<table>
<thead>
<tr>
<th>Title</th>
<th>The derivational complexity of string-rewriting systems (Algebras, Languages, Algorithms in Algebraic Systems and Computations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KOBAYASHI, YUJI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2010), 1712: 140-147</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/170225</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
The derivational complexity of string-rewriting systems

YUJI KOBAYASHI

Department of Information Science
Toho University, Funabashi 274-8510, Japan

1 Derivational complexity

Let Σ be a (finite) alphabet and let $\Sigma^* = \cup_{n \geq 0} \Sigma^n$ be the free monoid generated by Σ. A (string)-rewriting system R is a nonempty subset of $\Sigma^* \times \Sigma^*$. An element $r = (u, v)$ in R is called a rule of R and written $u \rightarrow v$. Suppose that a word $x \in \Sigma^*$ contains u as a subword, that is, $x = x_1ux_2$ with $x_1, x_2 \in \Sigma^*$, then we can apply the rule r to x and x is rewritten to the word $y = x_1vx_2$. In this situation we write as $x \rightarrow_r y$. If there is some rule $r \in R$ such that $x \rightarrow_r y$, we write $x \rightarrow_R y$, and we call the relation \rightarrow_R the one-step derivation on Σ^* by R.

A rewriting system R is terminating on $x \in \Sigma^*$ if there is no infinite sequence of derivation:

$$x \rightarrow_R x_1 \rightarrow_R \cdots \rightarrow_R x_n \rightarrow_R \cdots$$

starting with x. R is terminating (or noetherian), if it is terminating on every $x \in \Sigma^*$.

The maximal length of a derivation sequence starting with x is denoted by $\delta(x)$. For x on which R is not terminating, we set $\delta(x) = \infty$. The function $d_R : \mathbb{N} \rightarrow \mathbb{N} \cup \{\infty\}$ defined by

$$d_R(n) = \max\{\delta(x) | x \in \Sigma^n\}$$

for $n \in \mathbb{N}$ is the derivational complexity of R.

We are interested in what functions can be derivational complexities of terminating finite rewriting systems.

Let $\mathbb{R}_+ = \{x \in \mathbb{R} | x \geq 0\}$. For two functions $f, g : \mathbb{N} \rightarrow \mathbb{R}_+ \cup \{\infty\}$, if there is a constant $C > 0$ such that $f(n) \leq C \cdot g(n)$ for any sufficiently large $n \in \mathbb{N}$, we write as $f \leq O(g)$. If moreover $g \leq O(f)$, f and g are called equivalent, and written as $f = O(g)$.

A function $f : \mathbb{N} \rightarrow \mathbb{R}_+ \cup \{\infty\}$ is super-additive if

$$f(m + n) \geq f(m) + f(n)$$

holds for any $m, n \in \mathbb{N}$. A super-additive function is non-decreasing. It is easy to see that the derivational complexity of a rewriting system is super-additive.
For an integer $k \geq 1$, a rewriting system R has polynomial (derivational) complexity of degree k, if $d_R(n) = O(n^k)$. Any (nonempty) rewriting system R has at least linear complexity, that is, $d_R(n) \geq O(n)$.

Example 1.1. Let $k \geq 2$ and let $\Sigma_k = \{a_1, a_2, \ldots, a_k\}$. For $2 \leq \ell \leq k$ let

$$C_\ell = \{a_1a_\ell \rightarrow a_\ell a_{\ell-1}, a_2a_\ell \rightarrow a_\ell a_{\ell-1}, \ldots, a_{\ell-1}a_\ell \rightarrow a_\ell a_1\}.$$

Define a system P_k on Σ_k inductively as follows.

$$P_2 = C_2 = \{a_1a_2 \rightarrow a_2a_1\},$$

and

$$P_k = P_{k-1} \cup C_k$$

for $k \geq 3$. Then, P_k has polynomial complexity of degree k.

A rewriting system R has exponential complexity, if there are constants $C \geq D > 1$ such that

$$D^n \leq d_R(n) \leq C^n$$

for sufficiently large $n \in \mathbb{N}$. The one-rule system $\{ab \rightarrow b^2a\}$ has an exponential derivational complexity.

Due to [4], a derivational complexity exists in each level of the Grzegorczyk hierarchy of primitive recursive functions. Even the Ackermann's function is attained ([5]). Actually, a derivational complexity can exceed any recursive function (see Section 2). Many studies have been done about the derivational complexity of term rewriting systems under specific termination techniques (see [7] and the references cited there). Here we shall discuss the derivational complexity of string rewriting systems under a general situation.

2 **Q-systems and Turing machines**

In this article we only consider deterministic Turing machines. Let

$$M = M(\Sigma, Q, q_0, F, \delta)$$

be a k-tape Turing machine, where Σ is a tape alphabet, Q is a set of states, q_0 is an initial state, F is a set of final states and δ is a transition function. We assume that the tapes are one-way infinite and each head never moves to the left of the initial position.

Let $\Sigma_b = \Sigma \cup \{b\}$, where b denotes the blank symbol. The transition function δ is a mapping from $(Q \setminus F) \times \Sigma_b^k$ to $Q \times (\Sigma_b \cup \{L, R\})^k$, where L and R are the symbols for the right and left moves of the heads respectively. If for each i with $1 \leq i \leq k$, x_iy_i is a word written on the i-th tape and the machine is looking at the leftmost letter of y_i in state q, then the k-ple

$$c = (x_1qy_1, x_2qy_2, \cdots, x_kqy_k) \quad (2.1)$$
is a configuration of M. The size $|c|$ of a configuration c in (2.1) is defined by

$$|c| = |x_1y_1x_2y_2 \cdots x_ky_k|.$$

For $x \in \Sigma^*$, let $\tau_M(x)$ be the number of steps taken until M halts when it runs with input x written in the first tape of M. The time function $t_M : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ of M is defined by

$$t_M(n) = \max \{ \tau_M(x) \mid x \in \Sigma^n \}.$$

For a configuration c, let $\tau'_M(c)$ be the number of steps taken until M halts when it starts with c. In particular, $\tau_M(x) = \tau'_M(q_0x, q_0, \ldots, q_0)$ for $x \in \Sigma^*$. Define the total time function $t'_M : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ of M by

$$t'_M(n) = \max \{ \tau'_M(c) \mid c : \text{configuration of size } n \}.$$

Clearly,

$$t'_M(n) \geq t_M(n)$$

for any $n \in \mathbb{N}$.

A Q-system is a finite rewriting system R over an alphabet

$$\Sigma = Q \cup \Sigma_1 \cup \Sigma_2 \cup \{\}$$

(disjoint union)

consisting of rules only of the form

$vqu \rightarrow v'q'u'$, or vqu \rightarrow $v'q'u'\$,$

where $q, q' \in Q$, $u, u' \in \Sigma_1^*$ and $v, v' \in \Sigma_2^*$.

A word $x \in \Sigma^*$ is admissible (resp. weakly admissible), if it is of the form vqu with $q \in Q$, $v \in \Sigma_2^*$ and $u \in \Sigma_1^*$ (resp. $u \in \Sigma_1^* \cup \Sigma_1^* \$).

For a Q-system R and for $n \in \mathbb{N}$, define

$$ad_R(n) = \max \{ \delta_R(x) \mid x \text{ is admissible and } |x| = n + 2 \}$$

Lemma 2.1. For a Q-system R, we have

$$ad_R(n) \leq d_R(n + 2)$$

for any $n \in \mathbb{N}$. If ad_R is super-additive, then

$$d_R(n + 1) \leq ad_R(n)$$

for any $n \in \mathbb{N}$. If ad_R is equivalent to a non-zero super-additive function, then

$$d_R(n + 1) \leq O(ad_R(n)).$$
There is a natural way to simulate one-tape Turing machines by string-rewriting systems ([3]).

Let \(M = M(\Sigma, Q, q_0, F, \delta) \) be a one-tape Turing machine. Here, \(\delta \) is a mapping from \((Q \setminus F) \times \Sigma_b\) to \(Q \times (\Sigma_b \cup \{L, R\}) \). We define a \(Q \)-system \(R_M \) associated with \(M \) as follows. \(R_M \) is a rewriting system on the alphabet

\[
\Omega = Q \cup \Sigma_b \cup \overline{\Sigma}_b \cup \{\} \text{ (disjoint union),}
\]

where \(\overline{\Sigma}_b = \{\overline{a} | a \in \Sigma_b\} \) is a copy of \(\Sigma_b \), and consists of the rules:

\[
\begin{align*}
qa &\rightarrow \overline{a}q' \quad \text{for } \delta(q, a) = (q', R), \\
\overline{a}'qa &\rightarrow q'a' \quad \text{for } \delta(q, a) = (q', L), \\
qa &\rightarrow q'a' \quad \text{for } \delta(q, a) = (q', a'), \\
q\$ &\rightarrow \overline{b}q\$ \quad \text{for } \delta(q, b) = (q', R), \\
\overline{a}q\$ &\rightarrow qa\$ \quad \text{for } \delta(q, b) = (q', L), \\
q\$ &\rightarrow q'a\$ \quad \text{for } \delta(q, b) = (q', a).
\end{align*}
\]

for \(a, a' \in \Sigma_b, q \in Q \setminus F \) and \(q' \in Q \).

For a word \(x \in \Sigma_b^* \), \(\overline{x} \) denotes the word obtained from \(x \) by replacing every letter \(a \) in \(x \) by \(\overline{a} \). Since one step of the Turing machine \(M \) just corresponds to one rewriting by \(R_M \) we have

Lemma 2.2. It holds that

\[
\delta_{R_M}(q_0x\$) = \tau_M(x), \quad \delta_{R_M}(\overline{x}qy\$) = \tau'_M(xqy)
\]

for \(x, y \in \Sigma_b^* \) and \(q \in Q \).

Corollary 2.3. We have

\[
d_{R_M}(n + 2) \geq ad_{R_M}(n) = t'_M(n) \geq t_M(n)
\]

for \(n \geq 0 \).

If \(R \) is finite and terminating, then we can compute \(d_R \) by tracing all the derivation sequences (see Section 4), and it is a recursive function. Actually it can exceed any recursive function.

Corollary 2.4. For any recursive function \(f \), there exists a finite terminating rewriting system \(R \) such that

\[
d_R(n) \geq f(n)
\]

for any positive \(n \in \mathbb{N} \).

3 Time functions and derivational complexity

As we have seen in the last section, derivational complexity is related to the time functions of Turing machines.
Lemma 3.1. (cf. [2], [6]) For any k-tape Turing machine M with time function $f(n) \geq O(n)$, there exists a one-tape Turing machine M' such that $t_{M'}(n) = O(t_{M'}(n)) = O(f(n)^2)$.

Suppose that f is the time function of a k-tape Turing machine M such that $f \geq O(n)$ and f^2 is equivalent to a super-additive function g. Let M' be the one-tape Turing machine Lemma 3.1. We have

$$t'_{M'}(n) = O(f(n)^2) = O(g(n)).$$

Let R be the Q-system associated with M', then by Lemma 2.1 and Corollary 2.3, we see

$$d_R(n+2) \geq t'_{M'}(n) = ad_R(n) \geq O(d_R(n+1)).$$

It follows that

$$O(f(n-2)^2) \leq d_R(n) \leq O(f(n-1)^2).$$

Thus, we have

Theorem 3.2. Let $f(n)$ be a time function of a Turing machine such that $f \geq O(n)$ and $f(n)^2$ is equivalent to a super-additive function. Then there exists a finite rewriting system R such that

$$O(f(n-2)^2) \leq d_R(n) \leq O(f(n-1)^2).$$

We say that a function $f : \mathbb{N} \rightarrow \mathbb{N}$ is computable in time $O(g(n))$, if there exists a (deterministic) algorithm computing $f(n)$ within time $O(g(n))$, more precisely, if there exists a multi-tape Turing machine which computes binary $f(n)$ for given binary n with time function $t_{M}(n) \leq O(g(n))$.

Lemma 3.3. If $f : \mathbb{N} \rightarrow \mathbb{N}$ is a function such that $f(n) \geq O(n^2)$ and the binary $f(n)$ is computable in time $O(\sqrt{f(n)})$ for binary $n \in \mathbb{N}$, then $\lfloor \sqrt{f(n)} \rfloor$ is equivalent to a time function of a Turing machine.

Combining this lemma with Theorem 3.1 we have

Theorem 3.4. Suppose that a function $f(n) \geq O(n^2)$ is computable in time $O(\sqrt{f(n)})$ in binary and equivalent to a super-additive function. Then, there exists a finite rewriting system R such that

$$O(f(n-2)) \leq d_R(n) \leq O(f(n-1)).$$

4 Computing the derivational complexity

Let R be a rewriting system on Σ. Consider a derivation sequence of length 2:

$$x = x'ux'' \rightarrow_R x'vx'' = y = y'u'y'' \rightarrow_R y'y'y'' = z,$$

where $u \rightarrow v, u' \rightarrow v' \in R$. This sequence is left canonical, if

$$|x'| < |y'u'|.$$

A sequence is left canonical, if every subsequence of length 2 of it is left canonical. In particular, a sequence of length ≤ 1 is left canonical.
Lemma 4.1. For a derivation sequence of length n from $x \in \Sigma^*$ to $y \in \Sigma^*$, there is a left canonical sequence from x to y of the same length n.

For a derivational sequence
\[p : x_0 \rightarrow_R x_1 \rightarrow_R x_2 \rightarrow_R \cdots \rightarrow_R x_n, \]
we define a number $L(p)$ by induction on n as follows. When $n = 1$ and $p : x_0 = x'_0ux''_0 \rightarrow_ru \rightarrow_vx''_0$ with $r = (u \rightarrow v) \in R$, define
\[L(p) = |x'_0u| = |x_0| - |x''_0|. \]
Suppose that $n \geq 2$ and
\[x_{n-2} = x'_{n-2}u'x''_{n-2} \rightarrow_r' x'_{n-2}v'x''_{n-2} = x_{n-1} = x'_{n-1}ux''_{n-1} \rightarrow_r x'_{n-1}vx''_{n-1} = x_n \]
with $r = (u \rightarrow v), r' = (u' \rightarrow v') \in R$. Then, define
\[L(p) = L(p') + |x'_{n-1}| - |x'_{n-2}| + |u| + K - 1, \]
where p' is the subsequence
\[x_0 \rightarrow_R x_1 \rightarrow_R x_{n-1} \]
of p and
\[K = \max \{|u|, |v| \mid u \rightarrow v \in R\}. \]

Lemma 4.2. For any derivation sequence p of length $n \geq 1$ starting with $x \in \Sigma^*$ we have
\[L(p) \leq (2K - 1)(n - 1) + |x|. \]

Lemma 4.3. A left canonical derivation sequence p can be found by tracing at most $L(p)$ letters in the words appearing in p.

Theorem 4.4. Let R be a finite rewriting system on Σ with derivational complexity f. Then, given $n \in \mathbb{N}$, $f(n)$ can be computed deterministically in time $C^{f(n)}$ for some constant $C > 1$.

5 Complexities of the forms n^α and α^n

In this section we give the results that there are finite rewriting systems with derivational complexities equivalent to n^α (and α^n), if the computational complexity of the real number α is relatively low, but there are no such systems if the complexity of α is high. The author has been inspired by the discussions in [8].

A real number $\alpha > 0$ is computable in time $f(n)$, if a binary rational approximation a/b ($a, b \in \mathbb{N}$) of α such that $b \leq O(2^n)$ and
\[|\alpha - \frac{a}{b}| < \frac{1}{2^n} \]
can be computed in time $f(n)$ (refer to [9] for computable real numbers). We denotes this rational a/b by $\alpha[n]$.
Lemma 5.1. Let $\alpha > 0$ be a real number computable in time $O(f(n))$. Then for an integer ν, the function $g_{\alpha, \nu}(n) = 2^\lfloor \alpha \lceil \log_2 n \rceil - \nu \rfloor n$ is equivalent to $2^{\alpha n}$ and can be computed in time $O(f(\lceil \log_2 n \rceil - \nu) + n)$.

Theorem 5.2. Let $\alpha \geq 2$ be a real number computable in time $O(C^{2^n})$ for some constant $C > 1$. Then, there is a finite rewriting system R with derivational complexity equivalent to n^α.

Next, we consider the exponential function α^n. Because it is not super-additive, we need the following

Lemma 5.3. Let $\alpha > 1$ be a real number, then the function f_α defined by

$$f_\alpha(n) = \begin{cases} \alpha^n & \text{if } n \geq 1/\log \alpha \\ (e \log \alpha) \cdot n & \text{if } 0 \leq n < 1/\log \alpha \end{cases}$$

is super-additive.

The computational complexities of α and $\log_2 \alpha$ are closely related.

Lemma 5.4. Let $\alpha > 1$ be a real number computable in time $O(f(n))$. Then, $\log_2 \alpha$ is computable in time $O(f(n + 2) + 4^n n^2)$, and 2^α is computable in time $O(f(n + [\alpha] + 2) + 8^n n^2)$.

If we use a faster algorithm to compute the product of two integers, for example, Schönhag-Strassen's algorithm (see [1]), we can improve Lemma 5.4, but this is enough for our purpose.

Theorem 5.5. If a real number $\alpha > 1$ is computable in time $O(C^{2^n})$ for some constant $C > 1$, then there is a finite rewriting system R with derivational complexity equivalent to α^n.

By our results we see that, for example, the functions $n^\alpha (\alpha \geq 2)$, $\alpha^n (\alpha > 1)$ and $2^{an} (\alpha > 0)$ for a rational (or more generally an algebraic) number α are equivalent to the derivational complexities of finite rewriting systems. For a transcendental number α with low complexity such as π and e, they are also equivalent to the derivational complexities.

Using Theorem 4.4, we can give the other direction as follows.

Theorem 5.6. Let $\alpha > 1$ be a real number.

(1) If there is a finite rewriting system with derivational complexity equivalent to n^α, then α is computable in time $O^C 2^{an}$ for some constant $C > 1$.

(2) If there is a finite rewriting system with derivational complexity equivalent to α^n, then α is computable in time $O^C 2^{2^n}$ for some constant $C > 1$.
References

