<table>
<thead>
<tr>
<th>Title</th>
<th>ON THE KOTTWITZ-SHELSTAD NORMALIZATION OF TRANSFER FACTORS FOR AUTOMORPHIC INDUCTION FOR GL_n (JOINT WORK WITH K. HIRAGA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ICHINO, ATSUSHI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2010), 1715: 90-92</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/170299</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON THE KOTTWITZ-SHELSTAD NORMALIZATION OF TRANSFER FACTORS FOR AUTOMORPHIC INDUCTION FOR GL_n
(JOINT WORK WITH K. HIRAGA)

ATSUSHI ICHINO

This note is a report on a joint work with Kaoru Hiraga. Details will appear elsewhere.

Automorphic induction for GL_n over a p-adic field is an example of endoscopic transfer and its character identity was established by Henniart and Herb [2], up to a constant. We discuss a relation of this constant to the Kottwitz-Shelstad transfer factor [5], in particular, to the normalization using ϵ-factors.

Let F be a non-archimedean local field of characteristic zero. Let $G = GL_n(F)$ and $a \in H^1(W_F, Z(\hat{G}))$, where W_F is the Weil group of F and $Z(\hat{G})$ is the center of the dual group of G. Let (H, \mathcal{H}, s, ξ) be an endoscopic data for (G, id, a) (see [5]). Then we have a map

$$\text{Tran}_H^G : \{\text{(stable) invariant distributions on } H\} \longrightarrow \{\text{twisted invariant distributions on } G\}$$

defined as follows.

Let ω be the character of F^\times associated to a. We write $\omega(g) = \omega(\det g)$ for $g \in G$. For a (strongly) regular semisimple element $\gamma \in G$ such that $G_\gamma \subset \ker \omega$ and $f^G \in C_c^\infty(G)$, put

$$O_\gamma^\omega(f^G) = \int_{G_\gamma \backslash G} \omega(g) f^G(g^{-1}\gamma g) \, dg,$$

where G_γ is the centralizer of γ in G. Similarly, for a (strongly) G-regular semisimple element $\gamma_H \in H$ and $f^H \in C_c^\infty(H)$, put

$$O_{\gamma_H}(f^H) = \int_{H_{\gamma_H} \backslash H} f^H(h^{-1}\gamma_H h) \, dh,$$

where H_{γ_H} is the centralizer of γ_H in H. Here we choose suitable Haar measures on $G, G_\gamma, H,$ and H_{γ_H}. By a result of Waldspurger [7], for...
each $f^G \in C_c^\infty(G)$, there exists $f^H \in C_c^\infty(H)$ such that

$$O_{\gamma_H}(f^H) = \sum_{\gamma} \Delta(\gamma_H, \gamma)O_{\gamma}^\omega(f^G)$$

for all G-regular semisimple elements $\gamma_H \in H$. Here the sum is taken over a set of representatives for the conjugacy classes of $\gamma \in G$ whose norm is γ_H and Δ is a transfer factor (see [5]). Since G is quasi-split over F, we can normalize Δ using Whittaker data and ϵ-factors as in [5, §5.3]. For an invariant distribution D on H, we define a twisted invariant distribution $\text{Tran}^G_H(D)$ by

$$\text{Tran}^G_H(D)(f^G) = D(f^H)$$

for $f^G \in C_c^\infty(G)$.

On the other hand, by a result of Henniart and Herb [2], for each irreducible tempered admissible representation π_H of H, there exist an irreducible tempered admissible representation π of G and a constant $c \in \mathbb{C}^\times$ such that $\pi \otimes \omega \cong \pi$ and

$$\text{Tran}^G_H(\Theta_{\pi_H}) = c \cdot \Theta_{\pi}^\omega.$$

Here $\Theta_{\pi_H}(f^H) = \text{trace}(\pi_H(f^H))$ for $f^H \in C_c^\infty(H)$ and $\Theta_{\pi}^\omega(f^G) = \text{trace}(\pi(f^G) \circ \mathcal{A}_\omega)$ for $f^G \in C_c^\infty(G)$, where $\mathcal{A}_\omega : \pi \otimes \omega \to \pi$ is an isomorphism as vector spaces. Since π is generic, we can normalize \mathcal{A}_ω using Whittaker functionals. By a result of Henniart and Lemair [3], the constant c does not depend on the representations.

Our main result is as follows.

Theorem 1. We have

$$c = 1.$$

Remark 2. An analogous result for $F = \mathbb{R}$ was proved by Henniart [1].

References

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA CITY UNIVERSITY, 3-3-138 SUGIMOTO, SUMIYOSHI-KU, OSAKA 558-8585, JAPAN

E-mail address: ichino@sci.osaka-cu.ac.jp