goooboooobgon
0 17120 20100 1-9]-

Some Combinatorial Properties of Extractable Codes *

B ¥ R1T (Yoshiyuki Kunimochi)
R ETRIRYE - A BERELR

Faculty of Comprehensive Informatics,
Shizuoka Institute of Science and Technology

Abstract

This paper deals with extractablity of codes. A submonoid N of the free monoid A* over a
finite alphabet is called extractable if 2,22y € N implies zy € N. Since an extractable submonoid
is biunitary, its base forms a bifix code. First, we consider the necessary and sufficient conditions
whether a given infix code C is extractable or not. And we introduce the bidecomposition graph of
a code to easily check the extractability of languages. Secondly, we investigage the extractability for
the families of other related bifix codes. That is, intercodes, comma-free codes, Dyck codes, strong
codes and solid codes are extractable codes. We newly define the bifix codes, called e(m)-codes and
g(m)-codes, and refer to the extractability of them.

1 Preliminaries

Let A be a finite nonempty set of letters, called an alphabet and let A* be the free monoid generated
by A under the operation of catenation with the identity called the empty word, denoted by 1. We call
an element of A* a word over A. The free semigroup A* \ {1} generated by A is denoted by A*. The
catenation of two words = and y is denoted by zy. The length |w| of a word w = a1az...a, witha; € A
is the number n of occurrences of letters in w. Clearly, |1| = 0.

A word u € A* is a prefix(or suffix) of a word w € A* if there is a word z € A* such that w = uz(or
w = zu). A word u € A* is a factor of a word w € A* if there exist words z,y € A* such that w = zuy.
Then a prefix (a suffix or a factor) u of w is called proper if w # u.

A subset of A* is called a language over A. A language L C A* is called reflective if uv € L implies
vu € L for any u,v € A*. A nonempty language which is the set of free generators of a submonoid of A*
is called a code over A. A nonempty language C is called a prefix (or suffix) code if u,uv € C (u,vu € C)
implies v = 1. C is called a bifix code if C is both a prefix code and a suffix code. A nonempty language
C is called an infix code if u,zuy € C implies z = y = 1. The language A" = {w € A*||w| = n} with
n > 1 is called a full uniform code over A. A nonempty subset of A™ is called a uniform code over A.

Let M be a monoid and N be its submonoid. N is right unitary (in M) if u,uv € N implies v € N.
Left unitary is defined in a symmetric way. The submonoid N of M is biunitary if it is both left and right
unitary. N is called extractable if z, zzy € N implies zy € N for any z,y,z € M. If N is extractable, then
N is biunitary. Indeed, uv = luv,u € N implies v = 1v € N and uwv = uvl,v € N implies u = lu € N.

It is known that a submonoid NV of A* is right unitary (resp. left unitary, biunitary) if and only if the
minimal set Ng = (N \ 1)\ (V\ 1)? of generators of N, namely the base of N, is a prefix code (resp. a
suffix code, a bifix code) ([1, p.46],(3, p.108]). If a submonoid N of A* is extractable, then the base of N
is a bifix code.

*This is an abstract and the paper will appear elsewhere.

2 Extractablity of Infix Codes

Our aim in this section is to determine whether for a given infix code C it is an extractable code or not
in terms of its syntactic monoid. We introduce the bidecomposition graph of a language to easily check
the extractability of the language.

2.1 Checking Extractability by a Syntactic Monoid

We begin with a useful and fundamental lemma concerned with the extractability of infix codes.

Lemma 2.1 Let C C A* be an infix code. C* is extractable if and only if z € C and z2zy € C? imply
zy € C for any z,y,z € At.

(Proof) (only if part) Since C* is extractable and zy # 1, we have zy € C*. z € C and x2zy € C?
yield that zu € C and vy € C with z = uv for some u, v € A* because C is an infix code. zy € C*\ C
means that some factor of either z or y is an element of C. This is a contradiction. Therefore zy € C
must hold.

(if part) Since C is an infix code and thus C* is biunitary, we may show that z,zzy € C* implies
zy € C* for any z, y € AT. Moreover as C is an infix code, it suffices to show by induction on k the
following implication:

Z=2z123...2k, TZY = W1W3 ... Wk implies 2y € C (1)

where 2, e C(1<i<k),w; € C(1<i<k+1),z#1isa proper prefix of w; and y # 1 is a proper
suffix of wk41.

(Base step) In case of k = 1 it is trivial by the hypothesis of this proposition.

(Induction step) We suppose that the implication (1) holds in case of k = n. Now let k = n+ 1. Since
Wn41Wnt2 = T'2p11y € C%, 2’ # 1 and 2,41 € C, 'y € C by the hypothesis of this proposition. By
setting wy_ ; = 2’y € C, the condition z212; ... 2,y = wiws ... wawj,,; holds. By induction hypothesis,
we have xy € C. Thus we have shown the implication (1). O

Since a uniform code is an infix code, the next corollary holds immediately.

Corollary 2.1 Let U be a uniform code. U* is extractable if and only if z € U and zzy € U? imply
zy € U for any z,y,z € AY . O

We introduce terms of the syntactic monoid of a language. Let M be a monoid, L C M and w € M.
Let P, C M x M be the relation on M consisiting of all the pairs (u,v) € M x M such that, for all
z,y € M, zuy € L if and only if zvy € L. The relation Py, is a congruence, called the principal congruence
of L. Instead of (u,v) € P, we write u = v (Pr). The set L is said to be disjunctive in M if Pf, is the
equality relation. The set Wi, = {u € M| MuM N L = (0} is called the residue of L. If W # 0 then W
is an ideal of M. If L is a singleton set, L = {c}, we often write c instead of {c}; thus ¢ being disjunctive
means {c} is disjunctive, P, = P, is the equality relation.

Now assume M is a monoid with identity e and zero 0 and |M| > 2, hence e # 0. The intersection of
all nonzero ideals of M, if it differs from {0}, is called the core of M, denoted by core(M). An element
¢ € M is called an annihilator if cx = zc = 0 for all z € M \ {e}. Annihil(M) denotes the set of all
annihilators of M.

When M = A* for an alphabet A then Py is also referred to as the syntactic congruence of L and the
factor monoid Syn(L) = A*/PL as the syntactic monoid of L. The morphism oy, of X* onto Syn(L) is
called the syntactic morphism of L.

Let C be an infix code. Concerning the three special element introduced below, Theorem 2.1 holds [6].

The set {1} is a Pg-class; therefore, the identity element e of Syn(C) is {1}. Since Wg # 0 is a
Pc-class, Syn(C) has a zero element 0 = W /Pg. For any u € C, zuy € C implies = y = 1. Therefore
C is also a Pc-class denoted by ¢, that is, ¢ = C/P¢ € Syn(C).

Theorem 2.1{6] The following conditions on a monoid M with identity e are equivalent:
(i) M is isomorphic to the syntactic monoid of an infix code L.
(i) (o) M\ {e} is subsemigruop of M;
(8) M has a zero;
(7) M has a disjunctive element c such that ¢ ¢ {e 0} and c=zcy impliesz =y =e.
(@) ; 0
(6) M has a disjunctive zero;
(€) core(M) = {c,0} with ¢ € Annihil(M).
(@), (d);
(¢) there exists 0 # ¢ € core(M) N Annihil(M).
Proposition 2.1 Let C be an infix code and M = Syn(L) be its syntactic monoid Let ¢ be a Pg-class
of C, that is 0 # ¢ € core(M) N Annihil(M). Then,

(1) C is an extractable code if and only if

c=fofi = fifa=fafs = c= fofs forany fo, f1, f2, f3€ M.

(2) C is a reflective and extractable code if and only if

c=fofi = fife = fo=fo forany fo, f1, f2 € M.

(Proof) (1) (onmly if part) There exist z,u,v,y € A% such that zu,uv,vy € C and oc(x)
fo,oc() = fi,00(v) = fa,0c(y) = f3. By Lemma 2.1, we have zy € C. Therefore, fofs = ac(y) =
(if part) Assume that zu,uv,vy € C for some z,u,v,y € A*. Since o¢(z)oc(u) = oc(u)oc(v)
oc(v)oc(y) = ¢, we have ac(.zry) =oc(z)oc(y) =c, that is zy € C.

(2) (only if part) We suppose that ¢ = fofi = fif2 but fo # f2. Then there exist z,y € A' such
that oc(u) = fo,0¢(v) = f2 and zuy € C and zvy € C, or zuy € C and zvy ¢ C. By symmetry, we
may only consider the case zuy € C and zvy € C. Since C is reflective, uyr € C and vyx € C. Setting
fz = oc(yz), we have fofs # c and fof3 = c. Therefore we have ¢ = fofi = fifo = f2f3 and ¢ # fofs.
This contraticts to (1).

(if part) First we show that ¢ = ab implies ¢ = ba for any a,b € M. There exist u,v € A* such that
oc(u) = a,0¢(v) = b. Then ¢ = ab means uv € C and ¢ = ba means vu € C. Since C is reflective, we
have ¢ = ba.

Assume that ¢ = fof1 = fif2 = fofs. The argument above yields ¢ = fofi; = f2f3. By hypothesis, we
have fi = f3 and thus c= fof1 = fofz. O

e

2.2 Bidecomposition Graph of a Language

We introduce a graph in order to determine whether a given infix code is an extractable code or not. The
bidecomposition graph (2D graph, for abbreviation) Gp = (V, E) of a language L is defined as follows:

(1) V = Syn(L); the syntactic monoid of L.

(2) E={(a,b) e VxV]abe or(L)}, where oy, is the syntactic morphism of L.

Especially if L is an infix code, then ab € o1 (L) is equivalent to ab = ¢ = o (L).
(vo,v1,-..,vn) is called a path of length n in a graph G = (V, E) if (v;_1,v;) € E for all i (1 <i < n).
Proposition 2.1 can be stated in terms of graph.

Corollary 2.1 Let C be an infix code and G¢ = (V, E) be the 2D graph of C. Let c be a Pc-class
of C. Then,
(1) C is an extractable code if and only if (vg,v3) € E for every path (vg, vy, vs,v3) in G¢ of length 3.
(2) C is a reflective extractable code if and only if (vg, v1), (v1,v2) € E implies vg = vp. O

Example 2.1 Let C = ab*a be aregular infix code over A and M = Syn(C) = {0, ¢, [a], [ad], ¢, [8], [ba]},
where 0 = W¢ = {u € AT|C N A*uA* = 0}, e = [1] and ¢ = [aba] = o (aba). Its multipliplication table
is shown in Table 1. We construct the 2D graph G¢ = (V, E) shown in Figure 1 and observe the ex-
tractability. All the paths of length 3 in G¢ are only (e, ¢, e,¢) and (¢, e, ¢, €), while both (e, c) and (c, €)
are in E. Therefore ab*a is an extractable code. [

Table 1: The multipliplication table of M, except for 0, e.

o] [ad] ¢ [b] [ba]

e | © 0 0 J[ab] ¢

[ad] | ¢ 0 0 f[ab] ¢

c 0 0 0 ©0 0
(b] |[ba] O 0 o] [ba]

ba)| O 0 0 0 0
[a] [b]

..// \
/ .
[ab] » [ba] e=[1] —’l c=[aba]

Figure 1: The 2D graph G¢ of the code C.

Before we give some examples for reflective infix code which is regular, we pay attention to some
remarks and properties [4]. Note that even a reflective regular prefix (or suffix) code is finite. Indeed,
suppose that C' is infinite. There exists some word w € C such that w = uzv, # 1 and uz™ € C
for any positive integer n by the pumping lemma of regular languages. Since C is reflective, we have
vuz € C and vuz™ € C. This is contradicts to that C is an prefix code. Thus C is finite. Similarly for a

suffix code.
n

——
A word z € At is primitive if z = f™ for some f € A* implies n = 1, where f* = ff---f. Two
words z,y are called conjugate, denoted by z = y if there exist words u, v such that z = uv,y = vu. We

frequently say that y is a conjugate of z. = is an equivalence relation, we denote by cl/(w) the conjugate
class of w with respect to the relation =.

For a nonempty word w € A™, its conjugate class cl(w) = {vu|uv = w} is a reflective uniform, thus
regular infix, code. The following result is given in [4] concerned with the extractabilty of conjugate
classes.

Proposition 2.2[4] Let w = (uv)™u with u € A*, v € At and n > 2. Then,
cl(w) is an extractable code <— u=1. O

Example 2.2 (1) Let w; = ababa and cl(w;) be its conjugate class. Then we can construct the 2D
graph Gyy,) = (Syn(cl(w1)), E) of cl(w1) shown in Figure 2. ([ab], [aba]), ([aba], [ba]) € E but [ad] # [ba]
implies that cl(w1) is not an extractable code.

0

e <+— c=[ababa] [ab] «+— [aba]
[a] «——> [baba] | [aab]
[b] «+—— [abaal] [ba] %——» [baa]

Figure 2: The 2D graph G (y,) of cl(w1).

(2) Let wy = abab and cl(ws) be its conjugate class. The 2D graph Gg(w,) = (Syn(cl(wz)), E) of
cl(ws) is shown in Figure 3. Since every edge (z,y) € E has the reverse edge (y,z) € E, cl(wz) is an
extractable code. []

0
e <+— c=[abab] [b] «—» [aba]
[a] «— [bab] [ab] «—» [ba]

Figure 3: The 2D graph G(y,) of cl(wz).

3 Extractability of Other Related Codes

We investigage the extractability for the families of other related bifix codes. First we newly introduce
some kinds of bifix codes, that is, e(m)-codes and €(m)-codes and consider the extractability of these
codes. Secondly, we investigate the extractability of intercodes, comma-free codes, Dyck codes, etc..

3.1 Some special classes of Bifix Codes

Special kinds of submonoids are introduced as follows.

Definition 3.1 Let m be a positive integer. The conditions e(m) and &(m) with respect to a sub-
monoid C* of A* are defined as follows:

e(m): ugui,UiUz,. .., Um-1Um € C* = uou, € C*,
e(m): wou, ujU2,. .., Um—1Um € C* = unug € C*.

O

Proposition 3.1 Let m be a positive integer with m > 2. If C* satisfies the condition eihter e(m)
or €(m), then C* is biunitary.

m—2times

e e
(Proof) We only show the case of e(m). Let u,uv € C. Since 1-1,...,1-1,1u,uv € C* and C is an
e(m)-bifix code, we have v =1-v € C*. Similary u,vu € C* implies v € C*. Therefore, C* is biunitary.

ad

By this proposition, the base of a submonoid satisfying the condition e(m) (or &m)) is a bifix code
and we call it an e(m)-bifix code (or an &(m)-bifix code).

Proposition 3.2 Let m,n > 2 be integers. If m — 1 is a divisor of n — 1, then an e(m)-bifix code is
an e(n)-bifix code.

(Proof) Assume that C is an e(m)-bifix code and m — 1 is a divisor of n — 1. First of all, we show
that C is an e(m + k(m — 1))-bifix code by induction on ¥k =0,1,2,....
It is trivial in case of k = 0. Suppose that C is an e(m + (k — 1)(m — 1))-bifix code for k > 1. Then,

*
UQULy - - -y Um+k(m—1)—1Um+k(m—1) € c*.

By induction hypothesis, we have

UQUm+(k—1)(m~1)1+ -+ » Um+(k—1) (m—1)+m—2Um+(k—1)(m-1)+m—1 € c.

Since C is an e(m)-bifix code, we have uoum4k(m-1) € C*. Therefore C is an e(m + k(m — 1))-bifix code
for any nonnegative integer k.

There exists a positive integer ¢ such that n—1 =¢(m —1). Asn=m+ (c—1)(m — 1), the argument
above leads the conclusion. [J

Corollary 3.1 An e(2)-bifix code is an e(m)-bifix code for any integer m > 2. [J

Example 3.1 Let m > 2, A = {ag,a1,-..,am}, C = {@oa1,01a2,...,8m-18m,e0am}. Then C is an
e(m)-bifix code but is not an e(n)-bifix code for any n with 2 <n < m.
Indeed, suppose that uguy,uius, ..., Um_1uUm € C*. If Jug| is even, then u; € C*(0 < i < m) because

C* is biunitary. Therefore ugu,, € C*.

So we consider the case that |ug| is odd. Then |u;[(0 < i < m) is odd because |u;ui+1| = 2n;(0 < i < m)
is even and nonzero. We have u;u;41 = 05,65, 41---@j,42n,-1 (0 < i<m)and 0 < jo < j1 <+ <Jm <
m. Therefore u; = a; must hold for any ¢ (0 < ¢ < m). Thus wyum = apam € C*.

Careful observation leads that for any n with 2 < n < m, aga1, a1a2,...,an_1a, € C* but a,_1a, € C*.
Thus C is not an e(n)-bifix code. [J

The inclusion order among the classes of e(m)-bifix codes is shown in Figure 4, which is similar to the
division order in the set of all natural numbers.

e(9)
I

e(5) e(7) 9(10)
-

e({(3) e(d) e(6) e(B)
et o ennal

[
e(2)

Figure 4: The Hierarchy of the classes of e(m)-bifix codes.

Proposition 3.3 An extractable code is an e(3)-bifix code. The converse does not hold. However,
an e(3)-bifix code which is an infix code is an extractable code.

(Proof) It is obvious that an extractable code is an e(3)-bifix code. {bac,a} is an e(2)-bifix code but
not an extractable code.

Assume that C is an infix code and an e(3)-bifix code. Let z € C,zzy = uv with z,y € A*t,u,v € C.
Since C is an infix code, we have u = zz1,z = z122,v = 25y € C. 1 # zy € C* because C is an e(3)-bifix
code. As any factor of z or y cannot be in C, zy € C must hold. By Lemma 2.1, C is an extractable
code. I

Note that C = {bac,a} is an e(2)-bifix code but is not an extractable code. A full uniform code is an
extractable code but is not an e(2)-bifix code. Indeed, let ug = a,u; = a?,uz = a, then upu; = uruz =
ad e {a3} but ugus = a2 ¢ {a3}. Figure 5 shows the inclusion relation between the class of extractable
codes and the classes of e(m)-bifix codes. e(2),e(3) and Ext. mean classes of e(2)-bifix codes, e(3)-bifix
codes and extractable codes, respectively.

e

“‘>\ Ext.

(/ (DR)

Figure 5: The inclusion relation between the class of extractable codes and the classes of e(m)-bifix codes.

3.2 Other Related Codes

In this section, we consider the class of extractable codes and other classes of intercodes, strong codes,
solid code and so on. We begin with the class of intercodes.

Let m be a positive integer. A language I is called an intercode of index m if I™*1 N ATI™AY = 0.
The family of intercodes of index m is denoted by I,,,. It is known that an intercode is a thin bifix code
andI; GI; G --- G Q, where Q denotes family of all sets of primitive words.

Proposition 3.4 An intercode C of index 1 is an extractable code.

(Proof) The case that z € C,zzy € C? for some z,y € At never happens. Therefore z € C,zzy € C?
implies zy € C for any z,y € A*. Since C is an infix code, we have the conclusion by Lemma 2.1. J

The class of intercodes of index 1 and the class of comma-free codes are identical. The Dyck code is
an intercode of index 1. So the following corollary holds.

Corollary 3.3 A comma-free code and the Dyck code are extractable codes. [

The converse of this proposition does not hold. Indeed, a full uniform code A™ is an extractable and
infix code but since A*t(A™)™ A+ N (A")™+1 = AM(M+1) £ @ A" is not an intercode of index m for any
m > 1. Moreover, the following examples show that there exists an intercode Ip,4; of index m + 1 such
that it is neither an extractable code nor an intercode of index m for any m > 1.

Example 3.2 (1) Let m > 1, A = {a,b} and u; = a’b'a® for i > 1. The language
L= {u1us. . . Um41Um42, U2, . - Umn, Um41}

satisfies the condition L™*2 N ATL™+1 A+ = (), that is, L is an intercode of index m + 1. While
UIUDZ - - Um41Umaz € LN ATL™AY and thus L™t N AT L™ A+ # (0. Therefore L is neither an intercode

of index m nor an extractable code.
(2) Let m > 1, A= BU {8} and B = {a1,a2,...,am}-

L'=Bu(| J$B').

i=0

is an intercode of index m + 1 but not of index m. And L is an extractable code.
The next example shows us that classes of extractable codes and right semaphore codes are independent
with respect to inclusion. By left-right duality, we have a similar result for left semaphore codes.

Example 3.3 (1) C is called a right semaphore code if A*C C CA* and C is a prefix code. This
condition is equivalent to that C is a p-infix code and a maximal prefix code, where p-infix means that
w,uwv € L implies v = 1 for any u,v,w € A* [3, p.66]. a*b is a right semaphore code but not an
extractable code. Indeed ab,b € a*b but a ¢ a*b. Conversely, [abab] is an extractable code but is not a
right semaphore code since it is not a maximal prefix code.

(2) C is called a solid code if it is an overlap-free infix code. Obviously a solid code is an extractable
code and the converse does not hold. C is called a strong code if (i) z,y1y2 € C implies y1zy2 € C* and
(ii) z,y12y, € C* implies y1y, € C*. Obviously a strong code is an extractable code and the converse
does not hold.

References

(1] J.Berstel and D.Perrin, Theory of Codes, Academic Press, New York, 1985.

(2] H.J.Shyr, Free Monoid and Languages, Hon Min Book Co, Taichung, Taiwan,1991.
[3] Shyr-shen Yu, Languages and Codes, Tsang Hai Book Publishing Co, Taiwan, 2005.

[4] G. Tanaka, Y. Kunimochi and M. Katsura, Remarks on extractable submonoids, TRESKFEHIEMEAT
BF %A #8958k 1655, pp.106-110, 2009.6.

[5] A.Luca and S.Varricchio, Finiteness and Regularity in Semigroups and Formal Languages, Mono-
graphs in Theoretical Computer Science, Springer, 1999.

[6] M.Petrich and G.Thierrin, The Syntactic Monoid of an Infit Code, Proceedings of the American
Mathematical Society, Vol.109, No.4, 1990.

(7] H.Jurgensen and S.Konstantinidis, Codes, In G.Rozenberg and A.Salomaa (eds.) Handbook of
Formal Languages. Word, Language, Grammar, Vol.1, Springer, Heidelberg, 1997.

(8] H. J. Shyr and S. S. Yu, Intercodes and Some Related Properties, Soochow J. Math., Vol.16, No.1,
pp.95-107 (1990).

[9] S. S. Yu, Characterization of Intercodes, Intern. J. Computer Math., Vol.36, pp.39-45 (1990).

