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Abstract 
A numerical procedure is presented in this paper for the two-dimensional, time-harmonic 
elastodynamic multiple scattering problems for unidirectional fiber-reinforced composites. The 
proposed procedure is based on the eigenfunction expansion of the displacement potentials and 
the numerical collocation method to solve the expansion coefficients, and is capable of modeling 
arbitrary fiber arrangements. To demonstrate the applicability of the procedure, the P and SV 
wave propagation characteristics in unidirectional fiber-reinforced composites are analyzed for 
different fiber arrangements and fiber volume fractions. The simulated results are shown to 
capture the detailed features of the local wave fields in the composites accompanying the mode 
conversion. From the computed wave fields, the effective phase velocities of the composites are 
identified as functions of the frequency, and found to be in good agreement with the predictions 
of a micromechanical model for random composites. The energy transmission spectra of the P 
and SV waves are also demonstrated, which exhibit the stop-band formation for the composites 
with regular fiber arrangements. 
Keywords: Elastic wave; Fiber-reinforced composite material; Multiple scattering; Stop band 
formation; Effective phase velocity 
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1. Introduction 
Fiber-reinforced composite materials have found increasing application in a variety of areas such as 

aerospace engineering owing to their enhanced mechanical properties. Understanding of the elastic wave 
propagation characteristics in these materials is important regarding the design against dynamic loadings as 
well as the nondestructive characterization using ultrasonic waves. Elastic waves in fiber-reinforced 
composites undergo multiple scattering by their microstructures and exhibit frequency-dependent 
propagation characteristics [1, 2]. In the nondestructive testing, these features need to be clarified in order 
to fully interpret the acquired ultrasonic waveforms and to obtain information of e.g. the fiber-matrix 
interfacial properties [3]. 

Elastic wave propagation in fiber-reinforced composites has been studied extensively, based on 
different versions of multiple scattering theories and micromechanical models. In multiple scattering 
theories for fiber-reinforced composite media [4-8], the infinite hierarchy of the governing equations is 
truncated by introducing certain assumptions for the spatial correlation of fiber positions to obtain the 
average wave field and the effective wave numbers. Other existing models assume either ideally periodic 
microstructures as approached by the Bloch (or Floquet) theory and unit-cell analysis [9-12], or random 
microstructures as approached by the effective medium theories and other micromechanical models [13-19]. 
Actual fiber-reinforced composites, however, often show intermediate microstructural features. For 
example, some metal-matrix composites are manufactured by laying up and hot-pressing matrix/fiber mats 
(so-called monotapes), which contain a single row of continuous fibers [20, 21]. Such a process results in 
internal fiber arrangements which are fairly regular and periodic but not perfectly so, since the number of 
the stacked monotapes is finite and certain disorder of fiber positioning occurs. 

In order to investigate the elastic wave propagation characteristics in composites with arbitrary fiber 
arrangements, it is desirable to consider more direct simulation approaches. In this regard, Cai and 
Williams [22-24] proposed a numerical technique called scatterer polymerization for large-scale multiple 
scattering problems of scalar shear waves in fiber-reinforced composites. Biwa et al. [25] presented a 
semi-analytical procedure to solve the equations of time-harmonic shear-wave multiple scattering directly, 
based on the eigenfunction expansion of the wave field and numerical collocation technique to solve the 
expansion coefficients. Using this method, the interaction phenomena of shear waves with different 
arrangements of fibers have been analyzed effectively, including the stop-band formation in regular fiber 
arrangements and its dependence on their finite length [26] as well as the influence of the disordered fiber 
arrangement on the transmission characteristics [27]. Furthermore, the effective shear-wave phase velocity 
and attenuation coefficient of a fiber-reinforced composite obtained by the simulations have been compared 
favorably with experimental results [28].  

The above-mentioned foregoing works, however, deal with the shear waves polarized parallel to the 
aligned fibers, which are commonly termed as SH (shear horizontal) waves. In this situation, no mode 
conversion occurs at scattering, and the equations to be solved are of a scalar nature. Consequently, it 
remains as an intriguing task to examine more general problems of two-dimensional elastic waves 
interacting with unidirectional fibers, for which mode conversion phenomena are relevant. In this paper, the 
above-mentioned numerical procedure [25] is extended to the more general setting of two-dimensional 
elastodynamics, in order to analyze multiple scattering of elastic waves in unidirectional fiber-reinforced 
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composites. Although two-dimensional multiple scattering problems for fiber-reinforced composites have 
been approached by the abovementioned mathematical treatments as well as by different numerical 
methods [29-31], the semi-analytical eigenfunction expansion approach is worth thorough exploitation for 
its effectiveness and high accuracy. To demonstrate the application of the proposed procedure, the multiple 
scattering simulations are presented for elastic waves in unidirectional composites with different fiber 
arrangements, and the effective phase velocities and the energy transmission behavior are illustrated for a 
specific type of composites.  
 
2. Formulation 
2.1 Governing equations 

The problem considered in this paper consists of the two-dimensional multiple scattering of elastic 
waves in an infinite elastic medium (Lamé constants λ1, μ1 and density ρ1) containing N circular cylindrical 
elastic fibers (radius a, Lamé constants λ2, μ2 and density ρ2) which are all aligned parallel to the x3-axis 
and arranged arbitrarily in the x1-x2 plane, see Fig. 1. Below, the position vector of a generic point is 
denoted by r, and the position vector of the center of the ith fiber by ri (i = 1, 2, ……, N). The domains 
occupied by the matrix and the fibers are denoted as D1 and D2, respectively. 

For the time-harmonic problems with time-dependence of the form exp(-iωt) implicitly understood (ω: 
angular frequency, 1i −= ), the governing equations of the two-dimensional elastodynamics are written 
in terms of the displacement vector u by 
 0uuu =+⋅∇∇++∇ 22 )()( ωρμλμ αααα ,  in Dα ( 2,1=α ),    (1) 

where ∇  is the two-dimensional gradient operator, and the subscript α corresponds to the matrix (α = 1) 
or the fiber (α = 2). The Helmholtz theorem allows the two-dimensional displacement fields u1(r) and u2(r) 
to be derived from two potential functions Φ(r) and Ψ(r) as [32] 
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where Ψ is the x3-component of the vector potential. For the displacements and potentials, subscripts to 
identify the pertinent domains (D1 or D2) are omitted as it is evident in the context. These potentials satisfy 
the following Helmholtz equations, 
 02

L
2 =Φ+Φ∇ αk , 02

T
2 =Ψ+Ψ∇ αk ,  in Dα ( 2,1=α ),    (3) 

where the wave numbers and the pertinent wave speeds are given by 

 

 
Fig. 1  Schematic representation of a unidirectional composite. 
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The incident wave is assumed to be a plane wave propagating in the positive x1-direction, either with 
longitudinal or transverse polarization. The displacement potentials of the incident wave are given by 

0)(),iexp()( inc
11L0

inc =ΨΦ=Φ rr xk ,      (5) 

for the longitudinal wave incidence, and  
)iexp()(,0)( 11T0

incinc xkΨ=Ψ=Φ rr ,      (6) 

for the transverse wave incidence, where Φ0 and Ψ0 are constants. The following formulation applies to 
these two kinds of incident waves in a unified manner. Hereafter, the longitudinal and transverse waves are 
also referred to as the P (compressional) and SV (shear vertical) waves, respectively, according to the 
common terminology. 

The displacement potentials in the matrix are expressed by the sum of the incident and the scattered 
fields as 
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where )(sca, riΦ  and )(sca, riΨ  are the potentials of the scattered wave from the ith fiber. The scattered 

wave potentials also satisfy Helmholtz equations together with the radiation condition at infinity, and can 
be expressed as  
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where An
i and Bn

i ( Nin ...,,2,1;,2,1,0 =±±= K ) are unknown coefficients, and θi is the polar angle 

of r viewed from the position ri, c.f. Fig. 1. 
The ith fiber generates the scattered waves in response to the wave fields which impinge on that fiber. 

The latter are called exciting fields, and are given by the sum of the incident wave and the scattered waves 
from all the other fibers, namely, 
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The exciting waves are also expressed as solutions of Helmholtz equation which are regular at ri, i.e., 
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where En
i and Fn

i ( Nin ...,,2,1;,2,1,0 =±±= K ) are unknown coefficients. 

   In each fiber, there exist refracted wave fields which are expressed similarly by 
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where Cn
i and Dn

i ( Nin ...,,2,1;,2,1,0 =±±= K ) are also unknown coefficients. 

   The relations between the expansion coefficients An
i, Bn

i, Cn
i, Dn

i, En
i and Fn

i are established by 
appropriate boundary conditions at the matrix-fiber interfaces. In the present analysis, the matrix and the 
fibers are assumed to be perfectly bonded thus enforcing the continuity of the displacements and the 
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tractions. The relations can be expressed by 
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The elements of the matrix [M(n)] depend on the order n but not on the position of the fiber. This matrix can 
be obtained by an ordinary procedure found in many classical references [33], and their elements are given 
explicitly in the Appendix. By writing  
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the coefficients An
i and Bn

i are given in terms of En
i and Fn

i as 
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Equations (8), (10) and (14) are substituted into Eq. (9) to obtain the following equations which hold at 
arbitrary r in the matrix; 
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In the above expressions, the En

i and Fn
i are unknown variables which should be determined 

numerically. If these coefficients are obtained, the potential fields are given by 
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in the matrix, and likewise in the fibers based on Eqs. (11) and (12). 
The displacement fields in the matrix are given by the sum of those corresponding to the incident wave 

and the scattered waves, i.e. )()()( scainc rururu +=  in D1. The displacements of the incident wave are 

given by Eqs. (2), (5) and (6) as 
 0)(),(iexpi)( inc
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for the P wave and 
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for the SV wave. On the other hand, the displacements of the scattered waves are first expressed for each 
fiber in each local polar coordinates, converted to Cartesian components, and finally summed up for N 
fibers as 
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The displacement fields in the ith fiber can be obtained as 
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The stress fields can be calculated likewise, but their explicit expressions are lengthy and omitted here. 
 
2.2 Numerical implementation 

In the present numerical analysis, our intension is to model an infinite number of fibers embedded in 
the region covering 0 < x1 < L and extending infinitely in the x2-direction in the matrix. To this purpose, the 
idea of repeated fundamental blocks including a finite number of fibers as utilized in [25] is also employed 
here. Namely, the arrangement of Nf fibers in a rectangular region 0 < x1 < L and 0 < x2 < H, called the 
fundamental block, is repeated in the x2-direction to construct the whole fiber arrangement (Fig. 2). This 
assumption allows us to consider that the wave field is periodic in the x2-direction with period H, so that the 
coefficients En

i and Fn
i are the same for the corresponding fibers in all blocks. In this circumstance Eqs. 

(15a, b) can be summarized for Nf fibers in a single fundamental block 0 < x1 < L and 0 < x2 < H, yielding 
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which hold in the matrix region of the fundamental block. In the above expressions, n2 is the unit vector in 
the x2-direction, and θip is the polar angle of a generic point r viewed from the center of the ith fiber in the 
pth block, ri + pHn2 (p = 0, ±1, ±2, ……). 

In order to determine the coefficients En
i and Fn

i satisfying Eqs. (21) by numerical means, the infinite 
series of the eigenfunction expansions are truncated at a certain number for n or m. Namely, these infinite 
sums are replaced by finite ones with n (or m) = 0, ±1, ±2, …, ±nmax. Also, the summation for infinite 
blocks (over p in Eq. (21)) is also replaced by a finite one, namely for p = 0, ±1, ±2, …, ±pmax. The 
truncation parameters nmax and pmax are chosen to be sufficiently large in the numerical analysis so that 
further increase of their respective value makes negligible effect on the solution. Then, there are 2Nf 
(2nmax+1) unknown variables En

i and Fn
i. Since Eqs. (21) are satisfied at an arbitrary point r in the region 

occupied by the matrix, by choosing an appropriate number of collocation points one obtains a set of linear 
equations for these coefficients. In principle, (2nmax+1) collocation points can be chosen for each fiber to 
construct a set of linear equations for the unknown variables. In the present analysis, however, it has been 
observed that the coefficient matrix of such a system becomes ill-conditioned for certain fiber arrangements 
and frequencies. Therefore, in order to obtain the solutions robustly, (2nmax+2) collocation points are 
employed at equidistant points on the boundary of each fibers, thus constructing an over-determined system 
of linear equations. The obtained set of equations is solved by using the generalized inverse matrix. Once 
the expansion coefficients are obtained numerically, it is straightforward to compute the potentials as well 
as the displacement fields for both matrix and fibers. 
 

 
Fig. 2  Construction of a numerical model by fundamental blocks. 
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3. Scope of numerical analysis 
3.1 Material parameters 

As specific and demonstrative examples of the two-dimensional multiple scattering of elastic waves in 
fibrous composites, the wave propagation characteristics in unidirectional SiC-fiber reinforced Ti-alloy 
composites are considered. Here, both fibers (radius 70 micrometers) and matrix are assumed isotropic in 
the x1-x2 plane and linear elastic, and the material parameters are set as shown in Table 1. Although it is 
known that the third phase (coating layer) is often introduced at the matrix-fiber interfaces in such 
composites [34], the fibers are assumed to be directly bonded to the matrix in the present analysis. It is 
straightforward though to incorporate a concentric interphase zone or a spring-type interface imperfection 
into the analysis, which merely modifies the explicit form of the matrix [M(n)] in Eq. (12). 

Two fundamental characteristics of elastic waves in unidirectional composites are examined in this 
paper, namely, (i) the effective phase velocities of the composite at relatively low frequencies, and (ii) the 
energy transmission spectra of the composite and the presence of the stop bands. For each of these 

 
Table 1 
Material parameters for numerical analysis. 

Matrix (Ti-alloy) 
 λ1 (GPa) μ1 (GPa) ρ1 (kg m-3)
 103 44.8 5400 

Fiber (SiC) 
 λ2 (GPa) μ2 (GPa) ρ2 (kg m-3)
 92.1 177 3200 

 
Table 2 
Dimensions of the fundamental block with 160 fibers, for φ = 0.25. 

Square arrangement 
 L (mm) H (mm) 
 19.9 0.496 

Hexagonal arrangement 
 L (mm) H (mm) 
 21.5 0.462 

Random arrangements 
 L (mm) H (mm) 
 5.43 1.81 

 
Table 3 
Dimensions of the fundamental block with 10 fibers, for φ = 0.25. 

Square arrangement 
 L (mm) H (mm) 
 1.24 0.496 

Hexagonal arrangement 
 L (mm) H (mm) 
 1.47 0.462 

Random arrangements 
 L (mm) H (mm) 
 1.36 0.453 
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examinations, different volume fractions and spatial arrangements of fibers are assumed in the fundamental 
block. For all computations shown in this paper, the truncation parameters were set as nmax = 8 and pmax = 
7500 after careful trials to check the convergence of the solutions. 
 
3.2 Effective phase velocities 
   To obtain the phase velocities in the composite at low frequencies, numerical models with different 
fiber arrangements are employed with a fixed number of fibers Nf = 160 in the fundamental block, namely, 
(i) square arrangement, (ii) hexagonal arrangement, and (iii) random arrangements as shown in Fig. 3. Fiber 
arrangements with different volume fractions φ are considered by changing the size of the fundamental 
block. For example, the dimensions L and H of the fundamental block for the fiber volume fraction φ = 
0.25 are shown in Table 2. Fundamental blocks with other values of the volume fraction are constructed by 

 

 
Fig. 3  (a) Square, (b) hexagonal and (c) random fiber arrangements for the analysis of the effective 

phase velocities. 
 

 
Fig. 4  Generalized self-consistent model for a unidirectional composite. 
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changing these dimensions while keeping the number of the fibers and the ratio L/H unchanged. For the 
random arrangements, a total of eight patterns are constructed for each volume fraction by a random 
sequential adsorption algorithm [35], with an additional condition that the neighboring fibers are always 
separated by 
 )(,01.2 jiaji ≠≥− rr        (22) 

Furthermore, the frequency f = ω/(2π) is varied between 1 and 4 MHz (0.024 < af/cT1 < 0.097 in a 
non-dimensional measure). 
   For the above models, the multiple scattering simulations are performed for the incidence of plane P 
and SV waves. The resulting distributions of the displacement (Re[u1] for the P-wave incidence and Re[u2] 
for the SV-wave incidence) along the x1-direction, at x2 = H/2, are fitted by sinusoidal functions to extract 
the effective wavelengths λL and λT in the reinforced region 0 < x1 < L, from which the effective phase 
velocities cL and cT of the composite are obtained by the relations LL λfc =  and TT λfc = . The influence 

of the fiber arrangement, the fiber volume fraction and the frequency on the effective phase velocities of the 
composite is then examined. It is noted in passing that as shown in Table 2, a greater ratio H/L is chosen for 
the random arrangements (iii) compared to the cases (i) and (ii), in order to allow certain extent of disorder 
of the fiber arrangement in the vertical direction while keeping L long enough to evaluate the effective 
wavelengths. 

It is of definite interest to compare the obtained effective phase velocities of the composite to the 
predictions of an existing theoretical model. To this purpose, the generalized self-consistent (GSC) multiple 

 

 
Fig. 5  (a) Square, (b) hexagonal and (c) random fiber arrangements for the analysis of the energy 

transmission coefficients. 
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scattering model by Yang and Mal [16] is chosen among others, in which the fiber-reinforced composite is 
modeled as an effective medium containing a single fiber and the surrounding matrix shell of the outer 
radius b determined by (a/b)2 = φ, as shown in Fig. 4. This composite fiber is subjected to a plane wave 
incidence, and the effective wave numbers of the composite are determined by an iterative procedure, from 
which the effective phase velocities are extracted. 
 
3.3 Energy transmission characteristics 

When the wavelength of the propagating wave in the composite is of a comparable order to the fiber 
radius or the fiber spacing, the wave interacts with the fibers in a complex fashion. A particular situation 
arises when the fibers are arranged in a regular manner. For certain bands of the frequency, the reflected 
waves from different fibers interfere constructively and the propagating wave exhibits an exponential decay. 
Using the formulation of the present type, this phenomenon has been analyzed for scalar SH waves in 
unidirectional composites [26, 27], and now the analysis is extended to two-dimensional elastodynamic 
problems involving P and SV waves. 

To this purpose, the fundamental blocks as shown in Fig. 5 are employed, with (a) square and (b) 
hexagonal arrangements with 10 fibers in the fundamental block. In order to see the effect of perturbed 
fiber arrangements, the simulations are also performed for eight patterns of the same number of fibers 
which are randomly arranged in the fundamental block, one of which is shown in Fig. 5 (c). It is noted, 
however, that these arrangements do not correspond to those of an ideally random microstructure, due to 
the small number of fibers assumed in the fundamental block: furthermore, the periodicity of the length H 
is always persistent in the x2-direction. The dimensions of the fundamental block for these arrangements are 
shown in Table 3 in the case of φ = 0.25. While a longer fundamental block and a greater number of fibers 
are employed for the effective velocity evaluation, the smaller length of L is employed here to analyze the 
energy transmission characteristics. 

From the displacement and stress fields computed by the multiple scattering simulations, the energy 
flux density in the x1-direction, averaged for the x2-direction, is obtained by 

 ∫=
H

dxxxP
H

xE
0

22,111 )(1)( ,        (23) 

where P1 is the component of the Umov-Poynting vector in the x1-direction given by 

 ( )2
*
12

*
2121

*
11

*
111211 4

i),( uuuuxxP σσσσω
−+−−= ,    (24) 

using the displacement and stress components in the complex-valued formulation. Then, the energy 
transmission coefficient can be calculated as the ratio of the averaged energy flux density, presently 
computed at x1 = 2L, to the energy flux density of the incident wave. The frequency dependence of the 
energy transmission coefficients are investigated for the range 0 < f < 10 [MHz] (0 < af/cT1 < 0.24). 
 
4. Results and discussion 
4.1 Wave fields in the composite 

Prior to the discussion of the effective phase velocities and the energy transmission characteristics, the 
numerical results are first visualized to examine the wave fields in the composite. For two representative 
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frequencies of 1 and 8 MHz (af/cT1 = 0.024 and 0.192, respectively), the distributions of the displacement 
components, Re[u1(r)] and Re[u2(r)], are shown in Figs. 6 to 8, for the square, hexagonal and one pattern of 
random arrangements, respectively, of the 160-fiber fundamental blocks as employed for the analysis of the 
effective phase velocities. The distributions are shown for the whole fundamental block (0 < x1 < L, 0 < x2 
< H) for the 1- MHz case, and for its quarter part (0 < x1 < L/4, 0 < x2 < H) for the 8-MHz case due to the 
shorter wavelengths. 

In each of Figs. 6-8, the wave fields shown in (a) and (b) for the 1-MHz P and SV wave incidence 
basically show a plane-wave nature, essentially exhibiting only the u1 (u2) component for the P (SV) wave 
incidence. At this frequency, the effect of the presence of fibers is to elongate the wavelengths in the 
composite as compared to those in pure matrix, but their arrangements do not appear to affect the local 
wave fields significantly. 

At the higher frequency of 8 MHz, the displacement distributions show more complex behavior. 
Namely, for the P (SV) wave incidence, the u1 (u2) component shows some perturbation from the plane 
wave, and the distributions of the u2 (u1) component are clearly visible. Furthermore, the local wave fields 
are different for different fiber arrangements, thus showing the influence of the composite microstructure. 
In particular, the wave fields for the hexagonal arrangement due to the SV wave incidence, Fig. 7 (d), 
exhibit a decaying feature against the distance along the wave incidence direction, as a consequence of the 
stop-band formation which will be discussed further in the subsequent section. The corresponding case of 
the random arrangement, Fig. 8 (c) and (d), also shows complicated features of wave fields, revealing a 
significant contribution of non-propagating (standing) waves due to the local interactions. In Fig. 8 (c) and 
(d), the somewhat structured patterns are probably due to the finite length H in the vertical direction. 

 

 
 

Fig. 6  Distributions of the wave displacements for the square fiber arrangement, (a), (b) for 1 MHz 
(af/cT1 = 0.024) and (c), (d) for 8 MHz (af/cT1 = 0.192). 



13 
 

The present multiple scattering simulations have thus demonstrated detailed interactions of elastic 
waves with the reinforcing fibers, accompanying the mode conversion between P and SV waves and 

 

 
 

Fig. 7  Distributions of the wave displacements for the hexagonal fiber arrangement, (a), (b) for 1 MHz 
(af/cT1 = 0.024) and (c), (d) for 8 MHz (af/cT1 = 0.192). 

 

 
 

Fig. 8  Distributions of the wave displacements for the random fiber arrangement, (a), (b) for 1 MHz 
(af/cT1 = 0.024) and (c), (d) for 8 MHz (af/cT1 = 0.192). 
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different local wave fields in the composite depending on the fiber arrangement. 
 
4.2 Effective phase velocities 

The effective phase velocities cL and cT of the P and SV waves in the composite are plotted in Fig. 9 
against the normalized frequency for a fixed fiber volume fraction (φ = 0.25) but for different fiber 
arrangements, together with the predictions of the GSC model [16]. Both longitudinal and transverse phase 
velocities of the composite are normalized by the transverse wave speed of the matrix cT1. For the random 
arrangements, the averages of the effective velocities from the simulations of eight patterns are shown. 
Rigorously speaking, multiple scattering theories yield the effective velocities for the averaged fields, not 
the averages of the phase velocities for the fields of particular fiber arrangements. For the relatively 
low-frequency range discussed here, however, the difference between these two quantities is considered to 
be insignificant. In the frequency range analyzed here, the dispersive features are not significant, and the 
effective phase velocities of the composite take more or less frequency-independent values. This is 
considered to be a consequence of relatively long wavelength as compared to the fiber radius or spacing for 
the frequency range plotted here. The effective phase velocities are also plotted against the fiber volume 
fraction in Fig. 10, for a fixed frequency of 3 MHz (af/cT1 = 0.072). It is clearly seen here that as the fiber 

 

    
 

Fig. 9  Variation of the normalized (a) 
longitudinal and (b) shear wave velocities 
with the normalized frequency, for φ = 0.25.

 Fig. 10  Variation of the normalized (a) 
longitudinal and (b) shear wave velocities 
with the fiber volume fraction, for 3 MHz 
(af/cT1 = 0.072). 
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volume fraction increases both the P and SV wave velocities monotonically increase. 
In both Figs. 9 and 10, the theoretical predictions by the GSC model give a good agreement with the 

present multiple scattering simulations, especially with the results for the hexagonal and random fiber 
arrangements. The agreement of the GSC model predictions with the random case could be expected at the 
outset. Furthermore, the hexagonal arrangement is expected to show isotropic features as long as 
macroscopic elastic properties are concerned, which is considered to explain the close agreement with the 
GSC model. For the square arrangement, as φ increases the P wave velocity becomes slightly higher, and 
the SV wave velocity lower, than the corresponding velocities for other fiber arrangements and the GSC 
model, indicating an anisotropic response. 
 
4.3 Energy transmission characteristics 

The frequency dependence of the computed energy transmission coefficients of the P and SV waves are 
depicted in Figs. 11 and 12, for the square and hexagonal fiber arrangements, respectively, with different 
fiber volume fractions. For the square fiber arrangement and the same material parameters, the elastic wave 
transmission characteristics were analyzed by Nakashima et al. [31] by the finite element method. Their 
finite element solutions and the present simulations are in good agreement regarding the energy 
transmission spectra, partly verifying the accuracy of both techniques. 

        
 

Fig. 11  Variation of the energy transmission 
coefficients of the (a) longitudinal and (b) 
shear waves with the normalized frequency 
for the square fiber arrangement, for different 
fiber volume fractions. 

 Fig. 12  Variation of the energy transmission 
coefficients of the (a) longitudinal and (b) 
shear waves with the normalized frequency 
for the hexagonal fiber arrangement, for 
different fiber volume fractions. 
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Figures 11 and 12 show that while the P wave transmission coefficient is nearly unity in the frequency 
range af/cT1 < 0.2 (below 8 MHz), the SV wave shows richer transmission spectra due to its shorter 
wavelength than that of the P wave. The energy transmission spectra of the SV wave are found to have 
clear dips, at different frequencies for different fiber volume fractions. The occurrence and the locations of 
these dips can be explained in the following manner. 

For a composite with regular fiber spacing, the scattered waves by different fibers can interfere 
constructively when the wavelength λ in the composite meets a certain condition with the fiber spacing. In 
this situation, the energy transmission coefficient becomes null in a certain frequency band (stop band) for 
a composite with infinitely repeated periodic microstructure. For a composite with finite number of fibers 
as analyzed here, the transmission coefficient takes a non-zero but relatively low value at the corresponding 

 

 
Fig. 13  Schematic representation of fiber arrays for the stop-band formation. 

 
Table 4 
The estimated cut-off frequencies for the range 0 < a fC/cT1 < 0.25. 

Square arrangement 
 φ d/a cT/cT1 a fC/cT1 
 0.15 4.58 1.11 0.121 

0.243 
 0.2 3.96 1.15 0.145 
 0.25 3.54 1.19 0.168 
 0.3 3.24 1.24 0.191 
 0.35 3.00 1.28 0.214 

Hexagonal arrangement 
 φ d’/a 

(d/a) 
cT/cT1 a fC/cT1 

 0.15 4.26 
(4.92) 

1.12 0.152 
0.228 

 0.2 3.69 1.16 0.182 
 0.25 3.30 1.21 0.212 
 0.3 3.01 1.26 0.242 
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frequency. The terminology of stop band is also used in this paper to refer to this feature. 
Geometrically, the matching condition for the square arrangement can be written as 

λnd =2 ,         (25) 
where n is an integer and d is the distance between the neighboring fiber centers as illustrated in Fig. 13 (a). 
The cut-off frequencies fC can be roughly estimated as 

 
d

nccf
2

TT
C ==

λ
,        (26) 

using Eq. (25) and the effective shear wave velocity cT of the composite as determined by the present 
simulations. The results are summarized in Table 4. The cut-off frequencies for the hexagonal arrangement 
can be estimated, as also shown in Table 4, by the following relations; 

 
d

nc
fnd

′
=⇒=′

3
3 T

Cλ ,      (27a) 

where d’ is the distance between the planes made by the fibers as shown in Fig. 13 (b), and 

 
d

nc
fnd T

C =⇒= λ .       (27b) 

The frequencies estimated by Eqs. (26) and (27) are in good agreement with the locations of the dips shown 

 

      
 

Fig. 14  Variation of the energy transmission 
coefficients of the (a) longitudinal and (b) 
shear waves with the normalized frequency 
for the random fiber arrangements, for φ = 
0.25. 

 Fig. 15 Variation of the energy transmission 
coefficients of the (a) longitudinal and (b) 
shear waves with the normalized frequency 
for the random fiber arrangements (averaged), 
for different fiber volume fractions. 
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in Figs. 11 and 12. 
The energy transmission coefficients are also examined for random arrangements of 10 fibers in the 

fundamental block. In Fig. 14, eight transmission spectra corresponding to different fiber arrangements are 
depicted for the case φ = 0.25, where the averaged transmission spectrum is also shown. The averaged 
transmission spectra are obtained for other fiber volume fractions, and illustrated in Fig. 15. In Fig. 15 (b), 
the SV wave transmission spectra show dips at the frequencies close to those for the hexagonal 
arrangements, in spite of disordered fiber arrangements. This may be partly attributed to the relatively small 
number of fibers in the fundamental block and the H-periodicity in the x2-direction as mentioned above. 
The present simulations thus indicate that for a relatively small number of fibers in the fundamental block, 
the stop-band features are persistent even when the fiber arrangement is disordered. Nakashima et al. [31] 
obtained similar finding by the finite element analysis for stacked monotapes with random misalignment. 
For a larger size of the fundamental block with a larger number of fibers, however, the stop-band features 
are expected to gradually diminish as the fiber arrangement is perturbed to randomness, as demonstrated by 
Biwa et al. [27] for SH waves. 
 
5. Conclusions 

A numerical procedure has been presented in this paper for the two-dimensional, time-harmonic 
elastodynamic multiple scattering problems for unidirectional fiber-reinforced composites. The P and SV 
wave propagation characteristics in unidirectional fiber-reinforced composites have been illustrated for 
different fiber arrangements and fiber volume fractions. The simulated results have been shown to clarify 
the detailed features of the local wave fields in the composite. The effective phase velocities of the 
composite have been identified and compared favorably with the predictions of a micromechanical model 
for random composites. The energy transmission spectra of the P and SV waves have been also 
demonstrated, which exhibit the stop-band formation for regular fiber arrangements. Stop-band features 
have been observed to persist in the present simulation models with limited disorder of the fiber 
arrangement. The numerical procedure shown here is expected to be applicable to many types of multiple 
scattering problems of fiber-reinforced composites and other fibrous media. 
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Appendix 

In the case where a cylindrical scatterer (radius a) is perfecty bonded to the matrix so that the 
displacements and the tractions are continuous across the boundary, the eigenfunction expansion 
coefficients An

i, Bn
i for the scattered potentials, Cn

i, Dn
i for the refracted potentials, and En

i and Fn
i for the 

exciting potentials are related by 
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The elements of the above matrices are given by 
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where Jn and Hn are the nth-order Bessel and Hankel functions of the first kind, respectively, and 
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Therefore, the matrix [M(n)] in eq. (12) is obtained by the matrices [a(n)] and [b(n)], i.e. [M(n)] = [a(n)]-1[b(n)]. 
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