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Abstract

Commutation theory is one of the central areas of research in universal algebra and clone
theory. After giving the definitions of commutation, centralizers and endoprimal monoids, we
present some of the results in this field which the author obtained during the past decade as
the joint work with Ivo G. Rosenberg.
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1 Introduction
What we need for constructing clone theory is simple and elementary: A fixed set $A$ and a set of
(multi-variable) functions

$f:A^{n}arrow A$

defined on $A$ . In universal algebra, an n-variable function on $A$ is called an operation on $A$ of arity
$n$ . We denote by $\mathcal{O}_{A}^{(n)}$ the set of all n-variable functions on $A$ , i.e., $\mathcal{O}_{A}^{(n)}=A^{A^{n}}$ . We also denote
by $O_{A}$ the set of all functions defined on $A$ , i.e.,

$\mathcal{O}_{A}=\bigcup_{n=1}^{\infty}\mathcal{O}_{A}^{(n)}$ .

For $1\leq i\leq n$ , the i-th projection $e_{i}^{n}$ of $n$ variables is defined by $e_{i}^{n}(x_{1}, \ldots, x_{i}, \ldots, x_{n})=x_{i}$ for
any $(x_{1}, \ldots, x_{n})\in A^{n}$ . $\mathcal{J}_{A}$ denotes the set of all projections $e_{i}^{n}(1\leq i\leq n)$ on $A$ .

We consider (functional) composition among functions defined on $A$ , and define a clone on $A$ as
follows:

Definition 1.1 For a subset $C\subseteq O_{A},$ $C$ is $a$ clone if $C$ satisfies the following:

(1) $C$ is closed under (functional) composition.

(2) $C$ contains all the projections, i. e., $J_{A}\subseteq C$ .

N.B. In order to avoid confusion, we remark that our clone has no relation to biology !!

For a fixed set $A,$ $\mathcal{L}_{A}$ denotes the set of all clones on $A$ . It is known and easy to see that for
any setA, $\mathcal{L}_{A}$ forms a lattice with respect to inclusion.
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In this paper, we let $A$ be a (non-empty) finite set $E_{k}$ where $E_{k}=\{0,1, \ldots, k-1\}$ for $k>1$ .
Then we write $\mathcal{O}_{k}^{(n)},$

$\mathcal{O}_{k},$ $\mathcal{J}_{k}$ and $\mathcal{L}_{k}$ instead of $\mathcal{O}_{A}^{(n)},$ $\mathcal{O}_{A},$ $\mathcal{J}_{A}$ and $\mathcal{L}_{A}$ , respectively.

For the case where $k=2$ , that is, the case of Boolean functions, things are, in a sense, already
settled.

Theorem 1.1 (E. Post)
The structure of $\mathcal{L}_{2}$ is completely determined. In particular, the cardinality of $\mathcal{L}_{2}$ is countable.

On the other hand, the structure of $\mathcal{L}_{k}$ for each $k>2$ is still largely unknown, remains mysterious
and waits for further investigations. The following is one of few facts that we know up to now.

Theorem 1.2 (Janov and Muchnik)
For any $2<k<\omega,$ $\mathcal{L}_{k}$ has the cardinality of the continuum.

In this paper we focus our attention on commutation theory of clones. Commutation theory
is one of the central areas of research in universal algebra and clone theory, which attracts many
researchers in these fields. After giving the definitions of those terms such as centralizers and
endoprimal monoids, we present some of the results that were obtained during the past decade as
the joint work of the author with Ivo G. Rosenberg (Montr\’eal). For most of the results presented
here the proofs are omitted. (For the proofs refer to the references given at the end of this
manuscript.)

2 Commutation
The main concept of this paper is commutation between two functions in $\mathcal{O}_{A}$ .

Definition 2.1 For $f\in \mathcal{O}_{k}^{(m)}$ and $g\in \mathcal{O}_{k}^{(n)}$ we say that $f$ commutes with $g$ (or, $f$ and $g$ commute)
if the following holds

$f(g(b_{11}, \ldots, b_{1n}), \ldots, g(b_{m1}, \ldots, b_{mn}))$ $=$ $g(f(b_{11}, \ldots, b_{m1}), \ldots, f(b_{1n}, \ldots, b_{mn}))$

for every $m\cross n$ matm $B=(b_{ij})$ over $E_{k}$ .

The definition may be better understood by the following picture.

We use the notation $f\perp g$ to mean that $f$ commutes with $g$ . It is clear that $f\perp g$ is equivalent
to $g\perp f$ .

Example

(1) Let $f\in \mathcal{O}_{k}^{(1)}$ be any constant function and $g\in \mathcal{O}_{k}^{(n)}$ be any idempotent function. Then it is
clear that $f$ and $g$ commute, i.e., $f\perp g$ . Here, by definition, $g$ is idempotent if $g(x, \ldots, x)=x$ for
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all $x\in E_{k}$ .

(2) For $k=3$ let $f,$ $g\in O_{3}^{(2)}$ be defined as follows:

$f(x, y)=\{\begin{array}{ll}2 if 2\in\{x, y\}0 othelwise\end{array}$

and
$g(x, y)= \max\{x, y\}$ .

Then it is easily verified that $f$ and $g$ commute, i.e., $f\perp g$ .

Definition 2.2 For $F\subseteq O_{k}$ define
$F^{*}$ $=$ $\{g\in \mathcal{O}_{k}|g\perp f$ for all $f\in F\}$

$F^{*}$ is called the centralizer of $F$ .

Lemma 2.1 For any $F\subseteq \mathcal{O}_{k}$ , the centralizer $F^{*}$ of $F$ is a clone.

The following properties of centralizers are easy but important.

Lemma 2.2 For any $F,$ $G\subseteq O_{k}$ we have:

(i) $F\subseteq F^{**}$

(ii) $F\subseteq G\Rightarrow F^{*}\supseteq G^{*}$

(iii) $F^{***}=F^{*}$

3 Centralizers of Monoids
For unary functions $f,$ $g\in \mathcal{O}_{A}^{(1)}$ the composition $fog$ is defined by setting

$(f\circ g)(x)=f(g(x))$

for all $x\in A$ . The operation $0$ is associative and the identity function $s_{1}$ is the neutral element.
Hence the algebra $\langle \mathcal{O}_{A}^{(1)};\circ,$

$s_{1}\rangle$ is a monoid. A subset $M$ of $\mathcal{O}_{A}^{(1)}$ is a submonoid of $\mathcal{O}_{A}^{(1)}$ if $s_{1}\in M$

and $M$ is closed under the operation $0$ .
In this section, we determine centralizers of monoids of unary functions containing the symmetric

group $S_{k}$ of $E_{k}$ .

3.1 Results
Some years ago we posed the following problem.

Problem: For every $k\geq 3$ , determine centralizers of all submonoids of $\mathcal{O}_{k}^{(1)}$ which contain the
symmetric group $S_{k}$ .

The complete solution to this problem was given in Machida and Rosenberg [MR 05]. It turned
out that most of the centralizers of monoids containing the symmetric group are the same. This
makes a clear contrast to the fact that, for any subgroups $G_{1},$ $G_{2}$ of $S_{k},$ $G_{1}^{*}\neq G_{2}^{*}$ whenever
$G_{1}\neq G_{2}$ .

First we note a simple fact. Let $\mathcal{M}_{k}$ denote the set of submonoids of unary functions in $\mathcal{O}_{k}^{(1)}$ .

103



Lemma 3.1 For any submonoid $M\in \mathcal{M}_{k}$ ,

$S_{k}\subset M$ $\Rightarrow$ $S_{k}\cup$ CONST $\subseteq M$

Here, CONST denotes the set of all unary constant functions in $\mathcal{O}_{k}^{(1)}$ .

We present the results from smaller submonoids.

Case 1: $M=S_{k}$

For n-tuples $(x_{1}, \ldots, x_{n})$ and $(y_{1}, \ldots, y_{n})\in E_{k}^{n}$ we say that $(x_{1}, \ldots, x_{n})$ is similar to $(y_{1}, \ldots , y_{n})$

if
$x_{i}=x_{j}\Leftrightarrow y_{i}=y_{j}$

for all $1\leq i,$ $j\leq n$ .

Proposition 3.2 (Marczewski)
The centralizer $S_{k}^{*}$ of $S_{k}$ is the set of functions $f(\in \mathcal{O}_{k}^{(n)})$ satisfying the following conditions.

(1) $If|\{x_{1}, \ldots, x_{n}\}|\neq k-1$ then

(i) $f(x_{1}, \ldots, x_{n})=x_{l}$ for some $1\leq\ell\leq n$ and
(ii) $f(y_{1}, \ldots, y_{n})=y\ell$ for $\forall(y_{1}, \ldots, y_{n})\in(E_{k})^{n}$ which is similar to $(x_{1}, \ldots, x_{n})$ .

(2) $If|\{x_{1}, \ldots, x_{n}\}|=k-1$ and $f(x_{1}, \ldots, x_{n})=u$ for some $u\in E_{k}$ then

(i) $u=x_{\ell}$ for some $1\leq\ell\leq n$ implies $f(y_{1}, \ldots, y_{n})=y_{\ell}$ for $\forall(y_{1}, \ldots, y_{n})\in(E_{k})^{n}$ which
is similar to $(x_{1}, \ldots, x_{n})$ and

(ii) $u\in E_{k}\backslash \{x_{1}, \ldots, x_{n}\}$ implies $f(y_{1}, \ldots, y_{n})=v$ where $v\in E_{k}\backslash \{y_{1}, \ldots, y_{n}\}$ for
$\forall(y_{1}, \ldots, y_{n})\in(E_{k})^{n}$ which is similar to $(x_{1}, \ldots, x_{n})$ .

Case 2: $M=S_{k}\cup$ CONST

Proposition 3.3 (1) For $k=2$ , the centmlizer ( $S_{2}$ UCONST)’ is the clone

{ $f\in s_{2}*|f$ : idempotent}.

(2) For every $k\geq 3$ , the centmlizer $(S_{k}\cup$ CONST$)^{*}$ is the clone $s_{k}*$ .
Case 3: $M\supset S_{k}\cup$ CONST

As an exceptional case for $k=4$ , we need to consider a submonoid which we call $M_{2}$ .
For $u\in \mathcal{O}_{k}^{(1)}$ the kemel of $u$ is defined by

$keru=\{(x, y)\in k^{2}|u(x)=u(y)\}$ .

Clearky, $keru$ is an equivalence relation on $E_{k}$ . An equivalence class is called a block.
Let $k=4$ . We define $M_{2}$ as the submonoid consisting of $u\in \mathcal{O}_{4}^{(1)}$ satisfying one of the following

conditions:

(i) $E_{4}/keru$ has four singleton blocks, i.e., $u$ is a permutation on $E_{4}$ .

(ii) $E_{4}/keru$ has one block, i.e., $u$ is a constant function on $E_{4}$ .

(iii) $E_{4}/keru$ has two blocks of size 2, i.e., $u$ sends two elements in $E_{4}$ to an element in $E_{4}$

and the other two to another element in $E_{4}$ .
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Here, $E_{4}/keru$ is the quotient set over $E_{4}$ induced by the equivalence relation $keru$ . It is clear
that $M_{2}\supset S_{4}\cup CONST_{4}$ .

Proposition 3.4 If $M\supset S_{k}\cup$ CONST then the following holds.

(i) For $k=3$ : $M^{*}=\mathcal{J}_{3}$

(ii) For $k=4$ ; If $M\neq M_{2}$ then $M^{*}=\mathcal{J}_{4}$

(iii) For $k\geq 5$ : $M^{*}=\mathcal{J}_{k}$

Note: As mentioned below, the centralizer $M_{2}^{*}$ of $M_{2}$ for $k=4$ is not equal to $\mathcal{J}_{4}$ .

3.2 A Sufficient Condition for a Trivial Centralizer
We start with two properties of functions.

I. (Separation Property)
For all $a,$ $b,$ $c,$ $d\in E_{k}$ , if $\{a, b\}\neq\{c, d\}$ and $c\neq d$ then $M$ contains $f(=f_{cd}^{ab})$ which satisfies

$f(a)=f(b)$ and $f(c)\neq f(d)$ .

II. (Fixed-Point-Free Property)
For every $i\in E_{k},$ $M$ contains $g_{i}$ which satisfies $g_{i}(i)\neq i$ .

The following fact appears in Machida and Rosenberg $[MR 04a]$ and $[MR 04b]$ .

Lemma 3.5 For any $M\in \mathcal{M}_{k}$ , if $M$ satisfies the above conditions I and $\Pi$ then $M^{*}=\mathcal{J}_{k}$ .
It is an easy task to verify Proposition 3.4 from Lemma 3.5.

For the submonoid $M_{2}$ in the case $k=4$ , we can show that the centralizer of $M_{2}$ is not the least
clone. Let the ternary function $m(x_{1}, x_{2}, x_{3})(\in \mathcal{O}_{4}^{(3)})$ be defined as follows:

$m(x_{1}, x_{2}, x_{3})=\{\begin{array}{ll}x_{1} if x_{1}=x_{2}=x_{3}x_{1} if x_{1}\neq x_{2}=x_{3}x_{2} if x_{2}\neq x_{1}=x_{3}x_{3} if x_{3}\neq x_{1}=x_{2}y if \{x_{1}, x_{2}, x_{3}, y\}=E_{4}\end{array}$

It is readily verified that $m$ commutes with every member in $M_{2}$ , i.e., $m\in M_{2}^{*}$ . Hence, we have:

Lemma 3.6 $M_{2}^{*}$ is not the least clone $\mathcal{J}_{4}$ .

4 Kuznetsov Criterion
Kuznetsov Criterion was discovered by Kuznetsov in 1960 $s$ , and is an extremely useful tool
$([Da77])$ .

Definition 4.1 For $f\in \mathcal{O}_{k}^{(n)}$ and $\Sigma\subseteq O_{k},$ $f$ is parametrically expressible (p-expressible) by $\Sigma$ if
there exist $m\geq 1,$ $\ell\geq 0$ and $g_{i},$ $h_{i}\in \mathcal{O}_{k}^{(n+\ell+1)}(i=1, \ldots, m)$ such that $g_{i},$

$h_{i}\in\langle\Sigma\rangle$ and

$f^{\square }$ $=$ $\{(x_{1}, \ldots, x_{n}, x_{n+1})|$ I$x_{n+2},$ $\ldots,$
$x_{n+p+1}\in E_{k},$ $\forall i\in\{1, \ldots, m\}$ ,

$g_{i}(x_{1}, \ldots, x_{n+l+1})=h_{i}(x_{1}, \ldots, x_{n+\ell+1})\}$ .

Here, $f^{o}$ means the gmph of $f$ , i. e., $f^{\square }=\{(x_{1}, \ldots, x_{n}, x_{n+1})|f(x_{1}, \ldots, x_{n})=x_{n+1}\}$
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Kuznetsov criterion states as follows:

Theorem 4.1 (Kuznetsov cretenon)
For $f\in O_{k}$ and $\Sigma\subseteq \mathcal{O}_{k}$ , $f$ is p-expressible by $\Sigma$ if and only if $\Sigma^{*}\subseteq\{f\}^{*}$ .

Equivalently, it can be expressed as:

Corollary 4.2 (Kuznetsov criterion)
For $f\in O_{k}$ and $\Sigma\subseteq O_{k},$ $f$ is p-expressible by $\Sigma$ if and only if $f\in\Sigma^{**}$ .

Example. Let unary functions $j_{0},$ $j_{1},$ $s_{3}\in O_{3}^{(1)}$ be given below.

From $j_{0}$ and $j_{1}$ we get $s_{3}$ in the following sense:

$s_{3}^{\square }=\{(x, y)\in(E_{3})^{2}|j_{0}(x)=j_{1}(y), j_{1}(x)=j_{0}(y)\}$

Hence $s_{3}$ is p-expressible by $\{j_{0}, j_{1}\}$ . Then, due to Kuznetsov Criterion, we have

$s_{3}\in\{j_{0}, j_{1}\}^{**}$

4.1 Centralizers of Subgroups of $S_{k}$

Lemma 4.3 For any subgroup $H$ of $S_{k}$ and any $s\in S_{k},$ $s$ is p-expressible by $H$ if and only if
$s\in H$ .

Proof $(\Leftarrow)$ TYivial.
$(\Rightarrow)$ Suppose that $s$ is p-expressible by $H$ . Then, by definition, $s$

ロ $=\{(x, y)|t(x)=u(y)\}$ for
some $t,$ $u\in H$ . This is equivalent to $s^{\square }=\{(x, y)|(u^{-1}t)(x)=y\}$ for some $t,$ $u\in H$ , which

$implies\square$

that $s=u^{-1}t\in H$ .

Theorem 4.4 (Machida and Rosenberg)
$The*$ -opemtor is injective over $S_{k}$ , that is, for subgroups $H_{1}$ and $H_{2}$ of $S_{k}$ ,

$H_{1}^{*}=H_{2}^{*}$ $\Rightarrow$ $H_{1}=H_{2}$ .

Proof Suppose $Hf=H_{2}^{*}$ and $H_{1}\neq H_{2}$ . Then, w.l.o.g., we may take $s\in H_{2}-H_{1}$ . Now $H_{1}^{*}=H_{2}^{*}$

implies that
$H_{1}^{*}\subseteq\{s\}^{*}(=Po1s^{\square })$

since
$H_{2}^{*}= \bigcap_{t\in H_{2}}$

Pol $t^{\square }$ . By Kuznetsov criterion, $s$ is p-expressible by $H_{1}$ . Hence, by Lemma 4.3,

we have $s\in H_{1}$ . Contradiction. $\square$
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5 Endoprimal Monoids
In this section, we consider ”endoprimal monoids”, that is, the unary part of the centralizer of
some set. Most of the results which will be presented in this section appeared in Machida and
Rosenberg [MR 09] and [MR 10].

Definition 5.1 Let $\mathcal{A}=(A;F)$ be an algebm. For a map $\varphi$ : $Aarrow A,$ $\varphi$ is an endomorphism of
$A$ if

$f(\varphi(x_{1}), \ldots, \varphi(x_{n}))$ $=$ $\varphi(f(x_{1}, \ldots, x_{n}))$

hol\’as for any $f\in F$ and all $(x_{1}, \ldots, x_{n})\in A^{n}$ .

An endomorphism is naturally connected to commutation. Remember that for $f\in \mathcal{O}_{k}^{(1)}$ and
$F\subseteq O_{k}$ , the fact that $f$ commutes with $F$ , i.e., $f\perp F$ , means that

$g(f(x_{1}), \ldots, f(x_{n}))$ $=$ $f(g(x_{1}, \ldots,x_{n}))$

for any $g\in F$ .

Lemma 5.1 For a map $\varphi$ : $Aarrow A$ , the following are equivalent.

(1) $\varphi$ is an endomorphism of $\mathcal{A}$ .

(2) $\varphi\perp F$ , that is, $\varphi\perp f$ for all $f\in F$ .

(3) $\varphi\in F^{*}$

Definition 5.2 For a submonoid $M\subseteq \mathcal{O}_{k}^{(1)},$ $M$ is an endoprimal monoid if there exists $F\subseteq O_{k}$

which satisfies $M=F^{*}\cap \mathcal{O}_{k}^{(1)}$ .

In other words, $M$ is an endoprimal monoid if $M$ is the unary part of a centralizer of some set
$F\subseteq \mathcal{O}_{k}$ .

Lemma 5.2 For a submonoid $M\subseteq \mathcal{O}_{k}^{(1)},$ $M$ is an $endop_{7}\dot{n}mal$ monoid if and only if $M=$
$M^{**}\cap \mathcal{O}_{k}^{(1)}$ .

Proof
$(\Leftarrow)$ : Trivial.
$(\Rightarrow)\cdot$ : Suppose $M=F^{*}\cap \mathcal{O}_{k}^{(1)}$ for some $F\subseteq \mathcal{O}_{k}$ . Then, since $M\subseteq F^{*}$ , we have $M^{**}\subseteq F^{***}=F^{*}$ .
Taking the unary part, $M^{**}\cap \mathcal{O}_{k}^{(1)}\subseteq F^{*}\cap \mathcal{O}_{k}^{(1)}=M$ . On the other hand, from $M\subseteq M^{**}$ it

follows that $M=M\cap \mathcal{O}_{k}^{(1)}\subseteq M^{**}\cap \mathcal{O}_{k}^{(1)}$ . Therefore, $M=M^{**}\cap \mathcal{O}_{k}^{(1)}$ as desired. $\square$

For a submonoid $M\subseteq \mathcal{O}_{k}^{(1)}$ we sometimes write $M^{+}$ to mean $M^{+}=M^{**}\cap \mathcal{O}_{k}^{(1)}$ .

Lemma 5.3 For a submonoid $M\subseteq \mathcal{O}_{k}^{(1)},$ $M^{+}$ satisfies the following properties.

(1) $M^{+}$ is an endoprimal monoid.

(2) $M\subseteq M^{+}$

(3) $M^{+}$ is the largest submonoid consisting of ”endomorphisms“ of the algebm $\langle E_{k;}M\rangle$

Up to now, not many examples of endoprimal monoids are known. In the sequel, we shall mostly
concentrate on the ternary case, that is, the case where the base set is $E_{3}=\{0,1,2\}$ .
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Table 1: Unary Functions in $0_{3}^{(1)}$

5.1 Unary Functions and Submonoids on $\{0,1,2\}$

As is well-known, the number of unary functions over $E_{3}$ is 27. They are shown in Table 1. Much
less known is the number of submonoids of unary functions over $E_{3}$ . Due to D. Lau ([La 84],
[La 06] $)$ , the number of submonoids of unary functions over $E_{3}$ is 700.

Let us search for an endoprimal monoid containing both $j_{0}$ and $j_{1}$ . Repeated applications of
”Kuznetsov Criterion” imply the following. (We omit the details here.)

Lemma 5.4 If $M(\subseteq \mathcal{O}_{3}^{(1)})$ is an endoprimal monoid and $\{jo, j_{1}\}\in M$ then

$P_{2}\subseteq M(=M^{+})$

where $P_{2}=\{c_{0}, c_{1}, c_{2}\}\cup\{j_{0}, j_{1}, j_{4}, j_{5}\}\cup\{u_{0}, u_{1}, u_{4}, u_{5}\}\cup\{v_{0}, v_{1}, v_{4}, v_{5}\}\cup\{s_{1}, s_{3}\}$ .

Actually, $P_{2}$ is the submonoid #1227 in Lau’s list. At this point, we do not know if $P_{2}$ is
endoprimal or not. The following “witness lemma” will tell us that, in fact, $P_{2}$ is endoprimal.

5.2 Witness Lemma
The following lemma wa given in Machida and Rosenberg [MR 10].

Lemma 5.5 (Witness Lemma)
For a submonoid $M\subseteq O^{(1)}$ of unary functions and a subset $S\subseteq \mathcal{O}$ , suppose the following

conditions (i) and (ii) hold:

(i) For any $f\in M$ and any $u\in S$ it holds that $f\perp u$ .

(ii) For any $g\in O^{(1)}\backslash M$ there exists $w\in S$ such that $g1w$ .

Then $M$ is endoprimal.

Definition 5.3 $S$ in the lemma will be called $a$ witness for an endoprimal monoid $M$ .

The proof is straightforward, but, for the reader’s sake, we give it below.

Proof of Lemma Condition (i) implies $S\subseteq M^{*}$ , from which it follows that $M^{**}\subseteq S^{*}$ .
Condition (ii) asserts that, for all $g\in(\mathcal{O}^{(1)}\backslash M)$ , it holds that $g\not\in S^{*}$ . Then it follows that, for all
$g\in(O^{(1)}\backslash M),$ $g\not\in M^{**}$ , because we have $M^{**}\subseteq S^{*}$ as stated above. Hence $(O^{(1)}\backslash M)\cap M^{**}=\emptyset$.

On the other hand, $M\subseteq M^{**}$ , in general. Therefore $M=M^{**}\cap O^{(1)}$ , i.e., $M=M^{+}$ . $\square$
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Corollary 5.6 (Special Case where $S$ is a singleton)
For a submonoid $M\subseteq O^{(1)}$ of unary functions and a function $f\in O$ , if $f\perp M$ and $fA(O^{(1)}\backslash M)$

then $M$ is endoprimal.

5.3 Some Endoprimal Monoids on $\{0,1,2\}$

We show two applications of the witness lemma.

5.3.1 Application of Witness Lemma (1)

Let $m\in O_{3’}^{(3)}$ be a witness, which is defined as follows:

$m(x, y, z)=\{\begin{array}{ll}x if x=y or x=zy if y=z2 if \{x, y, z\}=\{0,1,2\}\end{array}$

In other words, $m$ is the majority and totally symmetric function satisfying the following.

(i) $m(a, a, b)=a$ for all $a,$ $b\in E_{3}$

(ii) $m(0,1,2)=2$

Then it is easily verified that (1) the function $m$ commutes with all functions in $P_{2}$ , i.e., $m\in P_{2}^{*}$

and (2) $m$ does not commute with any function in $\mathcal{O}_{3}^{(1)}\backslash P_{2}$ . Therefore, the witness lemma implies:

Proposition 5.7 $P_{2}$ is an endoprimal monoid.

Moreover, we note that $P_{2}$ is shown to be a maximal endoprimal monoid.

5.3.2 Application of Witness Lemma (2)

For each subset $S$ of unary functions, i.e., $S\subseteq \mathcal{O}_{3}^{(1)}$ , one can construct an endoprimal monoid
which has $S$ as its witness.

Example 1. For $c_{0}\in \mathcal{O}_{3}^{(1)}$ take $S=\{c_{0}\}$ as a (singleton) witness. It is easy to check that the set
of unary functions which commute with $c_{0}$ is $\{c_{0}, j_{1}, j_{2}, j_{5}, u_{1}, u_{2}, u_{5}, s_{1}, s_{2}\}$ . Hence, by the
witness lemma, we see that

$M(c_{0})=\{c_{0}, j_{1}, j_{2}, j_{5}, u_{1}, u_{2}, u_{5}, s_{1}, s_{2}\}$

is an endoprimal monoid.

Example 2. Let $S=\{c_{0},j_{1}\}$ be a doubleton consisting of $c_{0}$ and $j_{1}\in O_{3}^{(1)}$ . It is readily verified
that the set of unary functions which commute with $j_{1}$ is $\{c_{0}, c_{1}, j_{1}, j_{4}, u_{2}, s_{1}\}$ . Together with
the result given in Example 1, we see that the set of unary functions which commute with both $c_{0}$

and $j_{1}$ is $\{c_{0}, j_{1}, u_{2}, s_{1}\}$ . Hence, by the witness lemma, it follows that

$M(c_{0}, j_{1})=\{c_{0}, j_{1}, u_{2}, s_{1}\}$

is an endoprimal monoid.

We have the complete list of the endoprimal monoids having subsets $(\subseteq \mathcal{O}_{3}^{(1)})$ of unary functions
as their witnesses. Below we give the summary of this list. For more precise description the reader
is referred to [MR 10].
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Proposition 5.8 Over $E_{3}$ , there are 51 endoprimal monoids each having a subset of $\mathcal{O}_{3}^{(1)}$ as its
witness.

(1) (Singleton witnesses) Out of 27 unary functions $f$ in $0_{3}^{(1)}$ , there are 26 different endoprimal
monoids $M(f)$ each having singleton witness $\{f\}$ . An exception is for $s_{4}$ and $s_{5}$ , where we
have $M(s_{4})=M(s_{5})$ .

(2) (Doubleton witnesses) There are 25 endopr,$mal$ monoids which have doubleton witnesses
(and have no singleton witnesses).

(3) (Larger witnesses) There is no endoprimal monoid over $E_{3}$ which requires a witness, con-
sisting of unary functions, whose size is greater than 2.
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