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Abstract
This paper deals with extractablity of codes. A submonoid $N$ of the free monoid $A^{*}$ over a

finite alphabet is called extractable if $z,$ $xzy\in N$ implies $xy\in N$ . Since an extractable submonoid
is biunitary, its base forms a bifix code. First, we consider the necessary and sufficient conditions
whether a given infix code $C$ is extractable or not. And we introduce the bidecomposition graph of
a code to easily check the extractability of languages. Secondly, we investigage the extractability for
the families of other related bifix codes. That is, intercodes, comma-free codes, Dyck codes, strong
codes and solid codes are extractable codes. We newly define the bifix codes, called $e(m)$ -codes and
$\overline{e}(m)$ -codes, and refer to the extractability of them.

1 Preliminaries
Let $A$ be a finite nonempty set of letters, called an alphabet and let $A^{*}$ be the free monoid generated
by $A$ under the $ope1^{\backslash }ation$ of catenation with the identity called the empty word, denoted by 1. We call
an element of $A^{*}$ a word over $A$ . The free semigroup $A^{*}\backslash \{1\}$ generated by $A$ is denoted by $A^{+}$ . The
catenation of two words $x$ and $y$ is denoted by $xy$ . The length $|w|$ of a word $w=a_{1}a_{2}\ldots a_{n}$ with $a_{i}\in A$

is the number $n$ of occurrences of letters in $w$ . Clearly, $|1|=0$ .
A word $u\in A^{*}$ is a prefix(or suffix) of a word $w\in A^{*}$ if there is a word $x\in A^{*}$ such that $w=ux($or

$w=xu)$ . A word $u\in A^{*}$ is a factor of a word $w\in A^{*}$ if there exist words $x,$ $y\in A^{*}$ such that $w=xuy$ .
Then a prefix (a suffix or a factor) $u$ of $w$ is called proper if $w\neq u$ .

A subset of $A^{*}$ is called a language over $A$ . A language $L\subset A^{*}$ is called reflective if $uv\in L$ implies
$vu\in L$ for any $u,$ $v\in A^{*}$ . A nonempty language which is the set of free generators of a submonoid of $A^{*}$

is called a code over $A$ . A nonempty language $C$ is called a prefix (or suffix) code if $u,$ $uv\in C(u, vu\in C)$

implies $v=1$ . $C$ is called a bifix code if $C$ is both a prefix code and a suffix code. A nonempty language
$C$ is called an infix code if $u,$ $xuy\in C$ implies $x=y=1$ . The language $A^{n}=\{w\in A^{*}||w|=n\}$ with
$n\geq 1$ is called a full unifom code over $A$ . A nonempty subset of $A^{n}$ is called a uniform code over $A$ .

Let $M$ be a monoid and $N$ be its submonoid. $N$ is right unitary (in $M$ ) if $u,$ $uv\in N$ implies $v\in N$ .
Left unitary is defined in a symmetric way. The submonoid $N$ of $M$ is biunitary if it is both left and right
unitary. $N$ is called extractable if $z,$ $xzy\in N$ implies $xy\in N$ for any $x,$ $y,$ $z\in M$ . If $N$ is extractable, then
$N$ is biunitary. Indeed, $uv=1uv,$ $u\in N$ implies $v=1v\in N$ and $uv=uv1,$ $v\in N$ implies $u=1u\in N$ .

It is known that a submonoid $N$ of $A^{*}$ is right unitary (resp. left unitary, biunitary) if and only if the
minimal set $N_{0}=(N\backslash 1)\backslash (N\backslash 1)^{2}$ of generators of $N$ , namely the base of $N$ , is a prefix code (resp. a
suffix code, a bifix code) $([1, p.46]_{)}[3, p.108])$ . If a submonoid $N$ of $A^{*}$ is extractable, then the base of $N$

is a bifix code.

’This is an abstract and the paper will appear elsewhere.
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2 Extractablity of Infix Codes
Our aim in this section is to determine whether for a given infix code $C$ it is an extractable code or not
in terms of its syntactic monoid. We introduce the bidecomposition graph of a language to easily check
the extractability of the language.

2.1 Checking Extractability by a Syntactic Monoid
We begin with a useful and fundamental lemma concerned with the extractability of infix codes.

Lemma 2.1 Let $C\subset A^{*}$ be an infix code. $C^{*}$ is extractable if and only if $z\in C$ and $xzy\in C^{2}$ imply
$xy\in C$ for any $x,$ $y,$ $z\in A^{+}$ .

(Proof) (only if part) Since C’ is extractable and $xy\neq 1$ , we have $xy\in C^{+}$ . $z\in C$ and $xzy\in C^{2}$

yield that $xu\in C$ and $vy\in C$ with $z=uv$ for some $u,$ $v\in A^{+}$ because $C$ is an infix code. $xy\in C^{+}\backslash C$

means that some factor of either $x$ or $y$ is an element of $C$ . This is a contradiction. Therefore $xy\in C$

must hold.
(if part) Since $C$ is an infix code and thus $C^{*}$ is biunitary, we may show that $z,$ $xzy\in C^{*}$ implies

$xy\in C^{+}$ for any $x,$ $y\in A^{+}$ . Moreover as $C$ is an infix code, it suffices to show by induction on $k$ the
following implication:

$z=z_{1}z_{2}\ldots z_{k},$ $xzy=w_{1}w_{2}\ldots w_{k+1}$ implies $xy\in C$ (1)

where $z_{i}\in C(1\leq i\leq k),$ $w_{i}\in C(1\leq i\leq k+1),$ $x\neq 1$ is a proper prefix of $w_{1}$ and $y\neq 1$ is a proper
suffix of $w_{k+1}$ .

(Base step) In case of $k=1$ it is trivial by the hypothesis of this proposition.
(Induction step) We suppose that the implication (1) holds in case of $k=n$ . Now let $k=n+1$ . Since

$w_{n+1}w_{n+2}=x’z_{n+1}y\in C^{2},$ $x’\neq 1$ and $z_{n+1}\in C,$ $x’y\in C$ by the hypothesis of this proposition. By
setting $w_{k+1}’=x’y\in C$ , the condition $xz_{1}z_{2}\ldots z_{n}y=w_{1}w_{2}\ldots w_{n}w_{n+1}’$ holds. By induction hypothesis,
we have $xy\in C$ . Thus we have shown the implication (1). $\square$

Since a uniform code is an infix code, the next corollary holds immediately.

Corollary 2.1 Let $U$ be a uniform code. $U^{*}$ is extractable if and only if $z\in U$ and $xzy\in U^{2}$ imply
$xy\in U$ for any $x,$ $y,$ $z\in A^{+}$ $\square$

We introduce terms of the syntactic monoid of a language. Let $M$ be a monoid, $L\subset M$ and $w\in M$ .
Let $P_{L}\subset M\cross M$ be the relation on $M$ consisiting of all the pairs $(u, v)\in M\cross M$ such that, for all
$x,$ $y\in M,$ $xuy\in L$ if and only if $xvy\in L$ . The relation $P_{L}$ is a congruence, called the principal congruence
of $L$ . Instead of $(u, v)\in P_{L}$ , we write $u\equiv v(P_{L})$ . The set $L$ is said to be disjunctive in $M$ if $P_{L}$ is the
equality relation. The set $W_{L}=\{u\in M|MuM\cap L=\emptyset\}$ is called the residue of $L$ . If $W_{L}\neq\emptyset$ then $W_{L}$

is an ideal of $M$ . If $L$ is a singleton set, $L=\{c\}$ , we often write $c$ instead of $\{c\}$ ; thus $c$ being disjunctive
means $\{c\}$ is disjunctive, $P_{c}=P_{\{c\}}$ is the equality relation.

Now assume $M$ is a monoid with identity $e$ and zero $0$ and $|M|\geq 2$ , hence $e\neq 0$ . The intersection of
all nonzero ideals of $M$ , if it differs from $\{0\}$ , is called the core of $M$ , denoted by core$(M)$ . An element
$c\in M$ is called an annihilator if $cx=xc=0$ for all $x\in M\backslash \{e\}$ . Annihil(M) denotes the set of all
annihilators of $M$ .

When $M=A^{*}$ for an alphabet $A$ then $P_{L}$ is also referred to as the syntactic congruence of $L$ and the
factor monoid Syn$(L)=A^{*}/P_{L}$ as the syntactic monoid of $L$ . The morphism $\sigma_{L}$ of $X^{*}$ onto Syn$(L)$ is
called the syntactic morphism of $L$ .
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Let $C$ be an infix code. Concerning the three special element introduced below, Theorem 2.1 holds [6].
The set {1} is a $P_{C}$-class; therefore, the identity element $e$ of Syn$(C)$ is {1}. Since $W_{C}\neq\emptyset$ is a

$P_{C}$ -class, Syn$(C)$ has a zero element $0=W_{C}/P_{C}$ . For any $u\in C,$ $xuy\in C$ implies $x=y=1$ . Therefore
$C$ is also a $P_{C}$-class denoted by $c$ , that is, $c=C/P_{C}\in$ Syn $(C)$ .

Theorem 2.1 [6] The following conditions on a monoid $M$ with identity $e$ are equivalent:
(i) $M$ is isomorphic to the syntactic monoid of an infix code $L$ .
(ii) $(\alpha)M\backslash \{e\}$ is subsemigruop of $M$ ;

$(\beta)M$ has a zero;
$(\gamma)M$ has a disjunctive element $c$ such that $c\not\in\{e, 0\}$ and $c=xcy$ implies $x=y=e$.

(iii) $(\alpha)$ ; $\square$

$(\delta)M$ has a disjunctive zero;
$(\epsilon)$ core$(M)=\{c, 0\}$ with $c\in$ Annihil $(M)$ .

(iv) $(\alpha),$ $(\delta)$ ;
$(\zeta)$ there exists $0\neq c\in$ core $(M)\cap$ Annihil(M).

Proposition 2.1 Let $C$ be an infix code and $M=$ Syn$(L)$ be its syntactic monoid Let $c$ be a $P_{C}$-class
of $C$ , that is $0\neq c\in$ core $(M)\cap$ Annihil(M). Then,

(1) $C$ is an extractable code if and only if

$c=f_{0}f_{1}=f_{1}f_{2}=f_{2}f_{3}\Rightarrow c=f_{0}f_{3}$ for any $f_{0},$ $f_{1},$ $f_{2},$ $f_{3}\in M$ .

(2) $C$ is a reflective and extractable code if and only if

$c=f_{0}f_{1}=f_{1}f_{2}\Rightarrow f_{0}=f_{2}$ for any $f_{0)}f_{1},$ $f_{2}\in M$ .

(Proof) (1) (only if part) There exist $x,$ $u,$ $v,$ $y\in A^{+}$ such that $xu,$ $uv,$ $vy\in C$ and $\sigma_{C}(x)=$

$f_{0},$ $\sigma c(u)=f_{1},$ $\sigma c(v)=f_{2},$ $\sigma_{C}(y)=f_{3}$ . By Lemma 2.1, we have $xy\in C$ . Therefore, $f_{0}f_{3}=\sigma c(xy)=c$ .
(if part) Assume that $xu,$ $uv,$ $vy\in C$ for some $x,$ $u,$ $v,$ $y\in A^{+}$ . Since $\sigma c(x)\sigma c(u)=\sigma c(u)\sigma c(v)=$

$\sigma_{C}(v)\sigma_{C}(y)=c$ , we have $\sigma_{C}(xy)=\sigma_{C}(x)\sigma_{C}(y)=c$ , that is $xy\in C$ .
(2) (only if part) We suppose that $c=f_{0}f_{1}=f_{1}f_{2}$ but $f_{0}\neq f_{2}$ . Then there exist $x,$ $y\in A^{+}$ such

that $\sigma_{C}(u)=f_{0},$ $\sigma_{C}(v)=f_{2}$ and $xuy\not\in C$ and $xvy\in C$ , or $xuy\in C$ and $xvy\not\in C$ . By symmetry, we
may only consider the case $xuy\not\in C$ and $xvy\in C$ . Since $C$ is reflective, $uyx\not\in C$ and $vyx\in C$ . Setting
$f_{3}=\sigma c(yx)$ , we have $f_{0}f_{3}\neq c$ and $f_{2}f_{3}=c$ . Therefore we have $c=f_{0}f_{1}=f_{1}f_{2}=f_{2}f_{3}$ and $c\neq fof_{3}$ .
This contraticts to (1).

(if part) First we show that $c=ab$ implies $c=ba$ for any $a,$ $b\in M$ . There exist $u,$ $v\in A^{*}$ such that
$\sigma_{C}(u)=a,$ $\sigma_{C}(v)=b$ . Then $c=ab$ means $uv\in C$ and $c=ba$ means $vu\in C$ . Since $C$ is reflective, we
have $c=ba$ .

Assume that $c=f_{0}f_{1}=f_{1}f_{2}=f_{2}f_{3}$ . The argument above yields $c=f_{2}f_{1}=f_{2}f_{3}$ . By hypothesis, we
have $f_{1}=f_{3}$ and thus $c=f_{0}f_{1}=f_{0}f_{3}$ . $\square$

2.2 Bidecomposition Graph of a Language

We introduce a graph in order to determine whether a given infix code is an extractable code or not. The
bidecomposition graph ( $2D$ graph, for abbreviation) $G_{L}=(V, E)$ of a language $L$ is defined as follows:

(1) $V=$ Syn $(L)$ ; the syntactic monoid of $L$ .
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(2) $E=\{(a, b)\in V\cross V|ab\in\sigma_{L}(L)\}$ , where $\sigma_{L}$ is the syntactic morphism of $L$ .

Especially if $L$ is an infix code, then $ab\in\sigma_{L}(L)$ is equivalent to $ab=c=\sigma_{L}(L)$ .
$(v_{0}, v_{1}, \ldots, v_{n})$ is called a path of length $n$ in a graph $G=(V, E)$ if $(v_{i-1}, v_{i})\in E$ for all $i(1\leq i\leq n)$ .
Proposition 2.1 can be stated in terms of graph.

Corollary 2.1 Let $C$ be an infix code and $G_{C}=(V, E)$ be the $2D$ graph of $C$ . Let $c$ be a $P_{C}$-class
of $C$ . Then,
(1) $C$ is an extractable code if and only if $(v_{0}, v_{3})\in E$ for every path $(v_{0}, v_{1}, v_{2}, v_{3})$ in $G_{C}$ of length 3.
(2) $C$ is a reflective extractable code if and only if $(v_{0}, v_{1}),$ $(v_{1}, v_{2})\in E$ implies $v_{0}=v_{2}$ . $\square$

Example 2.1 Let $C=ab^{+}a$ be a regular infix code over $A$ and $M=$ Syn $(C)=\{0, e, [a], [ab], c, [b], [ba]\}$ ,
where $0=W_{C}=\{u\in A^{+}|C\cap A^{*}uA^{*}=\emptyset\},$ $e=[1]$ and $c=[aba]=\sigma_{L}(aba)$ . Its multipliplication table
is shown in Table 1. We construct the $2D$ graph $G_{C}=(V, E)$ shown in Figure 1 and observe the ex-
tractability. All the paths of length 3 in $G_{C}$ are only $(e, c, e, c)$ and $(c, e, c, e)$ , while both $(e, c)$ and $(c, e)$

are in $E$ . Therefore $ab^{+}a$ is an extractable code. $\square$

Table 1: The multipliplication table of $M$ , except for $0,$ $e$ .

$[b]$

$e=[1]=$ $c=$ [ aba]

Figure 1: The $2D$ graph $G_{C}$ of the code $C$ .

Before we give some examples for reflective infix code which is regular, we pay attention to some
remarks and properties [4]. Note that even a reflective regular prefix (or suffix) code is finite. Indeed,
suppose that $C$ is infinite. There exists some word $w\in C$ such that $w=uxv,$ $x\neq 1$ and $ux^{n}v\in C$

for any positive integer $n$ by the pumping lemma of regular languages. Since $C$ is reflective, we have
$vux\in C$ and vu$x^{n}\in C$ . This is contradicts to that $C$ is an prefix code. Thus $C$ is finite. Similarly for a
suffix code.

A word $x\in A^{+}$ is primitive if $x=f^{n}$ for some $f\in A^{+}$ implies $n=1$ , where
$f^{n}=\hat{ff^{n}\cdot\cdot f}$

. Two
words $x,$ $y$ are called conjugate, denoted by $x\equiv y$ if there exist words $u,$ $v$ such that $x=uv,$ $y=vu$ . We
frequently say that $y$ is a conjugate of $x$ . $\equiv$ is an equivalence relation, we denote by $cl(w)$ the conjugate
class of $w$ with respect to the relation $\equiv$ .
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For a nonempty word $w\in A^{+}$ , its conjugate class $cl(w)=\{vu|uv=w\}$ is a reflective uniform, thus
regular infix, code. The following result is given in [4] concerned with the extractabilty of conjugate
classes.

Proposition 2.2[4] Let $w=(uv)^{n}u$ with $u\in A^{*},$ $v\in A^{+}$ and $n\geq 2$ . Then,
$d(w)$ is an extractable code $\Leftrightarrow u=1$ . $\square$

Example 2.2 (1) Let $w_{1}=ababa$ and $cl(w_{1})$ be its conjugate class. Then we can construct the $2D$

graph $G_{cl(w_{1})}=$ $($ Syn $(cl(w_{1})),$ $E)$ of $cl(w_{1})$ shown in Figure 2. $([ab], [aba]),$ $([aba], [ba])\in E$ but $[ab]\neq[ba]$

implies that $cl(w_{1})$ is not an extractable code.

$0$

$e$ [aba]

[aab]

[baa]

Figure 2: The $2D$ graph $G_{cl(w_{1})}$ of $cl(w_{1})$ .

(2) Let $w_{2}=abab$ and $cl(w_{2})$ be its conjugate class. The $2D$ graph $G_{cl(w_{2})}=(Syn(cl(w_{2})), E)$ of
$cl(w_{2})$ is shown in Figure 3. Since every edge $(x, y)\in E$ has the reverse edge $(y, x)\in E,$ $cl(w_{2})$ is an
extractable code. $\square$

$0$

$e$ $[b]$ [aba]

[ba]

Figure 3: The $2D$ graph $G_{cl(w_{2})}$ of $d(w_{2})$ .

3 Extractability of Other Related Codes
We investigage the extractability for the families of other related bifix codes. First we newly introduce
some kinds of bifix codes, that is, $e(m)$-codes and $\overline{e}(m)$-codes and consider the extractability of these
codes. Secondly, we investigate the extractability of intercodes, comma-free codes, Dyck codes, etc..

5



3.1 Some special classes of Bifix Codes
Special kinds of submonoids are introduced as follows.

Definition 3.1 Let $\uparrow n$ be a positive integer. The conditions $e(m)$ and $\overline{e}(m)$ with respect to a sub-
lnonoid $C^{*}$ of $A^{*}$ are defined as follows:

$e(m)$ : $u_{0}u_{1},$ $u_{1}u_{2},$ $\ldots,$
$u_{m-1}u_{m}\in C^{*}\Rightarrow u_{0}u_{m}\in C^{*}$ ,

$\overline{e}(m)$ : $u_{0}u_{1},$ $u_{1}u_{2},$ $\ldots,$
$u_{m-1}u_{m}\in C^{*}\Rightarrow u_{m}u_{0}\in C^{*}$ .

$\square$

Proposition 3.1 Let $m$ be a positive integer with $m\geq 2$ . If $C^{*}$ satisfies the condition eihter $e(m)$

or $\overline{e}(m)$ , then $C^{*}$ is biunitary.

$m-2$ times
(Proof) We only show the case of $e(m)$ . Let $u,$ $uv\in C$ . Since $\overline{1\cdot 1,\ldots,1\cdot 1},1u,$ $uv\in C^{*}$ and $C$ is an

$e(m)$ -bifix code, we have $v=1\cdot v\in C^{*}$ . Similary $u,$ $vu\in C^{*}$ implies $v\in C^{*}$ . Therefore, $C^{*}$ is biunitary.
$\square$

By this proposition, the base of a submonoid satisfying the condition $e(m)$ $($ or $\overline{e}(m))$ is a bifix code
and we call it an $e(\uparrow n)$-bifix code (or an $\overline{e}(m)$ -bifix code).

Proposition 3.2 Let $m,$ $n\geq 2$ be integers. If $m-1$ is a divisor of $n-1$ , then an $e(m)$-bifix code is
an $e(n)$ -bifix code.

(Proof) Assume that $C$ is an $e(m)$ -bifix code and $m-1$ is a divisor of $n-1$ . First of all, we show
that $C$ is an $e(m+k(m-1))$-bifix code by induction on $k=0,1,2,$ $\ldots$ .

It is trivial in case of $k=0$ . Suppose that $C$ is an $e(m+(k-1)(m-1))$-bifix code for $k\geq 1$ . Then,

$u_{0}u_{1},$ $\ldots,$ $u_{m+k(m-1)-1}u_{m+k(m-1)}\in C^{*}$ .

By induction hypothesis, we have

$u_{0}u_{m+(k-1)(m-1)},$ $\ldots,$ $u_{m+(k-1)(m-1)+m-2}u_{m+(k-1)(m-1)+m-1}\in C^{*}$ .

Since $C$ is an $e(m)$ -bifix code, we have $u_{0}u_{m+k(m-1)}\in C^{*}$ . Therefore $C$ is an $e(m+k(m-1))$-bifix code
for any nonnegative integer $k$ .

There exists a positive integer $c$ such that $n-1=c(m-1)$ . As $n=m+(c-1)(m-1)$ , the argument
above leads the conclusion. $\square$

Corollary 3.1 An $e(2)$ -bifix code is an $e(m)$-bifix code for any integer $m\geq 2$ . $\square$

Example 3.1 Let $m\geq 2,$ $A=\{a_{0}, a_{1}, \ldots , a_{m}\},$ $C=\{a_{0}a_{1}, a_{1}a_{2}, \ldots, a_{m-1}a_{m}, a_{0}a_{m}\}$. Then $C$ is an
$e(m)$ -bifix code but is not an $e(n)$ -bifix code for any $n$ with $2\leq n<m$ .

Indeed, suppose that $u_{0}u_{1},$ $u_{1}u_{2},$ $\ldots,$
$u_{m-1}u_{m}\in C^{*}$ . If $|u_{0}|$ is even, then $u_{i}\in C^{*}(0\leq i\leq m)$ because

$C^{*}$ is biunitary. Therefore $u_{0}u_{m}\in C^{*}$ .
So we consider the case that $|u_{0}|$ is odd. Then $|u_{i}|(0\leq i\leq\uparrow n)$ is odd because $|u_{i}u_{i+1}|=2n_{i}(0\leq i<m)$

is even and nonzero. We have $u_{i}u_{i+1}=a_{j_{i}}a_{j.+1}\ldots a_{j_{i}+2n-1}:(0\leq i<m)$ and $0\leq j_{0}<j_{1}<\cdots<j_{m}\leq$

$m$ . Therefore $u_{i}=a_{i}$ must hold for any $i(0\leq i\leq m)$ . Thus $u_{0}u_{m}=a_{0}a_{m}\in C^{*}$ .
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Careful observation leads that for any $n$ with $2\leq n<\prime n,$ $a_{0}a_{1},$ $a_{1}a_{2},$ $\ldots,$
$a_{n-1}a_{n}\in C^{*}$ but $a_{n-1}a_{n}\not\in C^{*}$ .

Thus $C$ is not an $e(n)$ -bifix code. $\square$

The inclusion order among the classes of $e(\uparrow n)$-bifix codes is shown in Figure 4, which is similar to the
division order in the set of all natural numbers.

$e(9)$
$1$

$e(5)$ $e(7)$ $e(10)$
$L_{arrow}\prime^{\vee}$ $|/^{\sim}/’$

$e(3)$ $e(4)$ $e(6)$ $e(8)$

$e(2)$

Figure 4: The Hierarchy of the classes of $e(m)$ -bifix codes.

Proposition 3.3 An extractable code is an $e(3)$ -bifix code. The converse does not hold. However,
an $e(3)$ -bifix code which is an infix code is an extractable code.

(Proof) It is obvious that an extractable code is an $e(3)$ -bifix code. $\{bac, a\}$ is an $e(2)$ -bifix code but
not an extractable code.

Assume that $C$ is an infix code and an $e(3)$ -bifix code. Let $z\in C,$ $xzy=uv$ with $x,$ $y\in A^{+},$ $u,$ $v\in C$ .
Since $C$ is an infix code, we have $u=xz_{1},$ $z=z_{1}z_{2},$ $v=z_{2}y\in C$ . $1\neq xy\in C^{*}$ because $C$ is an $e(3)$ -bifix
code. As any factor of $x$ or $y$ cannot be in $C,$ $xy\in C$ must hold. By Lemma 2.1, $C$ is an extractable
code. $\square$

Note that $C=\{bac, a\}$ is an $e(2)$ -bifix code but is not an extractable code. A full uniform code is an
extractable code but is not an $e(2)$ -bifix code. Indeed, let $u_{0}=a,$ $u_{1}=a^{2},$ $u_{2}=a$ , then $u_{0}u_{1}=u_{1}u_{2}=$

$a^{3}\in\{a^{3}\}$ but $u_{0}u_{2}=a^{2}\not\in\{a^{3}\}$ . Figure 5 shows the inclusion relation between the class of extractable
codes and the classes of $e(m)$ -bifix codes. $e(2),$ $e(3)$ and Ext. mean classes of $e(2)$-bifix codes, $e(3)$ -bifix
codes and extractable codes, respectively.

Figure 5: The inclusion relation between the class of extractable codes and the classes of $e(m)$ -bifix codes.
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3.2 Other Related Codes
In this section, we consider the class of extractable codes and other classes of intercodes, strong codes,
solid code and so on. We begin with the class of intercodes.

Let $m$ be a positive integer. A language $I$ is called an intercode of index $m$ if $I^{m+1}\cap A^{+}I^{m}A^{+}=\emptyset$ .
The family of intercodes of index $m$ is denoted by $I_{m}$ . It is known that an intercode is a thin bifix code
and $I_{1}\subsetneqq I_{2}\subsetneqq\cdots\subsetneqq Q$, where $Q$ denotes family of all sets of primitive words.

Proposition 3.4 An intercode $C$ of index 1 is an extractable code.

(Proof) The case that $z\in C,$ $xzy\in C^{2}$ for some $x,$ $y\in A^{+}$ never happens. Therefore $z\in C,$ $xzy\in C^{2}$

implies $xy\in C$ for any $x,$ $y\in A^{+}$ . Since $C$ is an infix code, we have the conclusion by Lemma 2.1. $\square$

The class of intercodes of index 1 and the class of comma-free codes are identical. The Dyck code is
an intercode of index 1. So the following corollary holds.

Corollary 3.3 A comma-free code and the Dyck code are extractable codes. $\square$

The converse of this proposition does not hold. Indeed, a full uniform code $A^{n}$ is an extractable and
infix code but since $A^{+}(A^{n})^{m}A^{+}\cap(A^{n})^{m+1}=A^{n(m+1)}\neq\emptyset,$ $A^{n}$ is not an intercode of index $m$ for any
$m\geq 1$ . Moreover, the following examples show that there exists an intercode $I_{m+1}$ of index $m+1$ such
that it is neither an extractable code nor an intercode of index $m$ for any $m\geq 1$ .

Example 3.2 (1) Let $m\geq 1,$ $A=\{a, b\}$ and $u_{t}=a^{i}b^{i}a^{i}$ for $i\geq 1$ . The language

$L=\{u_{1}u_{2}\ldots u_{m+1}u_{m+2}, u_{2}, \ldots u_{m}, u_{m+1}\}$

satisfies the condition $L^{m+2}\cap A^{+}L^{m+1}A^{+}=\emptyset$ , that is, $L$ is an intercode of index $m+1$ . While
$u_{1}u_{2}\ldots u_{m+1}u_{m+2}\in L\cap A^{+}L^{m}A^{+}$ and thus $L^{m+1}\cap A^{+}L^{m}A^{+}\neq\emptyset$. Therefore $L$ is neither an intercode
of index $m$ nor an extractable code.

(2) Let $m\geq 1,$ $A=B\cup\{}$ and $B=\{a_{1}, a_{2}, \ldots, a_{m}\}$ .

$L’=B \cup(\bigcup_{i=0}^{m} B^{i}$ .

is an intercode of index $m+1$ but not of index $m$ . And $L$ is an extractable code.
The next example shows us that classes of extractable codes and right semaphore codes are independent

with respect to inclusion. By left-right duality, we have a similar result for left semaphore codes.

Example 3.3 (1) $C$ is called a right semaphore code if $A^{*}C\subset CA^{*}$ and $C$ is a prefix code. This
condition is equivalent to that $C$ is a p-infix code and a maximal prefix code, where p-infix means that
$w,$ $uwv\in L$ implies $v=1$ for any $u,$ $v,$ $w\in A^{*}[3, p.66]$ . $a^{*}b$ is a right semaphore code but not an
extractable code. Indeed ab, $b\in a^{*}b$ but $a\not\in a^{*}b$ . Conversely, [abab] is an extractable code but is not a
right semaphore code since it is not a maximal prefix code.

(2) $C$ is called a solid code if it is an overlap-free infix code. Obviously a solid code is an extractable
code and the converse does not hold. $C$ is called a strong code if (i) $x,$ $y_{1}y_{2}\in C$ implies $y_{1}xy_{2}\in C^{+}$ and
(ii) $x,$ $y_{1}xy_{2}\in C^{+}$ implies $y_{1}y_{2}\in C^{+}$ . Obviously a strong code is an extractable code and the converse
does not hold.
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