{1+\epsilon}$ .

Here (2.8) is a result in the direction of the conjecture of Oesterl\’e and Masser, while
(2.6) in the direction of Baker $s$ conjecture.

Comparing Corollary 2 with the results of Stewart and Yu (2001), one can observe
that (2.3) and (2.4) are slightly better than(2.7) and (2.8). The reason is that (2.3) and
(2.4) were proved in a direct way, using some specffic properties of $\mathbb{Z}$ ; for example, the
fact that $a+b=c$ and $b>a$ imply $2b>c>b$ . It should, however, be remarked that
(2.5) gives in general better upper bound for $c$ than (2.3) with $c_{4}=710$ . We illustrate
this on the following example which is due to de Weger

$11^{2}+3^{2}\cdot 5^{6}\cdot 7^{3}=2^{21}\cdot 23$ .

Here, for $c=2^{21}\cdot 23$ we have $\log c>2^{4}$ . The bound in (2.3) is then greater than $2^{4950}$ ,

while the bound in (2.5) is smaller than $2^{100}$ .

3. ABC CONJECTURE IN NUMBER FIELDS

Let $K$ be an algebraic number field of degree $n$ , and $M_{K}$ the set of places on $K$ .
Assume that every $v\in M_{K}$ is normalized in the usual way: if $\alpha\in K^{*}$ and $v$ is infinite
then

$|\alpha|_{v}=|\sigma(\alpha)|^{n_{v}}$ , where $\sigma$ : $K\mapsto \mathbb{C},$ $n_{v}=\{\begin{array}{l}1 if \sigma(K)\subseteq \mathbb{R},2 otherwise,\end{array}$

while if $v$ is finite and corresponds to the prime ideal $\mathfrak{p}$ then

$|\alpha|_{v}=N_{K/\mathbb{Q}}(\mathfrak{p})^{-ord_{p}(\alpha)}$ .

The height of $(a, b, c)\in(K^{*})^{3}$ is defined as

$H_{K}(a, b, c)= \prod_{v\in M_{K}}\max(|a|_{v}, |b|_{v}, |c|_{v})$
,

and the mdical of $(a, b, c)$ as

(3.1) $N_{K}(a, b, c)= \prod_{v}N_{K/\mathbb{Q}}(\mathfrak{p})^{ord_{\mathfrak{p}}(p)}$
.

Here $p$ is the rational prime lying below $\mathfrak{p}$ , and the product is taken over all finite $v$

for which $|a|_{v},$ $|b|_{v},$ $|c|_{v}$ are not all equal. Denote by $\triangle_{K}$ the absolute value of the
discriminant of $K$ .
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Vojta (1987) proposed a very general conjecture and, as a consequence, suggested the
first number field version of the abc-conjecture. Later, Vojta’s version was refined by
Elkies (1991), Broberg (1999), Granville and Stark (2000), Browkin (2000) and Masser
(2002), respectively. The following uniform version is due to Masser (2002).

abc-conjecture in K. For every $\epsilon>0$ there exists $C_{\epsilon}$ , depending only on $\epsilon$ , such that

$H_{K}(a, b, c)<C_{\epsilon}^{n}(\Delta_{K}N_{K}(a, b, c))^{1+\epsilon}$

for all $a,$ $b,$ $c\in K^{*}$ with $a+b+c=0$ .

For $K=\mathbb{Q}$ , this reduces to the Oesterl\’e-Masser conjecture. The upper bound is again
best possible in terms of $\epsilon$ .

This general conjecture has also very rich literature, and has many profounds impli-
cations; see e.g. the abc-conjecture home page mentioned above.

3.1. Unconditional bounds for $H_{K}(a, b, c)$ . The effective results concerning S-unit
equations can be used to obtain weaker but unconditional effective upper bounds for
$H_{K}(a, b, c)$ . Let

(3.2) $a+b+c=0$, where $a,$ $b,$ $c\in K^{*}$ .

Denote by $S_{\infty}$ the set of infinite places of $K$ , and let

$S=S_{\infty}U$ {finite $v\in M_{K}$ such that $|a|_{v},$ $|b|_{v},$ $|c|_{v}$ are not all equal}.

Then $x=-a/c,$ $y=-b/c$ is a solution of the S-unit equation

(3.3) $x+y=1$ in $x,$ $y\in O_{s}^{*}$ .

Every bound for $h(x),$ $h(y)$ gives a bound for $H_{K}(a, b, c)$ . Surroca (2007) showed that
the bound of Bugeaud and Gy\’ory (1996) occurring in (1.2) yields the bound

(3.4) $((c_{6}n\triangle_{K})^{c_{7}}N_{K}(a, b, c)^{c_{8}})^{n}$

for $\log H_{K}(a, b, c)$ , where $c_{6},$ $c_{7}$ and $c_{8}$ are effectively computable positive absolute con-
stants.

Our Theorem 2 enabled us to considerably improve the bound (3.4).

Theorem 3 (Gy\’ory, 2008). Let $\epsilon>0$ . Then (3.2) implies that $\log H_{K}(a, b, c)$ can be
estimated from above by

(3.5) $c_{9}(n, \Delta_{K}, \epsilon)N^{1+\epsilon}$

and, if
$N=N_{K}(a, b, c)> \max(\exp\exp(\max(\triangle_{K}, e)),$ $\triangle_{K}^{2/\epsilon})$ ,

$by$

(3.6) $c_{10}(n, \epsilon)(\triangle_{K}N)^{1+\epsilon}$ ,

where $c_{9}$ and $c_{10}$ are effectively computable constants depending only on the pammeters
occurring in the parentheses.
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The main steps in the proof are as follows. Putting $P= \max N_{K/\mathbb{Q}}(\mathfrak{p})$ in (3.1), for
appropriate choice of $S$ Theorem 2 gives

$\log H_{K}(a, b, c)<c_{3}(n, h, R)^{s}PR_{S}$ ,

where $c_{3}(n, h, R)$ denotes a constant given explicitly and depending only on $n,$ $h$ and $R$ .
Then estimating $h,$ $R,$ $s,$ $P$ and $R_{S}$ in terms of $\Delta_{K}$ and $N$ we get (3.6) which implies
(3.5).

4. COMMON GENERALIZATION OF $S$-UNIT EQUATIONS AND BINOMIAL THUE
EQUATIONS

4.1. Binomial Thue equations. Let $a,$ $b,$ $c,$ $n$ be non-zero integers with $n\geq 3$ , and
consider the equation

(4.1) $ax^{n}-by^{n}=c$ in $x,$ $y\in \mathbb{Z}$ .

It follows from a general theorem of Thue (1909) that (4.1) has only finitely many
solutions. This was extended by Mahler (1933) to the case when $x$ and $y$ are coprime
and $c$ is also unknown with $c\in\ovalbox{\tt\small REJECT}$, where $\ovalbox{\tt\small REJECT}$ denotes the set of integers composed of fixed
primes $p_{1},$ $\ldots,p_{t}$ . These results were later made effective by Baker (1968) and Coates
(1969), respectively.

In the case when $n$ is also unknown, Tijdeman (1976) derived an effective upper bound
for $n$ depending on $a,$ $b$ and $c$ . This was extended to the case $c\in\ovalbox{\tt\small REJECT}$ by van der Poorten
(1977). In terms of $a,$ $b,$ $c$ and $\ovalbox{\tt\small REJECT}$, a completely explicit bound was given for $n$ by
Bugeaud and Gy\’ory (2004).

4.2. Common generalization of (4.1) and S-unit equations. Consider now more
generally the equation

(4.2) $ax^{n}-by^{n}=c$ where $x,$ $y,$ $a,$ $b,$ $c,$
$n\in \mathbb{Z}$

are all unknowns with $|xy|\geq 1,$ $a,$ $b,$ $c\in\ovalbox{\tt\small REJECT},$ $n\geq 3$ and

(4.3) $gcd(ax, by, c)=1,$ $a,$ $b,$ $c$ n-th powerfree.

Denoting by $S$ the set of places on $\mathbb{Q}$ consisting of the infinite place and the finite ones
corresponding to $p_{1},$ $\ldots,p_{t}$ , the unknowns $a,$ $b,$ $c$ are S-units in $\mathbb{Q}$ .

Theorem 4 (Gy\’ory and Pinter, 2008). All solutions of (4.2) with (4.3) satisfy

(4.4) $\max(|ax^{n}|, |by^{n}|, |c|)\leq c_{1}^{eff}(Q)\leq c_{2}^{eff}(P)$ ,

where $Q=p_{1}\cdots p_{t},$ $P= \max_{i}p_{i}$ . Further, $if|xy|>1$ , then

(4.5) $n\leq c_{3}^{eff}Q^{3}$ ,

where $c_{3}$ is a positive absolute constant.

Theorem 4 has been proved in a more general form, in the number field case. The
proof involves the theory of logarithmic forms. Choosing $x=y=1$ , Theorem 4 gives
an effective result for S-unit equations. Further, when $a$ and $b$ are fixed our Theorem 4
implies the theorems of Tijdemna and van der Poorten concerning equation (4.1).

The estimate (4.5) is not optimal. The abc-conjecture implies that $n<c_{4}\log Q$ with
an absolute constant $c_{4}$ .
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4.3. Parametric families of S-unit equations. Let again $\ovalbox{\tt\small REJECT}$ be the set of integers
composed of fixed primes $p_{1},$ $\ldots,p_{t}$ , and consider the corresponding S-unit equations of
the form
(4.6) $Aa+Bb+Cc=0$ in $a,$ $b,$ $c\in\ovalbox{\tt\small REJECT}$,

where the coefficients $A,$ $B,$ $C$ are relatively prime integers with $gcd(ABC,p_{1}\cdots p_{t})=1$ .
Evertse, Gy\’ory, Stewart and Tijdeman (1988) proved that

(i) there are only finitely many equations of the form (4.6) with more than two
non-proportional solutions;

(ii) there are infinitely many equations of the $fom(4.6)$ with exactly two non-
proportional solutions.

We note that the proof of (i) does not make it possible to determine the exceptional
equations. Our Theorem 4 implies the following.

(iii) There exists infinitely many and effectively deteminable equations of the $fom$
(4.6) which have no solution.

Indeed, it follows from Theorem 4 that there is an effective constant $c_{4}$ depending
only on the maximum of $p_{1},$ $\ldots,p_{t}$ such that the 3-parameter family of S-unit equations

(4.7) $t^{n}a-w^{n}b=c$ in $a,$ $b,$ $c\in\ovalbox{\tt\small REJECT}$

with parameters $t,$ $w$ and $n$ has no solution for $t,$ $w,$ $n$ with $n\geq 3,$ $|tw|>1,$ $gcd(tw,p_{1}\cdots$

$p_{t})=1$ and $\max(|t|, |w|, n)>c_{4}$ .
We note that the statement (iii), in an ineffective form, follows also from some general

results of Corvaja and Zannier (2006) and Levin (2006).

4.4. A generalization of statement (i). Let $K$ be a field of characteristic $0,$ $\Gamma$ a
multiplicative subgroup of rank $r$ of $K^{*}$ , and $a,$ $b\in K^{*}$ . It was proved by Beukers and
Schlickewei (1996) that the equation

(4.8) $ax+by=1$ in $x,$ $y\in\Gamma$

has at most $c_{1}(r)$ solutions, where $c_{1}(r)$ was given explicitly. This bound has been
recently improved by Hirata-Kohno (2008).

Equation (4.8) and equation

$a’x’+b’y’=1$ in $x’,$ $y’\in\Gamma$

are called equivalent if $a’/a,$ $b’/b\in\Gamma$ . In this case the two equations have the same
number of solutions.

Denote by $\mathcal{N}$ the number of equivalence classes of equations of the form (4.8) which
have more than two solutions. As a generalization of statement (i) above Evertse, Gy\’ory,
Stewart and Tijdeman (1988) showed that $\mathcal{N}$ is finite. Let $\mathcal{N}_{n}$ denote the number of
those solutions of the equation

$x_{1}+x_{2}+\cdots+x_{n}=1$ in $x_{1},$ $\ldots,$
$x_{n}\in\Gamma$

for which $x_{1}+x_{2}+\cdots+x_{n}$ has no vanishing subsum. Evertse, Schlickewei and Schmidt
(2002) gave an explicit upper bound $c_{2}(n, r)$ for $\mathcal{N}_{n}$ . This bound has been improved by
Amoroso and Viada (2009). Gy\’ory (1992b) proved that

$\mathcal{N}\leq \mathcal{N}_{5}+12\mathcal{N}_{3}+30\mathcal{N}_{2}^{2}$
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which, together with $\mathcal{N}_{n}\leq c_{2}(n, r)$ giveく$i$

$\mathcal{N}\leq c_{3}(r)$

with an explicit constant $c_{3}(r)$ depending only on $r$ .

5. POLYNOMIAL EQUATIONS IN TWO UNKNOWNS FROM A MULTIPLICATIVE DIVISION

GROUP

Let $P(X, Y)\in\overline{\mathbb{Q}}[X, Y]$ be an absolute irreducible polynomial, $\Gamma$ a finitely generated

multiplicative subgroup of $(\overline{\mathbb{Q}}^{*})^{2}$ , and consider the following generalization of equation

(1.1):

(5.1) $P(x, y)=0$ in $(x, y)\in\Gamma$ .

Suppose that $P$ has at least three terms (otherwise (5.1) may have infinitely many trivial
solutions). To give a geometric interpretation of (5.1), consider the curve $\mathscr{C}:P(x, y)=0$

in $(\overline{\mathbb{Q}}^{*})^{2}$ , and the set of points

(5.2) $\mathscr{C}\cap\Gamma$ .

We deal with the solutions/points from the following larger sets. Consider the division
group $\overline{\Gamma}$ of $\Gamma$ defined by

$\overline{\Gamma}$

$:=\{x\in(\overline{\mathbb{Q}}^{*})^{2}|\exists k\in \mathbb{Z}_{>0}$ with $x^{k}\in\Gamma\}$ .

We have $(\zeta, \rho)\in\overline{\Gamma}$ for any roots of unity $\zeta,$
$\rho$ . For $\epsilon>0$ , let

$\overline{\Gamma}_{\epsilon}$ $:=\{x\in(\overline{\mathbb{Q}}^{*})^{2}|\exists$ y, z with $y\in\overline{\Gamma},$ $z=(z_{1}, z_{2})\in(\overline{\mathbb{Q}}^{*})^{2}$ such that

$x=y\cdot z$ and $h(z)=h(z_{1})+h(z_{2})\}$

and

$C(\overline{\Gamma},$ $\epsilon)$ $:=\{x\in(\overline{\mathbb{Q}}^{*})^{2}|\exists$ y, z with $y\in\overline{\Gamma},$ $z\in(\overline{\mathbb{Q}}^{*})^{2}$ such that

$x=y\cdot z$ and $h(z)<\epsilon(1+h(y))\}$ .

The sets $\overline{\Gamma}_{\epsilon}$ and $C(\overline{\Gamma},$ $\epsilon)$ can be regarded as a “ cylinder” and a “truncated cone”, re-
spectively, around $\overline{\Gamma}$ . The points $x\in\overline{\Gamma}_{\epsilon}$ are close to I’ if $\epsilon>0$ is small.

$\overline{\Gamma}_{\epsilon}$ was introduced by Poonen (1999), and $C(\overline{\Gamma},$ $\epsilon)$ by Evertse (2002) in more general
context. Clearly

(5.3) $\Gamma\subset\overline{\Gamma}\subset\overline{\Gamma}_{\epsilon}\subset C(\overline{\Gamma}, \epsilon)$ .

It is important to note that $\overline{\Gamma}_{\epsilon}$ and $C(\overline{\Gamma},$ $\epsilon)$ are not groups. Further, in general the

coordinates of $x$ in I’, $\overline{\Gamma}_{\epsilon}$ or $C(\overline{\Gamma},$ $\epsilon)$ are not contained in a prescribed number field.

79



5.1. Ineffective results. Liardet (1974) proved that $\mathscr{C}\cap\overline{\Gamma}$ is finite. As a consequence
of more general results, Poonen (1999) showed that $\mathscr{C}\cap\overline{\Gamma}_{\epsilon}$ is also finite for small $\epsilon>0$ ,
Evertse (2002) gave a bound for the cardinality of $\mathscr{C}\cap\overline{\Gamma}_{\epsilon}$ , and proved that even $\mathscr{C}\urcorner C(\overline{\Gamma},$ $\epsilon)$

is finite if $\epsilon>0$ is small, and finally R\’emond (2002) derived a bound for the cardinality
of $\mathscr{C}\cap C(\overline{\Gamma}, \epsilon)$ . We should still mention Pontreau (201?) who improved R\’emond $s$ bound
in case of curves $\mathscr{C}$

Various multivariate/higher dimensional generalizations, and description of the (in-
finite) set of solutions/points were established by Laurent, Gy\’ory, Bombieri, Masser,
Zannier, Faltings, Vojta, McQuillan, Zhang, Szpiro, Ullmo, Poonen, David, Philippon,
Chambert-Loir, Evertse, Schlickewei, Schmidt, R\’emond and others.

5.2. Effective results. Consider the equation

(5.4) $P(x, y)=0$ in $(x, y)\in\Gamma,\overline{\Gamma},$ $\overline{\Gamma}_{\epsilon}$ , resp. $C(\overline{\Gamma}, \epsilon)$ ,

where $P(X, Y)\in\overline{\mathbb{Q}}[X, Y]$ is an absolute irreducible polynomial, not of the form

$\alpha X^{m}+\beta Y^{n}$ or $\gamma X^{m}Y^{n}+\delta$ .

Then the corresponding curve $\mathscr{C}$ is not a translate of a proper algebraic subgroup of
$(\overline{\mathbb{Q}}^{*})^{2}$ . Solving equation (5.4) is equivalent to finding the points of the sets

(5.5) $\mathscr{C}\cap\Gamma,$ $\mathscr{C}\cap\overline{\Gamma},$ $\mathscr{C}\cap\overline{\Gamma}_{\epsilon}$ resp. $\mathscr{C}\cap C(\overline{\Gamma}, \epsilon)$ .

In the case when $P(X, Y)$ is linear and $\Gamma=(O_{S}^{*})^{2}$ in a number field, the corresponding
equation (5.3) is an S-unit equation. Then, as was seen in Section 1, equation (5.4) has
only finitely many solutions which can be determined. For linear $P(X, Y)$ , Bombieri
(1993) and Bombieri and Cohen (1997, 2003) proved in an effective form the finiteness
of $\mathscr{C}\cap\Gamma$ . This was extended by Bombieri and Grubler (2006) to polynomials $P(X, Y)$

considered above.

5.3. New effective and quantitative results. To obtain effective results for $\mathscr{C}\cap\overline{\Gamma}$ ,
$\mathscr{C}\cap\overline{\Gamma}_{\epsilon}$ and $\mathscr{C}\cap C(\overline{\Gamma}, \epsilon)$ , one has to give effective bounds not only for the heights but also
for the degrees of the points of these sets. In case of linear $P(X, Y)$ B\’erczes, Evertse and
Gy\’ory (2009), while in the general case B\’erczes, Evertse, Gy\’ory and Pontreau (2009)
derived such effective bounds. For these special classes of varieties, the effective results
mentioned provide effective versions of some more general but ineffective theorems of
Laurent, Poonen, Evertse and R\’emond, respectively.

To present our effective results in quantitative form, we have to introduce some no-
tation. Let $\Gamma$ be a finitely generated subgroup of rank $r$ of $(\overline{\mathbb{Q}}^{*})^{2},$ $\{w_{1}, \ldots, w_{r}\}$ a basis
of $\Gamma/\Gamma_{tors}$ , and

$h_{0}= \max(h(w_{1}), \ldots, h(w_{r}), 1)$ .
Let $K$ be a number field such that $\Gamma\subset(K^{*})^{2},$ $n$ the degree of $K$ over $\mathbb{Q}$ , and $S$ a finite
subset of $M_{K}$ , the set of places on $K$ , such that $S\supseteq S_{\infty}$ and $\Gamma\subset(O_{S}^{*})^{2}$ . Put $s=|S|$ ,
and

$N= \max(\max_{v\in S\backslash S_{\infty}}N(\mathfrak{p}_{v}), 2)$ ,
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where $\mathfrak{p}_{v}$ denotes the prime ideal corresponding to $v\in S\backslash S_{\infty}$ . Let

$\delta=\deg P$, $H= \max(h(P), 1)$

and
$A=(e^{13} \delta^{7}n^{3}r)^{r+3}\cdot s\cdot\frac{N^{2\delta^{2}}}{\log N}h_{0}^{r}\log(\max(\delta nsN, \delta h_{0}))$ .

where
$h(P)= \sum_{v\in M_{K}}\log\max_{i}|a_{i}|_{v}$

,

the $a_{i}$ being the coefficients of $P$ . Finally, let $L$ be the extension of $K$ generated by the
coefficients of $P$ .

Theorem 5 (B\’erczes, Evertse, Gy\’ory and Pontreau, 2009). Let
$\epsilon=(2^{48}\delta(\log\delta)^{5})^{-1}$

Then for every $x=(x_{1}, x_{2})\in \mathscr{C}\cap\overline{\Gamma}_{\epsilon}$ we have

(5.6) $h(x)\leq rh_{0}\delta A+AH$

and

(5.7) $[L(x):L]\leq 2^{50}\delta(\log\delta)^{6}$ .

Here for $x=(x_{1}, x_{2})$ , we use the notation
$h(x)=h(x_{1})+h(x_{2})$ and $L(x)=L(x_{1}, x_{2})$ .

It is interesting to observe the independence of the bounds on $L$ , and the good depen-
dence on $H,$ $h_{0},$ $n,$ $s$ and $N$

It is clear that, in view of (5.3), (5.6) and (5.7) hold for each point $x$ of $\mathscr{C}\cap\overline{\Gamma}$ as well.
Almost the same holds for the points of $\mathscr{C}\cap C(\overline{\Gamma}, \epsilon)$ with smaller $\epsilon$ .

Theorem 6 (B\’erczes, Evertse, Gy\’ory and Pontreau, 2009). Let

$\epsilon=(2^{50}\delta(\log\delta)^{5})^{-1}\cdot(rh_{0}\delta A+AH)^{-1}$

Then for every $x\in \mathscr{C}\cap C(\overline{\Gamma}, \epsilon)$

$h(x)\leq 2rh_{0}\delta A+2AH$

and (5.7) hold.

We note that for $P(X, Y)=\alpha X+\beta Y-1$ much better bounds were established in
an earlier paper of B\’erczes, Evertse and Gy\’ory (2009). For example, in this case one
can take $0<\epsilon<0.0025$ in Theorem 5, and one obtains $[L(x) : L]\leq 2$ as well as smaller
bound for $h(x)$ in place of (5.7) and (5.6).

The main tools in the proofs of Theorems 5 and 6 are as follows. The proofs of
the bounds concerning $h(x)$ are based on a recent effective approximation theorem of
B\’erczes, Evertse and Gy\’ory (2009), giving an explicit lower bound for $|\alpha-\xi|_{v}(v\in M_{K})$

in terms of $h(\xi)$ , where $\alpha\in K^{*}$ and $\xi$ is an element of a finitely generated multiplicative
subgroup of $K^{*}$ . This approximation theorem was proved by means of a combination
of logarithmic form estimates and some geometry of numbers. To derive a bound for
$[L(x) : L]$ , we used some estimates on the number of points of small height.
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Theorems 5 and 6 have many applications, especially in the case $P(X, Y)=\alpha X+$

$\beta Y-1$ and $\Gamma,$
$\overline{\Gamma}$ . Using $\Gamma$ in place of $(O_{S}^{*})^{2}$ , in many cases one can get much better

quantitative results concerning, for example, purely exponential diophantine equations,
discriminant and related equations, decomposable form equations and linear recurrences.
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