The Parents and the Children of Non－Weierstrass semigroups ${ }^{1}$

神奈川工科大学•基礎•教養教育センター 米田 二良（Jiryo Komeda） Center for Basic Education and Integrated Learning
Kanagawa Institute of Technology

Abstract

For a numerical semigroup H of genus g Bras－Amorós［1］defined a numerical semigroup $p(H)$ of genus $g-1$ which is called the parent of H ．She also called H a child of $p(H)$ ．We consider three kinds of non－Weiersrass semigroups． Children of some non－Weierstrass semigroups in each case are investigated．

1 Parents and children of numerical semigroups

Let \mathbb{N}_{0} be the additive monoid of non－negative integers．A submonoid H of \mathbb{N}_{0} is called a numerical semigroup if the complement $\mathbb{N}_{0} \backslash H$ is finite．The cardinality of $\mathbb{N}_{0} \backslash H$ is called the genus of H ，denoted by $g(H)$ ．Let $f(H)$ be the greatest number of $\mathbb{N}_{0} \backslash H$ ，which is called the Frobenius number of H ．

Example 1．1 Let $H=\langle 3,5,7\rangle$ ．Then we have $\mathbb{N}_{0} \backslash H=\{1,2,4\}$ ，which implies that $g(\langle 3,5,7\rangle)=3$ ．Moreover，we get $f(\langle 3,5,7\rangle)=4$ ．

Let $p(H)=H \cup\{f(H)\}$ ，which is called the parent of H ．Then $p(H)$ is a numerical semigroup of genus $g(H)-1$ ．Moreover，H is called a child of $p(H)$ ．These definitions are due to Bras－Amorós［1］．

Example 1．2 We have $p(\langle 3,5,7\rangle)=\langle 3,4,5\rangle$ ．Hence，the semigroup $\langle 3,4,5\rangle$ is the parent of $\langle 3,5,7\rangle$ ．Conversely，the semigroup $\langle 3,5,7\rangle$ is a child of $\langle 3,4,5\rangle$ ．

Let $M(H)$ be a unique minimal set of generators for H ．An element $\mu \in M(H)$ is called an effective minimal generator if $\mu>f(H)$ ．When

[^0]$\left\{\mu_{1}<\ldots<\mu_{r+e}\right\}=M(H)$ where μ_{i} 's $(i \geqq r+1)$ are effective, we denote H by $\left\langle\mu_{1}, \ldots, \mu_{r} \mid \mu_{r+1}, \ldots, \mu_{r+e}\right\rangle$.

Remark 1.1 For an effective minimal generator μ we set $H_{\mu}=H \backslash\{\mu\}$. Then H_{μ} becomes a numerical semigroup of genus $g(H)+1$. Moreover, the set $p^{-1}(H)$ of children of H is $\left\{H_{\mu} \mid \mu\right.$ is an effective minimal generator of $\left.H\right\}$.

Example 1.3 i) Let $H=\langle\mid 2,3\rangle$. Then $H_{3}=\langle 2 \mid 5\rangle$ and $H_{2}=\langle\mid 3,4,5\rangle$ are the children of H.
ii) Let $H=\langle\mid 3,4,5\rangle$. Then the children of H are $H_{5}=\langle 3,4 \mid\rangle, H_{4}=\langle 3 \mid 5,7\rangle$ and $H_{3}=\langle\mid 4,5,6,7\rangle$.

Example $1.4\langle 3,4 \mid\rangle$ and $\langle 3,5 \mid\rangle$ have no child.

2 Non-Weierstrass semigroups

In this paper a curve means a projective non-singular curve over an algebraically closed field k of characteristic 0 . Let $k(C)$ be the field of rational functions on C. A numerical semigroup H is said to be Weierstrass if there is a pointed curve (C, P) such that

$$
H=H(P)=\left\{n \in \mathbb{N}_{0} \mid \exists f \in k(C) \text { with }(f)_{\infty}=n P\right\} .
$$

Remark 2.1 (Buchweitz [3]) For $m \geqq 2$, we define

$$
L_{m}(H):=\left\{a_{1}+\cdots+a_{m} \mid a_{i} \in \mathbb{N}_{0} \backslash H\right\} .
$$

If there exists m such that $\sharp L_{m}(H) \geqq(2 m-1)(g(H)-1)+1$, then H is non-Weierstrass.

Example 2.1 (Buchweitz [3]) Let $B_{16}=\langle 13 \longrightarrow 18,20,22,23\rangle$ where for two integers $a<b$ the symbol $a \longrightarrow b$ means the consecutive numbers $a, a+1, \ldots, b-1, b$. Then $\mathbb{N}_{0} \backslash B_{16}=\{1 \longrightarrow 12,19,21,24,25\}$, which implies that $g\left(B_{16}\right)=16$ and $\sharp L_{2}\left(B_{16}\right)=46=(2 * 2-1)(16-1)+1$. Hence, B_{16} is non-Weierstrass. We note that $B_{16}=\langle 13 \longrightarrow 18,20,22,23 \mid\rangle$ has no child.

A numerical semigroup H is said to be Buchweitz if there exists $m \geqq 2$ such that $\sharp L_{m}(H) \geqq(2 m-1)(g(H)-1)+1$.

Problem 2.1 Are there non-Weierstrass semigroups which are not Buchweitz?

The above problem was solved by Stöhr and Torres [5]. We will describe their method. For a numerical semigroup H we set

$$
d_{2}(H)=\left\{\left.\frac{h}{2} \right\rvert\, h \in H \text { is even }\right\},
$$

which is also a numerical semigroup.
Remark 2.2 (Stöhr-Torres) Let H be a numerical semigroup such that $d_{2}(H)$ is non-Weierstrass. If $g(H) \geqq 6 g\left(d_{2}(H)\right)+4$, then H is non-Weierstrass.

Example 2.2 (Stöhr-Torres) Let B_{16} be as in Example 2.1. Assume that $g \geqq 100=6 * 16+4$. We set

$$
S T_{g}=2 B_{16} \cup\left\{2 g-1-2 t \mid t \in \mathbb{Z} \backslash B_{16}\right\} .
$$

Then we have $d_{2}\left(S T_{g}\right)=B_{16}$ and $g\left(S T_{g}\right)=g$. By Remark 2.2 we see that $S T_{g}$ is a non-Weierstrass semigroup, which is non-Buchweitz. Moreover, we obtain

$$
S T_{100}=2\langle 13 \longrightarrow 18,20,22,23\rangle+\langle 149,151,157,161 \mid\rangle
$$

with $f\left(S T_{100}\right)=199$. Hence, $S T_{100}$ has no child.
A non-Buchweitz numerical semigroup H is said to be Stöhr-Torres if there exists a finite sequence $\left\{H_{i}\right\}_{i=0,1, \ldots, n}$ with Buchweitz $H_{0}, d_{2}\left(H_{i}\right)=H_{i-1}$ and $H_{n}=H$ satisfying $g\left(H_{i}\right) \geqq 6 g\left(H_{i-1}\right)+4$ for $i=1, \ldots, n$. Here, we pose the following problem:

Problem 2.2 Are there non-Weierstrass semigroups which are neither Buchweitz nor Stöhr-Torres?

The above problem was also solved in [4]. In fact, we have the following:
Example 2.3 ([4]) $H=\langle 8,12,18,22,51,55\rangle$ is a non-Weierstrass semigroup which is neither Buchweitz nor Stöhr-Torres. In fact, the numerical semiroup $d_{2}(H)=\langle 4,6,9,11\rangle$ of genus 5 is Weierstrass. Moreover, we get $g(H)=34$ and $f(H)=69$. Hence, we obtain $H=\langle 8,12,18,22,51,55 \mid\rangle$, which implies that H has no child.

From the results in this section we have the following problem which will be considered in the next section:

Problem 2.3 Are there non-Weierstrass semigroups which have children?

3 Infinite chains

We can find a Buchweitz semigroup which has a child.
Example 3.1 We set

$$
H=\langle 112 \longrightarrow 119,121 \longrightarrow 143,145 \longrightarrow 215,217,218,219 \mid 223\rangle .
$$

The semigroup H is Buchweitz. It has a chilld $H^{\prime}=H \backslash\{223\}$ which is also Buchweitz. In this case, $f(H)=222$ and $g(H)=117$.

We also see that there is a Stöhr-Torres semigroup with a child.
Example 3.2 We set

$$
H=2\langle 13 \longrightarrow 18,20,22,23\rangle+\langle 151,153,169,163 \mid 201\rangle
$$

The semigroup H with $f(H)=175$ is Stöhr-Torres. It has a chilld $H^{\prime}=$ $H \backslash\{201\}=S T_{101}$ which is also Stöhr-Torres. In this case, we have $g(H)=$ 100 and $d_{2}(H)=\langle 13 \longrightarrow 18,20,22,23\rangle=B_{16}$.

We are interested in numerical semigroups which leave offsprings through all eternity. So, we define the following: A numerical semigroup H has an infinite chain if there exists an infinite sequence $\left\{H^{(i)}\right\}_{1 \geq 0}$ such that $H^{(0)}=H$ and $p\left(H^{(i)}\right)=H^{(i-1)}$ for all $i \geqq 1$. This definition is due to Bras-Amorós and Bulygin [2].

Example 3.3 i) Let $g \geqq 1$. We set $H=\langle 2,2 g+1\rangle$. Then H has an infinite chain. In fact, we get

$$
p(\langle 2,2(g+i)+1\rangle)=\langle 2,2(g+i-1)+1\rangle
$$

for all $i \geqq 1$. Namely we have an infinite sequence $\left\{H^{(i)}=\langle 2,2(g+i)+1\rangle\right\}_{i \geqq 0}$ with $H^{(0)}=H$.
ii) Let $g \geqq 1$. We set $H=\langle g+1 \longrightarrow 2 g+1\rangle$, which is ordinary. Then H has an infinite chain, because we obtain

$$
p(\langle g+i+1 \longrightarrow 2(g+i)+1\rangle)=\langle g+(i-1)+1 \longrightarrow 2(g+i-1)+1\rangle
$$

for all $i \geqq 1$. That is to say, we have an infinite sequence

$$
\left\{H^{(i)}=\langle g+i+1 \longrightarrow 2(g+i)+1\rangle\right\}_{i \geqq 0}
$$

with $H^{(0)}=H$.
By the above examples the most general or the most special numerical semigroup has an infinite chain. Morover, we want to consider the following. problem:

Problem 3.1 Are there non-Weierstrass semigroups which have infinite chains?

We can find Stöhr-Torres semigroups which have infinite chains.
Theorem 3.1 Let $n \geqq 10 g\left(B_{16}\right)+9=169$ be an odd number. We set

$$
H=2 B_{16}+\langle n, n+2, \ldots, n+2 \cdot 15\rangle .
$$

Then H is a non-Weierstrass semigroup which has an infinite chain. It is Stöhr-Torres.

Proof. We have

$$
\begin{gathered}
p\left(2 B_{16}+\langle n+2 i, n+2 i+2, \ldots, n+2 i+2 \cdot 15\rangle\right) \\
\left.=2 B_{16}+\langle n+2(i-1), n+2(i-1)+2, \ldots, n+2(i-1)+2 \cdot 15\rangle\right) .
\end{gathered}
$$

Namely we have an infinite sequence

$$
\left\{H^{(i)}=2 B_{16}+\langle n+2 i, n+2 i+2, \ldots, n+2 i+2 \cdot 15\rangle\right\}_{i \geqq 0}
$$

with Stöhr-Torres $H^{(i)}$'s.
Finally, the unsolved problems are presented using the following table:
Problem 3.2 i) Is there a non-Weierstrass semigroup with a child which is neither Buchweitz nor Stöhr-Torres?
ii) Is there a Buchweitz semigroup with an infinite chain?
iii) Is there a non-Weierstrass semigroup with an infinite chain which is neither Buchweitz nor Stöhr-Torres?
Summarizing the results in this paper and the above open problems we get the table.

Properties	Weierstrass	New Type	Stöhr-Torres	Buchweitz
Children	\exists	$?$	\exists	\exists
Infinite chains	\exists	$?$	\exists	$?$

Here, "New Type" means a non-Weierstrass semigroup which is neither Buchweitz nor Stöhr-Torres. We note that Example 2.3 gives a "New Type" semigroup.

References

[1] M. Bras-Amorós, Fibonacci-like behavior of the number of numerical semigroups of a given genus, Semigroup Forum 76 (2008) 379-384.
[2] M. Bras-Amorós and S. Bulygin, Towards a better understanding of the semigroup tree, Semigroup Forum 79 (2009) 561-574.
[3] R.O. Buchweitz, On Zariski's criterion for equisingularity and nonsmoothable monomial curves, preprint 113, University of Hannover, 1980.
[4] J. Komeda, Double coverings of curves and non-Weierstrass semigroups, Submitted.
[5] F. Torres, Weierstrass points and double coverings of curves with application: Symmetric numerical semigroups which cannot be realized as Weierstrass semigroups, Manuscripta Math. 83 (1994) 39-58.

[^0]: ${ }^{1}$ This paper is an extended abstract and the details will appear elsewhere．

