<table>
<thead>
<tr>
<th>Title</th>
<th>Orbital Gauss sums associated with the space of binary cubic forms over a finite field (Automorphic forms, automorphic representations and related topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mori, Shingo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2010), 1715: 32-36</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/170304</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Orbital Gauss sums associated with the space of binary cubic forms over a finite field

京都大学 理学部 数学教室 森 伸吾 (Shingo Mori)
Department of Mathematics, Kyoto University

§0 Introduction

We consider an orbital L-function associated with the space of binary cubic forms over rational integer ring. The orbital L-function satisfy a functional equation. The functional equation may be expressed in terms of an orbital Gauss sum. In this paper, we shall evaluate the orbital Gauss sum.

Notation. If K is a field, K^\times is its group of units and $M_n(K)$ is the ring of $n \times n$ matrices over K. When K is commutative, $GL_n(K)$ is the group of $n \times n$ matrices over K which are invertible. We use the notation $B(K)$ and $N(K)$ for the subgroups of $GL_n(K)$ of matrices of the form

$$
\begin{pmatrix}
* & * \\
0 & *
\end{pmatrix},
\begin{pmatrix}
1 & * \\
0 & 1
\end{pmatrix}
$$

respectively. Unless otherwise specified, $G_K = G(K) = GL_2(K)$.

Let χ be a Dirichlet character of conductor f. An usual Gauss sum is defined by

$$
\tau(\chi) = \sum_{a=1}^{f} \chi(a) \exp\left(\frac{2\pi \sqrt{-1}}{f}\right).
$$

§1 The space of binary cubic forms over a finite field.

First, a review of the basic theory is in order. Let K be a field. The space V_K of binary cubic forms with coefficients in the field K is of four dimensional, and we shall identify a 4-tuple $x = (x_1, x_2, x_3, x_4) \in K^4$ with the form given by:

$$
F_x(u, v) = x_1u^3 + x_2u^2v + x_3uv^2 + x_4v^3.
$$

We shall define an action of the group $G_K = GL_2(K)$ on V_K by the following functional equation:

$$
F_gx = (\det g)^{-1}F_x((u, v) \begin{pmatrix} a & b \\ c & d \end{pmatrix})
$$
where x is any element of V_K and $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is any element of G_K. This is arranged so that

$$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \cdot x = ax.$$

Let $P(x)$ denote the discriminant of the form F_x, explicitly given by

$$P(x) = x_2^2x_3^2 + 18x_1x_2x_3x_4 - 4x_2^3x_4 - 4x_1x_3^3 - 27x_1^2x_4^2.$$

The hypersurface $S_K = \{x \in V | P(x) = 0\}$ is invariant under G_K. Let V'_K denote the set of all nonsingular forms in V_K, $V'_K = \{x \in V_K | P(x) \neq 0\} = V_K - S_K$. A basic feature of this representation is that

$$P(g \cdot x) = (\det g)^2 P(x).$$

A non-zero rational function $R(x)$ on V_K is called a relative G_K-invariant if there exists a character χ of G_K such that $R(g \cdot x) = \chi(g)R(x)$ for all $x \in V_K$ and $g \in G_K$. The discriminant generates the ring of relative invariants of this representation of $GL_2(K)$.

\[\text{§2}\]

Let p be a prime number. We shall assume that $p \neq 2, 3$. Let \mathbb{F}_q be the finite field of prime power of order q. We put $K = \mathbb{F}_q$. The hypersurface S_K and nonsingular set V'_K decomposes into three G_K orbits.

Lemma 1. We put $s_1 = (1, 0, 0, 0)$ and $s_2 = (0, 1, 0, 0)$. The G_K-orbits in S_K are precisely

- $S_0 = \{0\}$;
- $S_1 = G_K \cdot s_1 = \{x \in V_K | F_x$ has a triple root$\}$;
- $S_2 = G_K \cdot s_2 = \{x \in V_K | F_x$ has a double root and a distinct simple root$\}$.

For a form x in V'_K, let $K(x)$ denote the cubic ring of x over K. The degree of $K(x)$ is 3.

Lemma 2. Two nonsingular binary cubic forms over \mathbb{F}_q are G_K-equivalent if and only if their cubic ring are same. The G_K-orbits in V'_K are precisely

- $V'_{K,1} = \{x \in V'_K | \mathbb{F}_q(x) = \mathbb{F}_q \times \mathbb{F}_q \times \mathbb{F}_q\}$;
- $V'_{K,2} = \{x \in V'_K | \mathbb{F}_q(x) = \mathbb{F}_q^2 \times \mathbb{F}_q\}$;
- $V'_{K,3} = \{x \in V'_K | \mathbb{F}_q(x) = \mathbb{F}_q^3\}$.

The order of stabilizer in G_K of nonsingular binary cubic forms with cubic ring $\mathbb{F}_q \times \mathbb{F}_q \times \mathbb{F}_q$, $\mathbb{F}_q^2 \times \mathbb{F}_q$ and \mathbb{F}_q^3 is 6, 2 and 3, respectively. If $p \equiv 1 \mod 3$, there are three nonsingular G_K-orbits with representatives:

$$x_I = (1, 0, -1, 0), \ x_{II} = (r, 0, -1, 0), \ x_{III} = (s, 0, 0, -1),$$

where r is any element of \mathbb{F}_q^\times that is not a square and s is any element that is not a cube.

\[\text{§3 The orbital Gauss sum.}\]
For simplicity, we shall assume that $K = \mathbb{F}_p$. Let ψ be a character of multiplicative group of \mathbb{F}_p^\times of nonzero elements of \mathbb{F}_p. Extend ψ to \mathbb{F}_p by the convention $\psi(0) = 0$. The alternating form:

$$[x, y] = x_1y_4 - \frac{1}{3}x_2y_3 + \frac{1}{3}x_3y_2 - x_4y_1,$$

has the property that $[g \cdot x, \det(g)^{-1}g \cdot y] = [x, y]$ for all $x, y \in V_K$ and $g \in G_K$. For $x, y \in V_K$, we put

$$\langle x, y \rangle = \exp\left(\frac{2\pi \sqrt{-1}}{p} [x, y]\right).$$

We define the orbital Gauss sum.

Definition 1. For $a, b \in V_K$, we define

$$W(\psi, a, b) = \sum_{g \in G_K} \psi(\det(g)) \langle x, g \cdot y \rangle$$

After basic calculation, we find that

$$W(\psi, g \cdot a, g' \cdot b) = \psi(\det g)^{-1}\psi(\det g')^{-1}W(\psi, a, b)$$

where $g, g' \in G(K)$. We can take the following set:

$$V(\mathbb{F}_p) = \{y_0 | y_0 \in S_0\} \cup \{y_1 | y_1 \in S_1\} \cup \{y_2 | y_2 \in S_2\} \cup \{y_3 | y_3 \in V_1, K\} \cup \{y_4 | y_4 \in V_1', K\} \cup \{y_5 | y_5 \in V_1, K\}.$$

For positive integers $i, j, 0 \leq i, j \leq 5$, we define a matrix valued Gauss sum $W(\psi)$ as a 6×6 matrix whose (i, j) component is given by \(\frac{1}{\# G_K)}W(\psi, y_i, y_j).$$

We shall assume that $\psi^3 = 1$. Our main result is as follows.

Theorem 1. Let ψ be a trivial character. If $p \equiv 1 \mod 3$, then

$$W(1) = \begin{pmatrix}
1 & p^2 - 1 & \frac{1}{6}p(p^2 - 1)(p - 1) & \frac{1}{3}p(p - 1)(p^2 - 1) & \frac{1}{3}p(p - 1)(p^2 - 1) \\
1 & -1 & \frac{1}{6}p(p - 1)(2p - 1) & -\frac{1}{3}p(p - 1) & -\frac{1}{3}p(p^2 - 1) \\
1 & p - 1 & \frac{1}{3}p(p - 1)(p - 1) & -\frac{1}{3}p(p - 1) & 0 \\
1 & 2p - 1 & -3p & \frac{1}{6}p(p + 5) & -\frac{1}{3}p(p - 1) & \frac{1}{3}p(p - 1) \\
1 & -1 & -p & \frac{1}{6}p(p - 1) & \frac{1}{3}p(p + 1) & -\frac{1}{3}p(p - 1) \\
1 & -p - 1 & 0 & \frac{1}{6}p(p - 1) & -\frac{1}{3}p(p - 1) & \frac{1}{3}p(p + 2)
\end{pmatrix}.$$

If $p \equiv 2 \mod 3$, then

$$W(1) = \begin{pmatrix}
1 & p^2 - 1 & \frac{1}{6}p(p^2 - 1)(p - 1) & \frac{1}{3}p(p - 1)(p^2 - 1) & \frac{1}{3}p(p - 1)(p^2 - 1) \\
1 & -1 & \frac{1}{6}p(p - 1)(2p - 1) & -\frac{1}{3}p(p - 1) & -\frac{1}{3}p(p^2 - 1) \\
1 & p - 1 & \frac{1}{3}p(p - 1)(p - 1) & -\frac{1}{3}p(p - 1) & 0 \\
1 & 2p - 1 & -3p & \frac{1}{6}p(-p + 5) & \frac{1}{3}p(p + 1) & -\frac{1}{3}p(p - 1) \\
1 & -1 & -p & \frac{1}{6}p(p + 1) & \frac{1}{3}p(-p + 1) & \frac{1}{3}p(p + 1) \\
1 & -p - 1 & 0 & \frac{1}{6}p(p + 1) & \frac{1}{3}p(p + 1) & \frac{1}{3}p(p - 2)
\end{pmatrix}.$$

Theorem 2. Let \(\psi \) be a nontrivial cubic character. If \(p \equiv 1 \mod 3 \), then

\[
W(\psi) = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
p\tau(\psi) & 0 & \frac{1}{6}p(p-1)\tau^2(\psi) & -\frac{1}{2}\psi(4r)p(p-1)\tau^2(\psi) & \frac{1}{3}\psi(s)p(p-1)\tau^2(\psi) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\tau^2(\psi) & 0 & \frac{1}{6}A & \frac{1}{3}X & \frac{1}{3}B & 0 \\
0 & -\psi(4r)\tau^2(\psi) & \frac{1}{6}X & \frac{1}{2}Y & \frac{1}{2}D & \frac{1}{3}C \\
0 & \psi(s)\tau^2(\psi) & \frac{1}{6}B & \frac{1}{2}D & \frac{1}{3}C & 0
\end{pmatrix}
\]

where

\[
A = \tau^4(\psi) + 4\tau^2(\psi) - \frac{\tau^5(\psi)}{p}, \quad B = \psi(s)\left(\tau^4(\psi) - 2\tau^2(\psi)p - \frac{\tau^5(\psi)}{p}\right),
\]

\[
C = \psi(s)\left(\tau^4(\psi) + \tau^2(\psi)p - \frac{\tau^5(\psi)}{p}\right), \quad D = \psi(4rs^2)\left(\tau^4(\psi) + \frac{\tau^5(\psi)}{p}\right),
\]

\[
X = \psi(4r)\left(\tau^4(\psi) + \frac{\tau^5(\psi)}{p}\right) \text{ and } Y = \tau^4(\psi) - \frac{\tau^5(\psi)}{p}.
\]

Proofs. For simplicity we assume \(a = b = s_1 \). We put \(w = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \). Elementary methods of linear algebra give the Bruhat decomposition

\[
G(K) = B(K) \sqcup B(K)wN(K)
\]

where

\[
B(K) = \left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} | a, c \in K^\times, n \in K \right\}
\]

and \(B(K)wN(K) = \left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} | a, c \in K^\times, n, m \in K \right\} \).

For \(g_1 \in B(K) \) and \(g_2 \in B(K)wN(K) \), we define

\[
W_1(\psi, s_1, s_1) = \sum_{g_1 \in B(K)} \psi(\det g_1) \langle [s_1, g_1 \cdot s_1] \rangle
\]

and

\[
W_2(\psi, s_1, s_1) = \sum_{g_2 \in B(K)wN(K)} \psi(\det g_2) \langle [s_1, g_2 \cdot s_1] \rangle.
\]

For \(1 \leq i \leq 2 \), the twisted action of \(g_i \) on the element \(s_1 \) is given by \(g_1 \cdot s_1 = (a^2c^{-1}, 0, 0, 0), \quad g_2 \cdot s_1 = (a^2c^{-1}n^3, 3an^2, 3an, a^{-1}c^2) \). A straightforward calculation shows that

\[
W_1(\psi, s_1, s_1) = \sum_{g \in B(K)} \psi(\det g) \langle [s_1, g_1 \cdot s_1] \rangle
\]

\[
= \sum_{a, c \in K^\times, n \in K} \psi(ac) \langle 0 \rangle
\]

\[
= \begin{cases} (p-1)^2p & \text{if } \psi = 1, \\ 0 & \text{otherwise.} \end{cases}
\]
We deduce the analogous equality for $W_2(ψ, s_1, s_1)$

\[
W_2(ψ, s_1, s_1) = \sum_{g \in B(K)wN(K)} ψ(\det g)⟨[s_1, g_1 · s_1]⟩ = \sum_{a, c \in K^\times, n, m \in K} ψ(ac)⟨a⁻¹c^2⟩ = \sum_{a, c \in K^\times, n, m \in K} ψ(ac^3)⟨a⁻¹⟩ = \sum_{a, c \in K^\times, n, m \in K} \overline{ψ}(a)⟨a⟩ = p^2(p-1)τ(\overline{ψ}).
\]

Combining all these equalities, we obtain

\[
W(ψ, s_1, s_1) = W_1(ψ, s_1, s_1) + W_2(ψ, s_1, s_1) = \begin{cases} -p(p-1) & \text{if } ψ = 1, \\ p^2(p-1)τ(\overline{ψ}) & \text{otherwise.} \end{cases}
\]

More precious proof will be shown in [SM].

References

[SM] S. Mori; Orbital Gauss sum for the space of binary cubic forms over a finite field. in preparation.

[T] T. Taniguchi; Orbital L-functions for the space of binary cubic forms. in preparation.

[D1] D.J. Wright; The adelic zeta function associated to the space of binary cubic forms part I: Global theory, Math. Ann 270 (1985), 503–534

[D2] D.J. Wright; Cubic Character sums of cubic polynomial, Amer. Math. Soc 100 No. 3, (1987), 409–413

Department of Mathematics
Kyoto University
Kyoto 606-8502, Japan
sin-mori@math.kyoto-u.ac.jp