MULTIPLICITY DISTANCE OF KNOTS

KOUKI TANIYAMA

ABSTRACT. We define multiplicity and multiplicity distance in a category. We define neighbourhood category of knots and discuss its multiplicity distance.

§1. Multiplicity in a category

Let $\mathcal{C} = (\mathcal{O}, \{\operatorname{Hom}(X,Y)\}_{X,Y\in\mathcal{O}}, \circ)$ be a category. Namely \mathcal{O} is a set of objects and $\operatorname{Hom}(X,Y)$ is the set of morphisms from an object X to an object Y.

 $\forall \varphi \in \operatorname{Hom}(X,Y), \forall \psi \in \operatorname{Hom}(Y,Z), \ \psi \circ \varphi \in \operatorname{Hom}(X,Z) \text{ is defined}$ such that the following (1) (2) and (3) hold.

(Notation: $\varphi \in \text{Hom}(X, Y) \Leftrightarrow \varphi : X \to Y$)

$$(1) \ \forall \varphi : X \to Y, \ \forall \psi : Y \to Z, \ \forall \tau : Z \to W, \ (\varphi \circ \psi) \circ \tau = \varphi \circ (\psi \circ \tau)$$

(2)
$$\forall X \in \mathcal{O}$$
, $\exists \operatorname{id}_X : X \to X$ s.t. $\forall \varphi : X \to Y$, $\varphi \circ \operatorname{id}_X = \varphi$, and $\forall \psi : Y \to X$, $\operatorname{id}_X \circ \psi = \psi$,

(3)
$$\operatorname{Hom}(X, Y) \cap \operatorname{Hom}(Z, W) \neq \emptyset$$

 $\Rightarrow X = Z \text{ and } Y = W.$

Definition 1.

$$m: \bigcup_{(X,Y)\in\mathcal{O}\times\mathcal{O}} \operatorname{Hom}(X,Y) \to \mathbb{R}_{\geq 1} \cup \{\infty\}$$

is a multiplicity on C

$$\stackrel{\text{def}}{\Longleftrightarrow} (1) \ \forall X \in \mathcal{O}, \ m(\mathrm{id}_X) = 1, \ \mathrm{and}$$

$$(2) \ \forall \varphi : X \to Y, \ \forall \psi : Y \to Z, \ m(\psi \circ \varphi) \le m(\varphi)m(\psi).$$

Key words and phrases. multiplicity, category, knot.

Here we think $\forall x \in \mathbb{R}_{\geq 1}$, $x \leq \infty$, $x \cdot \infty = \infty \cdot x = \infty$, $\infty \leq \infty$ and $\infty \cdot \infty = \infty$.

Definition 2. $X, Y \in \mathcal{O}$

$$m(X:Y) = \inf\{m(\varphi) \mid \varphi \in \operatorname{Hom}(X,Y)\}\$$

m(X : Y): multiplicity of X over Y with respect to m.

Proposition 3. m: multiplicity on C

(1)
$$\forall X \in \mathcal{O}, \ m(X:X) = 1,$$

(2)
$$\forall X, Y, Z \in \mathcal{O}, \ m(X:Z) \le m(X:Y)m(Y:Z).$$

m has finite multiplicity property (FMP)

$$\stackrel{\text{def}}{\Longleftrightarrow} \forall X, Y \in \mathcal{O}, \ m(X:Y) < \infty.$$

Definition 4.

$$d_m(X,Y) = \log_e(m(X:Y)m(Y:X))$$

 $d_m(X,Y)$: m-distance of X and Y

Proposition 5. m: multiplicity on C with FMP

 (\mathcal{O}, d_m) is a pseudo metric space i.e.

(D1')
$$d_m(X,Y) \ge 0$$
, $d_m(X,X) = 0$,

(D2)
$$d_m(X,Y) = d_m(Y,X),$$

(D3)
$$d_m(X, Z) \le d_m(X, Y) + d_m(Y, Z)$$
.

Example 6. C: subcategory of the category of sets and maps (SET)

$$X, Y \in \mathcal{O}, f: X \to Y$$

$$m(f) = \sup\{|f^{-1}(y)||y \in Y\}$$

m: map multiplicity

Proposition 7. map multiplicity is a multiplicity, i.e.

(1)
$$\forall X \in \mathcal{O}, m(\mathrm{id}_X) = 1, and$$

$$(2) \ \forall f: X \to Y, \ \forall g: Y \to Z, \ m(g \circ f) \leq m(f)m(g).$$

Example 8. R: PID, M, N: R-modules finitely generated over R.

r(M): the minimal number of generators of M over R.

 $f: M \to N: R$ -linear map

$$m_{\ker}(f) = e^{r(\ker f)}$$

$$m_{\text{coker}}(f) = e^{r(\text{coker}f)}$$

$$(\operatorname{coker} f = N/f(M))$$

Proposition 9. (1) m_{ker} is a multiplicity.

(2) m_{coker} is a multiplicity.

When R is a field, M and N are finite dimensional vector spaces over R, and

$$d_{m_{\ker}}(M,N) = d_{m_{\operatorname{coker}}}(M,N) = |\dim M - \dim N|.$$

§2. Neighbourhood category of knots

 \mathcal{K} : unoriented knot types in \mathbb{S}^3 , $K_1, K_2 \in \mathcal{K}$.

 $f = (V_2, k_1)$ is a morphism from K_1 to K_2

 $\stackrel{\text{def}}{\Longleftrightarrow} V_2 \subset \mathbb{S}^3$: knotted solid torus with knot type K_2 ,

 $k_1 \subset \text{int} V_2$: knot in \mathbb{S}^3 with knot type K_1 .

 $(V,k)=(V',k') \stackrel{\text{def}}{\Longleftrightarrow} {}^{\exists}h:\mathbb{S}^3 \to \mathbb{S}^3$ ori. preserving homeomorphism s.t. h(V)=V' and h(k)=k'

 $\operatorname{Hom}(K_1,K_2)$: the set of morphisms from K_1 to K_2 .

$$f: K_1 \to K_2, g: K_2 \to K_3, f = (V_2, k_1), g = (V_3, k_2)$$

 V_2' : regular neighbourhood of k_2 with $V_2'\subset {\rm int}V_3,\ k_1'$: knot in V_2' s.t. $(V_2',k_1')=(V_2,k_1).$

We define $g \circ f = (V_3, k'_1)$.

Proposition 10. $C_{\mathcal{K}} = (\mathcal{K}, \{\operatorname{Hom}(K, J)\}_{K,J \in \mathcal{K}}, \circ)$ is a category.

 $\mathcal{C}_{\mathcal{K}}$: neighbourhood category of Knots

 $id_K: K \to K$ is given by $id_K = (V, k)$ where V is a regular neighbourhood of a knot k with knot type K.

§3. Multiplicity distance of knots

Definition 11. $f: K_1 \to K_2 :$ morphism, $f = (V_2, k_1)$, $h: V_2 \to \mathbb{S}^1 \times \mathbb{D}^2 :$ homeomorphism, $\pi: \mathbb{S}^1 \times \mathbb{D}^2 \to \mathbb{S}^1 :$ natural projection.

h is generic $\stackrel{\text{def}}{\Longleftrightarrow} \pi \circ h|_{k_1} : k_1 \to \mathbb{S}^1$ is a Morse map, i.e. it has only finitely many critical points in different levels.

$$m(h) = \max\{|(\pi \circ h|_{k_1})^{-1}(y)| \mid y \in \mathcal{S}^1\}$$

$$m(f) = \min\{m(h) \mid h : V_2 \to \mathbb{S}^1 \times \mathbb{D}^2 \text{ generic homeomorphism}\}$$

Proposition 12. m is a multiplicity on $\mathcal{C}_{\mathcal{K}}$.

Proposition 13. (1)
$$f: K_1 \to K_2, m(f) = 1 \implies K_1 = K_2.$$
 (2) $m(K_1: K_2) = 1 \Leftrightarrow K_1 = K_2.$

Proposition 14. (\mathcal{K}, d_m) is an unbounded metric space.

 d_m : multiplicity distance of knots

Definition 15. (Ozawa [1]) $k : \text{knot in } \mathbb{S}^3 - \{(0, 0, 0, 1), (0, 0, 0, -1)\},$

$$\pi: \mathbb{S}^3 - \{(0,0,0,1), (0,0,0,-1)\} \cong \mathbb{S}^2 \times \mathbb{R} \to \mathbb{R}$$

: natural projection, $\pi|_k: k \to \mathbb{R}$: Morse function.

$$\operatorname{trunk}(k) = \max\{|\pi^{-1}(y)||y \in \mathbb{R}\}\$$

 $trunk(K) = \min\{trunk(k)|knot type of k is K\}$

Proposition 16. (Ozawa [1]) $\forall n \in \mathbb{N}, \exists K \in \mathcal{K} \ s.t. \ \mathrm{trunk}(K) \geq n.$

Proposition 17. (1) $K, J \in \mathcal{K}$,

$$\frac{\operatorname{trunk}(K)}{\operatorname{trunk}(J)} \le m(K:J) \le \operatorname{trunk}(K).$$

(2) $K, J \in \mathcal{K}$, J is not a companion of K,

$$\Rightarrow m(K:J) = \operatorname{trunk}(K).$$

Proposition 18. $K, J \in \mathcal{K}$,

- (1) $m(K:0_1) \leq \operatorname{braid}(K)$,
- (2) $m(K: 0_1) \le 2 \text{bridge}(K) 1$,
- (3) $m(K:J) = 2 \Rightarrow K \text{ is a } (2,p)\text{- cable of } J, \text{ or } K = 0_1.$

Corollary 19. $K \in \mathcal{K}$,

$$m(K: 0_1) \ge \frac{\operatorname{trunk}(K)}{\operatorname{trunk}(0_1)} = \frac{\operatorname{trunk}(K)}{2}.$$

 $K \neq 0_1$,

$$d_m(K, 0_1) \ge \log_e \frac{\operatorname{trunk}(K)}{2} \cdot 2 = \log_e \operatorname{trunk}(K).$$

 $\{d_m(K, 0_1)|K \in \mathcal{K}\}\ is\ unbounded.$

Definition 20. $K \in \mathcal{K}$, $m(K) = m(K : 0_1)$.

m(K): multiplicity of K, $m(K) \in \mathbb{N}$.

Remark 21. $m(K) \le n \Leftrightarrow d_m(K, 0_1) \le \log_e 2n$.

Proposition 22. $K \in \mathcal{K}$,

- (1) $m(K) = 1 \Leftrightarrow K = 0_1$,
- (2) $m(K) = 2 \Leftrightarrow K \text{ is a } (2, p)\text{-torus knot},$

- (3) $m(K) = 3 \Leftrightarrow K \neq 0_1$, K is not a (2, p)-torus knot, and
 - (a) K is a closed 3-braid, or
 - (b) K is a connected sum of some 2-bridge knots.

Proposition 23. $K:Montesinos\ knot \Rightarrow m(K) \leq 4.$

The detail will appear in [2].

REFERENCES

- [1] M. Ozawa, Waist and trunk of knots, to appear in Geometriae Dedicata.
- [2] K. Taniyama, Multiplicity of a space over another space, in preparation.

DEPARTMENT OF MATHEMATICS, SCHOOL OF EDUCATION, WASEDA UNIVERSITY, NISHI-WASEDA 1-6-1, SHINJUKU-KU, TOKYO, 169-8050, JAPAN *E-mail address*: taniyama@waseda.jp