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On the SO(N) and Sp(N) free energy
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1. INTRODUCTION

Let Gy be a compact Lie group parameterized by N such as SU (N),
SO(N) or Sp(N), and let gy be the Lie algebra of Gy. The LMO invariant
Zy € A(D) [4] of a closed 3-manifold M is presented by a linear sum of (a
kind of) trivalent graphs, where A(#) denotes the Q vector space spanned
by such trivalent graphs (subject to some relations). The gy weight system
Wy is a map A(B) — Q[[A]] such that W,, (D) of a trivalent graph D
of degree d is defined to be A% times some polynomial in N of degree
< d+ 2. When we fix a value of N, Wy, (log Z)) is a power series in h
with Q coeflicients. When we regard N as a variable, the weight system
can be regarded as a map Wy, : A(0) — Q[N][[A]], and W, (log Zy) is
a power series in h whose coefficients are polynomials in N. Putting 7
to be Nh if Gy = SU(N), (N — 1)h if Gy = SO(N), and (N + 1)h if
Gy = Sp(N), Wy, (log Z)r) is a power series in 7 and h. We denote it by
FE¥ (7, h) € h2Q)[r, h]], and call it the Gy free energy of M [2]. Further,
we put the coefficient of A9=2 in FUN (7, h) to be FEZ(T) € Q[[r]], i.e.,

Fyf(r,h) = 972 FGN (1),
=0

where the value of g implies the genus of some surface appearing in the
definition of the weight system.

In this article, when Gy = SO(N) and Sp(N), we give an explicit pre-
sentation of the Gy free energy for lens spaces, and show that F f(g’b), o(7)
of the lens space L(d,b) is analytic in a neighborhood of zero, where we
can choose the neighborhood independently of g. This analyticity has been
conjectured by S. Garoufalidis, T.T.Q. Le and M. Marifio [2]. Moreover,
we show that for any g, the genus g terms of SO(N) and Sp(NN) free energy
agree up to sign.
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2. DEFINITIONS

We briefly review the LMO invariant Z) of a closed oriented 3-manifold
M, constructed by T.T.Q. Le, J. Murakami and T. Ohtsuki in [4]. We
denote by A(0) the vector space over Q spanned by trivalent graphs whose
vertices are oriented, modulo the AS, IHX and STU relations and denote
by A(0)conn the subspace of A(0) spanned by connected trivalent graphs.
The degree of a trivalent graph is half the number of vertices. The LMO
invariant Zys takes values in A(@). It is known that log Z), takes values in
A(0) conn- ,

Let us recall the weight system associated with a semi-simple Lie algebra
g. It is known that for a semi-simple Lie algebra g, one obtains a Q linear
map W, : A(0) — Q[[h]], called the weight system associated with g (for
general references, see 1, 5]). From a trivalent graph D of degree d in
A(0), W,4(D) is obtained by substituting g into D, contracting a tensor at
vertices and multiplying by h%. When g = gy = sy, $on or spy, regarding
N as a variable, Wy, (D) of a connected trivalent graph D of degree d is
he times some polynomial in N of degree < d + 2 by Lemma 1 below, and
we regard the weight system W, as a map W, : A(0) — Q[N]{[A]].

Lemma 1. For gy = sly,s0n,spy and a connected trivalent graph D of
degree d, Wy, (D) can be presented in the following form,

(1) Wyn (D) = Z agN,g(D)Nd+2_ghd7
0<g<d+1
for some a4, (D) € Z.

Let Gy be a simple compact Lie group SU(N), SO(N) or Sp(N) and
let gy be the Lie algebra of Gy. Putting 7 to be Nh for g = sl, (N — 1)h
for g = s0, and (N + 1)h for g = sp, W,, (D) has the following form,

(2) | We. (D) = Z Cg,y(D)Td+2_ghg—2’
0<g<d+1

for some ¢y 4(D) € Z. Since log Zy € A(®)conn, Wy, (log Zir) can be pre-
sented in the following form,

(3) Wa(logZu) = D chag(M)T™?* 90972 € h=2Q|[, b},
d>0 0<g<d+1

for some ¢y 44(M) € Q. Asin [2], we define the G free energy of a rational
homology 3-sphere M by

Fy™ (7, h) := Wy, (log Zu) € h™*Q{[, h]],
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and put the coefficient of h972 in Fﬁ” (7, h) to be FEZ(T) € Q[[7]], i.e

Fi¥(r,h) = ZFE};(T )92,
g=0

3. RESULTS

We state the main theorem.

Theorem 1. The SO(N) and Sp(N) free energy of the lens space L(d,b)
s presented by

G
FL(Zb)g(T)
By, o .. . _ .
5{(9 - 1)E!£(d2 ILiz—g(e"/?) — Lig—y(e")) + ag(7)}
if g is even,
29-2 - 1)B,_ .. 1_. ;
={ egy [( o= 1))'9 1 {d2_9(22_gL13_g(e /2d) — §L13_g(e /d))
1
—22”9Li3_g(67/2) + §Li3_g(eT)} + a'g('r)}
\ if g is odd,
where g, 15 1 for Gy = SO(N) and —1 for Gy = Sp(N),
ay(T) .
(3 T 72 5 3
_ 4 if g =0,
- _ 1 T | :
—-2—4(d ) Elogd—-)\L(d,b)-z- if g =2,
| 0 ' if g > 4,
T w2 )
a’g('r) — 510gd——4——(d—1) lfg-: 1,
0 if ¢ > 3.

Here the kth Bernoulli number By is defined by the generating series

T 2. zF
e —1 Z Bkﬁ’
k=0
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and the polylogarithm function Liy is defined by

9] wn
Liy(z) := —
n=1

o 1

for any integer p and ¢(3) = > . ;5. In particular, ng,(b];i ;(T) and
F f&(g)g(T) are analytic in a neighborhood at zero, where we can choose
the neighborhood independently of g.

QOutline of a proof of Theorem 1

Let U, be the set of positive roots of g and |¥ | the number of positive
roots. We denote by Cj the quadratic Casimir of g and by dimg the
dimension of g.

From [2], we have

(4) FEy(r ) = 22900, gimgy-ht 3 (F((e p)h/d) ~ F((@ p)B)),

aE‘IL,.

where we define the function f by

f(z) :=log (%) :

We consider the case SO(N) with even N. The first term in the formula
(4) is given by

AL(dp) : AL(d,b) Aiap) [T
TCgoN°dlm50N'h=TN(N— 1)(N—2)h_—’ 4 Ei—-r .

We calculate the second term of the right-hand side of (4). From the
definition of sinh, we have the following presentation of f(z),

(5) 16 = 3 g™

k=1

where Bj is the kth Bernoulli number. So, it follows that




= Bo 2Ic 2k— 1
+sz(%)h AR

1<j<n-1

1= (1 —28)Bysh®-2_
=3l RT0)

s=0
o0 _ 92s-1
— (2s)!
where
> B to
Feven +2s 204+2
lz o1+ 25) (2 + 2)!
> Boiyo
Fodd 2[+2s 2l+1.
Z @2+ 2520+ 1)

I=
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SFe(r),

It holds that Ff"*"(r) = f(7) and that %F:Uen(T) = F°%(r). From the
fact that the right hand side in the equation (5) is analytic function in the
unit disk, we see that for any g, the power series F]\C} (7) is analytic in the

unit disk. Moreover, from the equation
f(r) = =Lij(e") — 5 — log(—7)
in the unit disk [2] and the fact that

d
%Lia(e‘”) = Lig-1(€%),
using a similar way in [2], we obtain
Fevn(r)
(7?2 % 3% nir
og(—) = 42 T T L 3) ifs=0
| 2log( 7)7124-4 6 ¢(3) ifs
= —Liz_25(e") + ¢ —-log(—¢)—§ ifs=1
(25 — 3)Ir27% 2328—22 if s > 2,
\ S —
and
( 2
—7log(—7) — %7’2 — %— +7 if s=0,
FSOdd('r) — ——Lig_zs(eT) + J ____]_'_ _ % if s = 17
T
—(2s — 2)l71-2% if s > 2.
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Substituting these into the formula, (5), we get the formula for G = SO(N)

with even N. Similarly, the formula for G = SO(N) with odd N can

be obtained. The formula for G = Sp(N) follows from Proposition 1

below. O
Furthermore, one has

Proposition 1. For any closed oriented 3-manifold M and any g,
Fg" (1) = (-1 Fyg (1),

Proof. Noting that 7 = N — 1 for g = so and that 7 = N +1 for g = sp, it
follows from (2) that

Wen (D)= > capg(D)(N + 1)#29h972,
0<g<d+1

d+2-gp,9-2
Weo, ( Z Csog(D)(N — 1)*779R7

0<g<d+1
for a connected trivalent graph D of degree d. Hence, }
() Wea, (D)o = (=17 3 Caog(D)(=N = 1)**70he~2
0<g<d+1

= Z (—1)9¢s0 (D) (N + 1)3+279p972,
0<g<d+1

Comparing Wy, (D) and (—1)Ws,(D)|n—-n by Proposition 2 below, we
have

Cap,g(D) = (—1)%Cs0,4(D)
for any g. Since log Zys is a linear sum of such D, it follows from (3) that
Capd,g(M) = (—1)?cs0,0,4(M)
for any rational homology 3-sphere M, any d, and any g. Further, since
Fy i (7') Z Cg.d,g(M )Td+2_g
d>0,d>g-1

by definition, we obtain the required formula. O

Proposition 2. For a connected trivalent graph D of degree d, Wy, (D) is
obtained from by replacing N to —N in Wy, (D) and multiplying by (—1)¢,
i.e., Wapy (D) = (=1)*Waop (D)INo-N.
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To give an outline of a proof of Proposition 2, we review results about
soy and spy weight systems. The following description of the weight sys-
tem W, is known. We replace any trivalent vertex and any edge in the

following:
Y-
_— -
0 1
We denote by e(D) the set of edges of a connected trivalent graph D.
Given a map m, : e(D) — {0,1}, called a edge marking of D, choosing
one of the two possibilities for the replacement of an edge depending on

me, connecting up, we obtain an orientable or nonorientable surface Sp m,
of the genus g(Spm,) with bp ,,, boundary components. Then, we have

(6) WSON (D) — Z(_ 1)3me NbD,me hng,me —24+bD.me ,

where sm, = 3, c.(p) Me(y), the sum is over all possible edge markings m.
of D, and

, _ | 29(Spm,) if Spm,is orientable
IDm. =\ g(Spm.) if Spm,is nonorientable.

Ezample. We consider the following trivalent graph of degree 1

and the edge marking with m.(y;) = 1, m.(y2) = 0, and m.(y3) = 0. Then
we get ~

SD,m, = )
which is a projective plane with two boundary components. This con-

tributes —N2h to Wy, (D). From 8 possible edge markings, we get the
following surfaces

SIclciSiCIcASIS)
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and obtain that Wi, (D) = N3h—3N2?h+3Nh—Nh = N(N —1)(N —2)h.

Next, we give a description of the weight system W, with N = 2n. We
denote by e(D) the set of edges of a connected trivalent graph D and Y’
the set of the diagrams

e R R A S

We replace any trivalent vertex in the same way as the weight system
Weoy and replace each edge with one diagram in Y”, in such a way that
connecting up, the two ends of each arc in Y have the same symbols.
Such a replacement defines a map m’ : e(D) — Y’, called an admissible
edge marking of D, and we obtain an orientable or nonorientable surface
Spm of the genus g(Spm) with bp v boundary components with even
symbols o and even symbols e. Then, we have

WGPN (D ) = Z( — l)sm’nbo.m/ 9 Dot =24bD ’
ml

where spy is the number of > and © in Spgy, the sum is over all
possible admissible edge markings m’ of D, and ¢'p ,,» = 29(Spm) if the
surface Sp is orientable and ¢'p . = g(Spm) if the surface Spn is
nonorientable.

Example. We consider the trivalent graph

\&/

and the admissible edge marking m’ with m/(y;) = &=, m/(y2) = <=,
and m/(y3) = e——3. This gives a nonorientable surface

of the genus 1 with 2 boundary component and so contributes nh to
Wepy (D). We compute that Wep, (D) = 8n°h + 12n*h + 4nh = 2n(2n +
1)(2n 4+ 2)h = N(N + 1)(N + 2)h.
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Now let us give an idea of a proof of Proposition 2. From the above
desctiption of Ws,, and W, with N = 2n, we have

Wiay (D) = 3 J(=1)"m N*omeh,

Me

Wapy (D) = 3 (~1)*nbom .

ml

For example, we consider D = @ We have that the surface

appearing in Ws,, () corresponds to the 4 surfaces

appearing in Wy, (@) We have that one surface appearing in Wy, (D)
corresponds to 2°2me surfaces appearing in Wy, (D). Then, it follows that

Wapy (D) = Y _(—1)*m2bPmepDme p,

Me

Noting that N = 2n and s,y = sy, +d + bpm, (mod 2), the claim holds.

REFERENCES

(1] D. Bar-Natan, On the Vassiliev knot invariant, Topology 34 (1995), 423-472.

[2] S. Garoufalidis, T.T.Q. Le, and M. Marifio, Analycity of the free energy of a closed 3-manifold, SIGMA
4 (2008), no. 080, 20 pages.

[3] S. Garoufalidis and M. Marifio, Universality and asymptotics of graph counting problems in unoriented
surfases, to appear in Journal of Combinatorial Theory A, math.CO/0812.1295.

[4] T. T. Q. Le, J. Murakami, and T. Ohtsuki, On a universal perturbative invariant of 3-manifolds,
Topology 37 (1998), no. 3, 539-574.

[5] T. Ohtsuki, Quantum invariants. A study of knots, 3-manifolds, their sets, Series on Knots and
Everything, vol. 29, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.



