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On P-adic families of modular forms

Joachim Mahnkopf (Universitdt Wien)

Abstract. We describe a new approach to the theory of p-adic families of modular
forms, which is based on a comparison of trace formulas. We apply it to give new proofs
for the existence of p-adic continuous families of modular forms in the finite slope case
and for the existence of p-adic analytic families of modular forms in the slope 0, i.e. in
the ordinary case.

Introduction. The theory of p-adic families of automorphic forms originates with
the work of H. Hida who showed that any ordinary modular eigenform f (ie. f has
slope 0) fits in a p-adic analytic family of eigenforms (fi)r of varying weight k (see
section 1 below for a precise statement of the notion of analytic family). He used two
different approaches to this result, one based on use of group cohomology and, more
recently, he described an approach based on use of algebro-geometric methods, which is
less elementary (cf. [Hi 1,2]). Later, Mazur and Gouvea conjectured that an analogous
statement holds for modular forms of arbitrary finite slope a (cf. [M-G]) and their
conjecture has been proven by Coleman and Wan (cf. [C], [W]). Coleman’s proof is not
elementary and relies on methods from rigid analytic geometry. We note that Buzzard
has given a proof of the boundedness of the dimension of the slope a-subspace of the
space of modular foms as the weight k varies, which only uses group cohomology and is
elementary (cf. [Bu]). Meanwhile, the work of Hida and Coleman has been generalized to
groups of higher rank by Hida, Tilouine, Ash-Stevens, Emerton, Buzzard, ... Moreover,
there is very recent work by G. Harder.

In this note we want to describe a new approach to the construction of p-adic families
of eigenforms, different from the existing ones, which is based on the trace formula. We
will not give full proofs, which can be found in [M]; rather we want to describe the
essential content of our approach. We were guided by the analogy with the functoriality
principle. Given an automorphic form f on a group G the functoriality principle yields
the existence of a form f’ on a group G’, whose existence then follows by comparing trace
formulas on G and G'. Somewhat similar, the theory of p-adic families is an existence
statement for automorphic forms: given a modular form f in weight ko the theory of
p-adic families predicts the existence of modular forms fi in weights k. In contrast to
the functoriality principle, there are now infinitely many forms fi, which are explicitly
determined by f only modulo some power of p and which are related to each other (the
family (fx)x depends analytically on the weight k). We want to deduce the existence of
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the p-adic family (fx)x passing through a given form f of weight ko by comparing trace
formulas at weight ky and at weights k.

We would like to explain our motivation. 1.) Such an approach would confirm the
idea of the trace formula as a universal, unifying principle in the theory of automorphic
forms: the trace formula is a common source, which can yield the existence of those
automorphic forms, which are predicted by the functoriality principle, but it can also
yield the existence of those modular forms, which are predicted by the theory of p-adic
families. 2.) The use of the trace formula gives another perspective on the theory of
p-adic families. Similar to the functoriality principle our proof of the existence of p-adic
families relies on certain (simple) trace identities (cf. equations (3) and (4) in section
2). In case of the functoriality principle these identities hold due to the Fundamental
Lemma; in our case these identities hold essentially because ¢*, £ € Zy, is a p-adically
continuous and analytic function of k. We note that these look like abelian conditions;
they also are the same conditions which essentially yield the existence of p-adic families
of Eisenstein series. 3.) The approach seems to carry over directly to any reductive group
G, which has discrete series representations and it yields the existence of families of true
cusp forms passing through a given cusp form. For other groups one has to replace the
use of the topological trace formula by the more difficult Arthur-Selberg trace formula.
4.) The approach is elementary: besides the topological trace formula, which has an
elementary proof (cf. [Be]), we need Buzzard’s Theorem and only very basic facts from
algebra and number theory. In particular, we hope to obtain an elementary proof of the
full Mazur-Gouvea Conjecture in this way (one has to generalize equation (4) in section
2 to arbitrary slope spaces).

We mention related work. The idea of applying the trace formula to the theory
of p-adic families of modular forms is mentioned in [C]. Buzzard and Calegari used an
explicit trace formula and computer calculations to find an explicit counterexample to
the Mazur-Gouvea Conjecture in its strong form (cf. [B-C]). More related to ours is the
work of Koike who used the trace formula to examine p-adic properties of the Hecke
operator T, (cf. [K 1,2]).

In section 1 we introduce the notation and we formulate our main results. In section
2 we describe our approach. In section 3 we give the application to the construction
of p-adically continuous families of eigenforms in the finite slope case; in section 4 we
will show that any continuous family of slope 0 already must be analytic; this yields
the existence of R-families of eigenforms passing through a given eigenform of slope 0.
Finally, in section 5 we show that if f is a cusp form, then the R-family, in which f fits,
consists of true cusp forms.

The content of this note has been presented at the RIMS Conference on Number
theory, Automorphic Representations and Related Topics, January 2010. I thank the
organizers of the Conference and in particular Prof. T. Oda, Prof. M. Tsuzuki and Prof.
T. Hayata most cordially for the invitation and for a nice stay at Tokyo University.



0.1 Description of main results.

We fix a prime p € N, an integer N € N such that (p, N) = 1 and a Dirichlet character
X : Z/(Np)* — Q*. We denote by w: Z/(p)* — pp—1 C C* the Teichmuller character;
thus, w is determined by the condition w(z) = z (mod p) for all z, which are relatively
prime to p. We denote by I' = I'; (Np) the Hecke subgroup of level Np. We define the
Hecke algebra H = TI'\A/T', where

A= {(‘Z 3) € My(Z): ¢c=0 (mod Np), (a, Np) =1}

and we denote by H; = (T, £prime) < H the subalgebra generated by the Hecke op-

erators Ty =T (1 £> I'. We further denote by Mj = My(T, xw™*) the space of all

(complex) modular forms of level I, nebentype xw™* and weight k. For any v € Q we
denote by My(y) the generalized eigenspace attached to T, and the eigenvalue 7. We
fix a p-adic valuation v, on Qy; the slope a-subspace M of My, then is defined as

M= P M)
7, vp(7)=cx

Instead of eigenforms f € M$ we will work with the corresponding system of Hecke
eigenvalues. We denote by ®f the set of all sequences A = (\g)g, where £ runs over all
primes, such that there is an eigenform f € MY satisfying Tpf = Agf for all primes £
(i.e. X is the eigenvalue corresponding to f).

Our first result asserts that the dimension of the slope a subspace is locally constant
as a function of the weight.

Corollary 1. There are K(a), B(a) € N only depending on p, N,x and a such
that for all k,k' > K (o) satisfying k = k' (mod pB(®) we have

dim M% = dim M.

In the ordinary case we obtain dim M = dim Mg for all k > 2.

We call a family (Ag)k, Ax € ®F, continuous or a Lipschitz family of exponent (a, b)
if k = k' (mod p™) implies A\, = Ay (mod p*™*P) (this is defined as vp(Ake — Akre) =
am + b for all primes £).

Theorem 2. There are a € Qsp and b € Q only depending on N,p,x and «
such that any A € ®F fits in a Lipschitz family (A)x of ezponent (a,b), i.e. there are
A € ®¢, k € ko +pK¥Z, such that Ay, = X and k = k' (mod p™) implies that A = A
(mod p*™*®). Moreover,

1
0<ac —r .
<2< 2dim Mg

In the ordinary case the family (Ag)x exists for all k > 2.
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A family (Ag)x is p-adically analytic if there are power series Fy € Zy[[X]] such that
Fy((14p)*—1) = Ay ¢ for all £ and all k. We will need a more general notion of analyticity.
Let R be a finite free Zy[[X]]-algebra and let pr : R — Q, be a family of morphisms.
(k) is a R-family if there are £, € R such that ¢x(€) = A for all k and all primes £.

Theorem 3 a. There are a finite, free Zy[[X]-algebra R of rank less than or equal
to dim Mg, a family of morphisms @i : R — @p and a finite set S C N such that any
Lipschitz family (Ax)k, Ak € <I>2, is locally an R-family, i.e. for all ko € S there ise >0
and Qg € R such that Mg = pi(Q) for all £ and all k € Uc(ko).

Here, Uc(ko) = {k, vp(k — ko) < €)}. Essentially the same methods as in the proof of
Theorem 3a yield that any A € &) , ko € S, fits in a R-family:

Theorem 3 b. For any A € &} , ko & S there are Q4 € R such that (0r ()¢ € B
for allk € S and (pr,())e = A

0.2 A trace formula approach to the construction of p-adic
families of modular forms.

We describe our approach based on the trace formula. In a first step we will show that
any ) fits in a Lipschitz family and in a second step we will show that any Lipschitz
family of slope 0 is an R-family.

We look at the first step. We denote by X' the set of all characters A : H; — Q.
Since H; is generated by the Hecke operators Ty, A can be identified with the sequence
(A¢)e, where Ay = A(T;). We say that two characters A, u € X' are congruent mod p°,
if M(T') = u(T) (mod p°) for all T € H;; this is equivalent to Ay = p¢ (mod p°) for all
primes £. For any character A = (\z); we denote by M(X) the generalized eigenspace
attached to ), i.e. M$(A) consists of all f € M such that (T — Ag)"f = 0 for some
n = ny. We obtain a decomposition as H-modules

Mg = @ MEO).
' PY

If now any A € ®% fits in a Lipschitz family (Ac)x then for any k, k = ko (mod p™)
there is a map

Yi ‘I)go — @g
such that ¥x(X) = A (mod p*™*®) for all A € &7 . We will see that it is sufficient to

establish the existence of the maps . This in turn relies on a reformulation in terms
of certain reduced multiplicities; for any A € X we define its (mod p®)-multiplicity as

mi(\,c)= Y dimMgZ(u).

IJGQE
p=Xx (mod p¢)
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Thus, m§ (A, ¢) is the multiplicity of A in the (mod p®)-reduction of Mg. 1 then exists
if we can show for all A € X' that m§ (A,am + b) # 0 implies m§ (A, am + b) # 0. This
kind of statement does not seem to be related to a simple trace identity. We therefore
assume stronger that even equality of multiplicities holds:

(1) my (A, am + b) = mg(A,am + b)

for all A\ € X. This implies that the (mod p*™**)-reductions of Mg and M are
isomorphic as Hecke modules

@ ME[p*™) = ME[P™] = ME, 5™ ME,,
hence, the following simple trace identity holds:
(3) trTlpg, =trT|pg  (mod p°™th),

for all T € H. Using the topological trace formula, we prove an identity of this kind in
section 3. On the other hand, using it we are only able to prove a local version of the
isomorphism (2): (2) is equivalent to equality (1); using (3) we will show that for any
A € X there is a ¢ = ¢(A) > am + b such that

my; (A, ¢) = mg(A,c).

Still, this is strong enough to deduce the existence of continuous families passing through
a given eigenvalue A as in Theorem 2.

In a second step again using the trace formula, we show that any Lipschitz family of
slope 0 is (locally) an R-family. We will show that the trace functional on the slope 0
subspace depends analytically on the weight k, i.e. there is a power series F' with p-adic
coefficients such that

@ Ty, = F((L+2) - 1)

for all all Hecke operators T'. As a consequence, we obtain that the characteristic poly-
nomial Chry, € K[Y] of T acting on M fits into a analytic family, i.e. there is a
polynomial Chy = Y, 4,;Y* € K[[X]][Y] such that Chp((1 + p)* — 1) = Chry. We let
Ari, © = 1,...,5 be the roots of Chr in a splitting field E. The specializations of Az,
at weight k are precisely the roots of Chr, hence, any eigenvalue of T acting on Mg
fits into a p-adic analytic family (given by some of the Ar;). We have to find out how
to collect the Az, ; as £ runs over the primes into systems of eigenvalues, i.e. we have
to show that we can choose for any £ an index i(£) such that A = (A, ()¢ specializes
under any ¢ to an element in <I>2. To this end we use the result of the first step. This
will finally yield Theorem 3a and 3b.
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0.3 Continuous families of modular forms

We set
M= @PM] and MZ*=P M.
B<a B>

We will use the following reformulation of a Theorem of Buzzard (cf. [Bu]).

Theorem (Buzzard). There are numbers M(a) only depending on o (and N and p)
such that
Y dim Mi(T)P < M(a)

0<p<a
for all k > 2. Moreover the M(a) can be chosen such that M(a) grows linearly in a.

We denote by @, resp. @i: the set of all roots of the characteristic polynomial of
T, acting on My, resp. on M< a. For a polynomial p = 3,50 a: X* € Qp[[X]] we define
the slope S(p) of p as

S(p) = sup{s € Q : vy(a;) > sifor all ¢ > 0}.

We select two weights k, K. Using Lagrange interpolation we construct an element
ef’z, = piz, (Tp) € Q[Ty) (p,f,z, € Q[X]) such that the following holds.

Lemma 1. 1.) For anyy € &, — Qgg we have

¢ *
Da(ei k| mutn) = '
¢
where ( € O and vp(¢) > 1/(2M(a)). An analogous statement holds for v € @y —
<
@;Z,.
2.) For any «y € <I>§‘,: we have
1 *
Da(epy | mum) =
1
Again, an analogous statement holds for v € @Ez‘,
3.)
S(iy) = —a.
4-)

deg p,f,‘,:, <2M(a).



Remark. The Lemma implies that

<o = dim M%

L
lim tre=%
L—oco kK ,M,;

. <a L
lim tre;z =0
L—o00 k! IMI?O‘

An énalogous statement holds if we replace k by &’. Thus, e,c ' 1s an approximate
idempotent attached to the slope < a-subspace in weights k and k.

We denote by Ly, the irreducible representation of GLo of dimension k+ 1 and central
character z — zF72. We set e, = ETJlV—pF Y ec@/Npzy Xw ¥ (€) (€) ({€) is the diamond
operator). €yw—* 1S a projector onto the xw~*-nebentype and using the Eichler-Shimura
isomorphism we obtain

T <a L

. <al
= I}lm tr TeEk’ exw‘k lHl (F,Lk)

= 11m Lef(Te,c o exw_le‘(I“, Ly)).

Of course, the same equation holds for weight k. On the other hand, the Lefschetz

number _
Lef(TeS? “e,,-+|H*(T, Li)) = ZtrT(ek % Ve k| HU(T, Ly))

can be computed using the topologlcal trace formula We formulate the result. We define
the functions fs: C 2M(a) [B]and fg: C— (1 - 2°‘M(°‘ ym — vp(p(N)), which map
R to R.

Proposition. Fiz a € Q>¢ and let C € Qs¢. Assume that k,k' € N satisfy
k,k' > (C+1)2+2 and k =k (mod p™) with m > C + 1. Then for all Hecke operators
T € H, the following congruence holds true:

tr T|M’§a = trTlela (mod p"),

where

0 = min {£,(C), f(C)}.
We want to choose C such that [J becomes maximal. Since fs is monoton decreasing
in C and f, is monoton increasing we obtain a maximum for 0 if we choose C such that
fs(C) = f4(C). We slightly simplify and choose C such that

_ 2aM(a) ym

99
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i.e. we choose for C the value

K(a) =2aM(a) + 77— ) (€ Q>0).

2M(

This implies

m 1

02 T iomt@r ~ o ~ P

We abbreviate
A =vp(p(N))+1

and note that A > + vp(¢(N)) and A only depends on N and p. Under the
assumptions of the above roposition we then obtain the congruence

Corollary 1. For all Hecke operators T € H; the following congruence holds
trTjpme = tr T|M:, (mod p““"z(“)! —A).

In the ordinary case we obtain a somewhat stronger result.
Corollary 1°9, For all Hecke operators T € H, the following congruence holds

tr T|M2 =tr TIMg' (mod pm—”p(‘P(N))_

As an immediate consequence of the trace identity we obtain the local constance of
the dimension of the slope subspaces. We set

B(a) = (1 4+ 4aM(a)?)(M () + A)

We note that Buzzard’s Theorem implies that B(a) grows like o*.

Corollary 2. Fiz an arbitrary slope o € Q>¢. For all pairs of integers k,k' € N
satisfying k,k' > (K () + 1)2+ 2 and k = k' (mod p™) with m > B(a) it holds that

dim M§ = dim M§,.

Proof. The above Theorem in particular applies to the Hecke operator T3, which
acts as the identity. The Corollary implies that

trTimg = trTijme  (mod p1+4a’:4(°)! _A).
Since T1 =id and m > B(a) implies 1—_;_7&%4-(-“—); —A> M(O!) this yields

dim M$ = dimM$, (mod pM©@)),
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Since dim M§ and dim M$, are smaller than M(«) by Buzzard’s Theorem we deduce
that dim M§ = dim M$,. Thus the proof of the Corollary is finished.

We explain how to deduce the existence of Lipschitz families from the above trace
identity. Let _
At H = Q

be a character of H;. We recall that we have set
®Y = {A = (Ag)e: Mg()) # 0and vp(Np) = a}.
and the space of modular forms decomposes

Mg = P M.

AER
Moreover, we defined the reduced multiplicity

mi(Ac)= Y dimM(y)
rEPY
y=XA (mod p€)

In addition we define the following rational numbers

1
a=2(a) = 2M(a) + 8aM (a)? (€ Q>0)
and A+l
b= b(a) = —M-a—) - (2M(a) + 2)1,

where we have set [ = [log,M(a)] + 1 (log, is the complex logarithm with base p). Note
that a is strictly positive.

Theorem. Fiz an arbitrary o € Qo and assume that k, k' > (K(a) + 1)® + 2 and
k =k (mod p™) with m > K(c) + 1. Then, for any character A = (A¢), there isc € Q
with ¢ > am + b such that
my (A, c) = mp(A,c).

The proof rests on the existence of certain elements in the Hecke algebra.

Lemma 2. There are an integer ¢ € N, ¢ > am + b and an element e(\) € H; ® Q
such that

e e(A) € 76'1\/}7'&5%1’ i.e. e(A) has bounded denominators
e tre(A)|pme =mg(), ) (mod p')

o tre(A)|me, = mf (A c) (mod p).
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Applying Corollary 1 to the element e(A) we obtain
mf (A ¢) =mi(A,c)

modulo a power of p, which is bigger than M (a). Since dim M§ and dim M$; are smaller
than M () this implies m§ (X, ¢) = m§ (A, c).

As a Corollary the above Theorem yields the existence of p-adic Lipschitz families
of finte slope modular forms. First we immediately obtain the following kind of transfer
for modular forms from weight k to weight k':

Corollary 3.  Let the assumptions be as in the above Theorem. Then for any
A € ®F there is a A € ®F, such that '

A=) (mod p™*P).

Proof. If X € ®¢ then m§(\, c) # 0, where c is as in the above Theorem. Hence, we
obtain mg (), c) # 0, i.e. there is X' € ®% such that A = )’ (mod p°). Since c > am +b
this yields the claim and the Corollary is proven.

Using Corollary 1 we obtain

Corollary 4. Fiz an arbitrary slope a € Q>o. Assume that ko > (K (c) +1)? +2)
and let A € ®F . Then there is a family (Mk)k, where A € ®F and k runs over all weights
satisfying k > (K(a) + 1)2 + 2 and k = ko (mod pXK(®+1) such that the following holds:
Ak, = A and k =k’ (mod p™) implies Ay = Ay (mod p*™*P).

Proof. We enumerate the set of all weights k satisfying k > (K(a) + 1)2 + 2 and
k = kg (mod pK (a)"'l) in a sequence ko, k1, k2, k3, . ... We inductively construct elements
Ak; € 8%, 1=0,1,2,3,... such that Ay, = A and k; = k; (mod p™) implies Mg, = A,
(mod p*™+®). Clearly, we set Ay, = A. Assume that A, ..., Ak, have been defined such
that k; = k; (mod p™) implies that A, = A, (mod p*™*P) for all 4,5 = 0,...,n. To
define Ag,,, we select a € {0,1,2,...,n} such that ,

Vp(knt1 — ko) 2> p(kny1 — ki) foralli=0,...,n.

By Corollary 1 thereis A € (ch"nH such that A = Ag, (mod p*@1*®), where wy = vp(knt1—
ko). We then set Ak, ,, equal to this A.

Let i € {0,...,n} be arbitrary and set w3 = vp(kn+1 — ki). We have to show that
Mkny1 = Ak, (mod p*¥3*P). To this end we set wa = vp(ka — ki)

*Kn+1

wi{ /

kaO w3

w{ |
kiO
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We know that A,., = Mg, (mod p*“1*®) by definition of Ag,,, and that Mg, = A
(mod p*¥2*?) by our induction hypotheses, hence,

M )‘kn+1 =), (mod pami“{wlvw2}+b)'

We distinguish cases.

Case A wy > wy. In this case min{w;,ws} = wy and w3 = w; by the p-adic triangle
inequality. Hence, equation (1) implies that Ag,,, = A, (mod p**3+P).

Case B wy < wi. In this case min{w;, ws} = wy and w3 = wp. Hence, equation (1)
implies that Ag,,, = A, (mod p>w3+P).

Case C wy = wy. In this case min{w;, ws} = w;. On the other hand, by the choice
of a we know that w; > ws; thus equation (1) yields Ay, ,, = A, (mod p**s+®).

This completes the proof of the Corollary.

0.4 Analytic families of ordinary modular forms.

From now on we restrict to the ordinary case. We denote by o the ring of integers in the
field Q(Np), which is obtained from Q by adjoining all ¢(pN)-th roots of unity. Using
the (topological) trace formula one can show the following

Theorem. Let T = Fal', o € GL2(Q) be any Hecke operator. There is Fr €
(P—&—\,—)o[[X]] such that

tr T{po = Fr((1 +p)F - 1)
for all k > 2.

We set di equal to the dimension of dim Mg and we denote by
dk . .
Chr(Y) =Y (1) a;x Y
=0

the characteristic polynomial of T| 0. The coefficients of Chry are given by the re-
cursive formula apx = 1 and a;; = Jl {121 (—1)ht1 aj_h,ktrTh|M?c, j=12,3,...,dx;
moreover, if j > di we know that a;; as defined above equals 0 (cf. [Koe], 3.4.6 Satz,
p. 117). A straightforward induction using the Theorem and these recursive formulas
shows then that there are

1

WU[[X]]

44(X) = Ar;(X) €
such that A;(uf — 1) = a; for all j = 0,1,2,... and all k > 2. Since di = dim M <
M (0) we deduce that a;; = 0 for all k if j > M(0), hence, A;(X) = 0 for all j > M(0).

We set
. M(0)

Chr(Y) = Y (-1YA;(X)Y?%
j=0
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and obtain
Proposition 1. For all weights k > 2 we have

Chr(u* - 1)(Y) = Chzx(Y),

i.e. the characteristic polynomials of the Hecke operators T| MO k > 2, form a p-
adic analytic family. Moreover, the j-th coefficient A; = Ar; of Chr is contained

We denote by K = {f/g, f,g € o[[X]]} the quotient field of o[[X]]. K is a subfield
of the field of all formal Laurent series in X. In particular, Chr is contained in K[Y].
We denote by E/K a splitting field for Chy. Hence, in E[Y] the polynomial Chr splits
completely

.
Chr = [J(¥ = Ar:)™0r),
i=1
where Ar; € E and r = rr depends on T. We denote by R = R(T') the integral closure
of o[[X]] in E. Since o{[X]] is a unique factorization domain, it is integrally closed. Since
E/K is a finite separable extension we thus know that R is a finite o[[X]]-module.

E
/|
(11) R K.
|/
o[{X]]

For any k we choose an extension ¢k : R — Q of the evaluation morphism o[[X]] — Q,
F — F((1 + p)* — 1). Using Proposition 1 it is not difficult to see that the following
holds.

Proposition 2. LetT € H;. Let Ary,..., AT, r = rr be the roots of Chr appearing
with multiplicities m(Ar,1),...,m(Az,). Then, Ar; € £R, where E = pp(N), and for
all weights k > 2 the eigenvalues of T acting on MY} (counted with multiplicities) are
given by the sequence

Pe(A11)s -, k(AT PROATr), - 0T -

mO1) m(ir.r)

Thus, any eigenvalue A of T acting on Mg fits in a R-family given by some Ar;. We
have to find out how to choose for any £ an index i(£) such that (Ar, i) )e specializes
under i to an element in ®Y for all k, i.e. (Mg, ;)¢ corresponds to an R-family of
modular eigenform. To this end we choose an element ¢ € H; such that for almost
all k (ie. for all k g S) the values A(e), A € ®) are pairwise different. We apply the
preceeding with T = e, i.e. we set r = r. and R = R(e) is the integral closure of
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o[[X]] in a splitting field E of Ch,. In particular, |®%| = r for all k ¢ S and we write
B9 = {A1k,---s Ak} Let kg & S. We have already seen that any A; k, fits in a Lipschitz
family (A; k). On the other hand, Proposition 2 implies (after eventually reordering the
Ae,i) that Aj ko (€) = @i, (Ae,i) for all i = 1,...,7. Since the A; x,(e) are pairwise different
and since the \; x(e) as well as the pi()e,;) are continuous functions of k (in the p-adic
sense) we deduce that

©k(Xei) = Aik(e)

for all k& contained in some neighbourhood Ug(kg) of kg. Let T € H;. We define the

matrix
— (N ). .
A - ()‘e,i)%]=1a---»7"

the vector
b(T) = (Fres)j=1,..r

(cf. the above Theorem for the definition of Fr.;) and we denote by

D= H()‘e,i - )\e,j)

i<j

the discriminant of Ch,. The Theorem and Proposition 2 imply that

(1) Pe(A) = (o )i = (AL (€))ig
and
(2) k(b) = (Pr(Fres))j = (tr T | pp0);-
and
3) | ¢(D) = H(’\i,k(e) — Ajk(€))-

i>j

Proposition 3. Let T € H1 be any Hecke operator. Then, for all k € Uc(ko),
Aik(T) equals the i-th coefficient of the vector

1 pr(ad A) px(b) .
m(’\e,i) ‘pk(D) ’

here ad A is the adjoint matriz of A and € is defined in Lemma 1.

In matrix form Proposition 3 may be rewritten as

Ae(T) 1 pr(ad A) ok (b(T))

(4) : = ,
) /\r,k(T) m(/\e,z) Pk (D)
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for all k € U.(ko). We note that e does not depend on T. Equation (4) in particular
holds for all Hecke operators T; and we obtain that for any ¢ the family (Aix)rev.(ko)
is an R-family, which proves Theorem 3 a. The proof of Theorem 3 b essentially is a

variant of the above proof.
The Proof of Proposition 3 rests on the following system of linear equations. We set
m; = m(\;) = mQ(\; &) for all k € Ue(ko); Proposition 2 implies that for all k € Ue(ko)
andall1<j<r
r
trTe’ IM% = Z mi)\i,k(eJ)Ai,k(T).
=1

We set A = (X x(e”))i; and b= (tr Te’| MO );; the above equation may be rewritten as

mi\ (T
A : =b

mr)\s,k(T)

for all k € U.(ko). Since A is a matrix of Vandermonde type we know A~ =
——+————ad A (the ); x(e) are pairwise different) and the above equation is equiv-
H-.<J Aik(€)=Xj k(€ ’

alent to

m1 A k(T) ad Ab

Hi<j Xijk(€) = Ajk(e)

m,.)\s,k(T)
Using equations (1,2,3) we obtain the claim and the Proposition therefore is proven.

0.5 Cuspidality of analytic families of ordinary families of
modular forms. |

In this last section we show that our trace identities expressed in Corollary 1 and Corol-
lary 1°74 in section 3 and in the Theorem in section 4 also hold on the slope a subspace
82 of the space S = Sk(T, xw™*) of cusp of level I', weight & and nebentype xw™*. To
this end we show that they hold on the orthogonal complement & of Sk in M. As
Hecke module, & is a direct sum of induced representations

~ GL2(A
@) & = P(md5 2576k,
e

where B < GL; is the Borel subgroup consisting of all upper triangular matrices and

6 = (01,0,) : TH(Q)\T2(A) = C*
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runs over all characters satisfying the following conditions:

(3.8) Oroolry = | 152, B oolr, = |- [07? With ©1,0007 5 (1) = (~1)*

(3.b) ©10, = | - |F2x 2“—k

(3.c) (maﬁ{ﬁj{‘?f HE#0

(K = Ki(Np) < GLZ(Z) is the Hecke subgroup correspondiong to I' = I'; (Np)). We
denote by Ty = K ¢(Np) (@ 1) K1 ¢(Np) the local Hecke operator and we determine
the slope decompésition of a constituent of &.

Proposition 1. Let I be any automorphic representation of GLa(A) such that Ilf
occurs in E.

- If cond®, = (1,1), i.e. ©, is unramified, then with respect to some basis of H,I,{ ?
the Hecke operator Tp on IIf,{ P is represented by the matriz

<p1/2@1,p(p) ) )
pl/ze.?,p(p)

- If cond ®, = (p, 1) then T, acts on HK as multiplication with ©1 ,(p)p*/2.

- If cond ©, = (1,p) then Ty acts on H as multiplication with Gg,p(p)pl/ 2,

Since the classical Hecke operator T, corresponds to the local Hecke operator
Pk xpw’k(p HT » we obtain that the nontrivial slopes of H?’ with respect to T}, are
0,k — 1 resp. O resp. k — 1 in the first resp. second resp. third case of Proposition

1. Since we are interested in families of constant slope we have to restrict to the slope
0-subspace of & with respect to T, which is the slope 2 — k subspace with respect to
T,. We fix a weight kp and we let H? 2=ko (Indg%‘;i?f ‘e 7)f02=%0 be a constituent of
£, ie. © = (©1,0;) satisfies (3 a,b,c) (with k replaced by ko) and cond © = (1,1) or
= (p,1). We define a character @ = (O, 92) by setting

O1k = O - [FRowkok

©; again satisfies (3 a,b,c) and the condition on the conductor. Hence, I'If)? =

(In dGLz(Af )9 £)%27F is a nontrivial constituent of .
Proposition 2. 1.) For all primes £ the following holds:
1.) tr To|x2-x depends analytically on k, i.e. there is Fag, € o[[X]] such that
. k. f
— k —
tr Telgxa-x = F e, (1 +p)"—1)

for all k. Here, °© = 51/f@ i.e. Il s is algebraically induced from °©. |
2.)0 (Faee) a(“@)e for all 0 € Aut(C p/Qp)

As a consequence of Proposition 2 we obtain
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Theorem. For all primes £ there is a power series Fy € o[[X]] such that
tr Teleo = Fe((1 +p)* — 1)

for all weights k.

The above trace identity in particular implies that tr T} g =tr T €9 (mod p™) ifk =
k' (mod p™). Thus, our trace identitites also hold on 6,8 and, hence, on S,?. Corollary 1
and Theorems 2, 3a, 3b of section 1 therefore also hold in the cuspidal case. In particular,
since cuspidal eigenforms forms are determined by their corresponding system of Hecke
eigenvalues we obtain

Corollary. Any cuspidal eigenform f € S,?O fits in an R-family of true cuspidal
eigenforms (fi)k-
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