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Abstract

In this article homogeneous fractional differintegral equations

1 —w-a il Y )=0, -b)=0),
) @, -9-a ( +a(z_b) (a(z-b)=0)
a’ \
2 _ cq_ Jo————1 -0, ~-b) 0),
) Proz =Py "a= @, (a(z—b)ﬂ/f (a(z-b)+y =0)

and nonhomogeneous ones

1 2
3) 9, -0, ff—b =(cosz>,(<z:— b)+ YZ_’“b”} , ((z-b)=0),

and

Yy +2 (y + Dy +2)
4) - c— .
(py+2 “py+1 z— b +¢y (Z _b)Z

Yy + Dy +2) by %0
by , ((z-b)=0),

=—(sinz),(z - b) - (cosz),

are discussed in the field of N- fractional calculus; where

pEF={9;0=lg,l<o,yER}, (9=0(2)).
Particular solutions are given by
@ =e“(z-b)
to the equations 1) and 2 ), and
@ =(sinz)(z - b)
to the equations 3 ) and 4 ), respectively, without the copsideration of the

arbitrary constants for integrations.
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§ 0. Introduction ( Definition of Fractional Calculus )
(I) Definition. ( by K. Nishimoto )([1]1Vol. 1)
Let D={D_,D,}, C={C.,C.},
C_ be a curve along the cut joining two points z and - ®© +iIm(z),
C, be a curve along the cut joining two points z and ®©+ilm(z),
D_ be a domain surrounded by C_, D, be a domain surrounded by C, .

( HéreD contains the points over the curve C ).
Moreover, let f = f(z) be a regular function in D(z €D),

—(f) = _Tv+1) f &)
=Dl === ooy de VR, (1)
(f)om = lim (),  (MEZ), (2)
where -n <arg({-z)sx for C_, Os=arg(-z)<2a forC, ,

=z, z€C, vER, T ;Gamma function,
then (f), is the fractional differintegration of arbitrary order v ( derivatives of

order v for v >0, and integrals of order —v for v <0 ), with respect to z , of
the function f , if I(f)vl <0,

(IT1) On the fractional calculus operator N* [ 3]
Theorem A. Let fractional calculus operator ( Nishimoto's Operator) N* be

N’ F(V+ 1) d \
( 27 _’-C(C v+1 | (V$Z_), [Referto(l)] (3)

with N"=lim NN (m€Z"), (4)

v -m

and define the binary operation o as

Nf oN°f =NPN®f=NP(N°f) (a,BER), (5)
then the set

{N}={N|veER] (6)
is an Abelian product group ( having continuous index v ) which has the inverse

transform operator (N*)™ =N to the fractional calculus operator N* , for the

function f such thatf€F={f; O;_clfv|< w,vGR},where f=f@ and zEC.
(vis. —0<v < ).

( For our convenience, we call N® « N* as product of N’ and N°.)
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Theorem B. "F.0.G. {N'} " is an " Action product group which has continuous
indexv " for the set of F . ( F.O.G. ; Fractional calculus operator group ) [ 3]

Theorem C. Let
S:={=N3IU{0}={N'YU{~N"}U{0} (VER). (7)
Then the set S is a commutative ring for the function f €F, when the identity
N*+NP=N" (N°,N*,N' €5) (8)
holds. [ 5] '
(III) Lemma. Wehave[1]

- _oaby —iza L (0 = D) o ab-a I_(f_‘__‘_"_@ )

(1) ((z-0)), =€ —————F(—b) (z-0) ( D) <o |,

(ii) (log(z-¢)), =— € ™T(a)(z-c)*  (|T(@)| <),

(iii) ((z=c) %), =-€"" F(la) log(z-¢c)  (|T(a)|<),
where z—-c=0 for(i)and z-c= 0,1 for(ii ), (iii),

. o _Ta+)) (u=u(z),(\

) ( v)"""k};o KT +1-k =% Av=v@))

§ 1. Production of Fractional Differintegral Equations

Theorem 1. Let

@ =@(z) = e“(z-b) (alz-b)=0). (1)
We have then the following homogeneous fractional differintegral equations;
(1) (py—go-ay(l-{- Y \=O, (a(z-b)=0), (2)
U az-b))

Fractional differential equation for y >0 ,\
 \ Fractional integral equation fory <0. )

and
(i1 @) 3
) Pra =P @=@ =0, (az=hy ey =0), (3)

[ Fractional differential equation for y >0,
Fractional integral equation fory < -2, )
\Fractional differintegral equation for -2 <y <0,

applying N- fractional calculus, for arbitrary y .
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Proof of (i). Operate N- fractional calculus operator N’ to the both sides of

(1), we have then
N'g=N"(e*(z- b)),

that is,

e, =°° Iy +1)
PO, T Y 1)

= ("), @~ b +y(e™),

~a' e (z-b)+ya’e™,

by Lemma (iv).

Therefore, we have

from(7)and (1)
We have then ( 2 ) from ( 8 ) clearly, for arbitrary y .
Proof of (ii). We have

from ( 7 ), hence

(py+1=a € \ a
and
+2
(p+2=a)’+zea1/z_b+y )
Y \ a

Therefore, applying (9 ), (10) and ( 11 ), we obtain

y +2

LHS of (3) =a“zeaz~\z—b+

a a

2
a ~aye"{z—b+l>

—a(z—b)+y a

a—a(z—b)+y \ a

We have then ( 3 ) clearly, for arbitrary y .

/eaz)y_k(z_ b)k.

1
>~ay+zeal(z_b+y+ )

+2
—a”ze‘zzl @ eu/a(z—b)Jﬂ’):O ,

(4)

(6)

(7)

(8)

(10)

(11)
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Theorem 2. Let

@ =@(z) = (sinz)(z- b) ((z-b)=0). (14)

We have then the following nonhomogeneous fractional differintegral equations ;

. y+1 y:+y)
(1) Y =lz-b+ i(cosz), , (15)
(py 1 (py 7 - b \ Z—-b )( )y
[ Fractional differential equation for y > O,
l Fractional integral equation fory <-1,
Fractional differintegral equation for —1<y <0.

and
Y2+ D +2)

z-b i (z = b)

(ii) ) ~9, 4

y(y +D(y +2)
(z-b)’

=—(z-b)(sinz), - (cos z), (16)
( Fractional differential equation for y > O,
§ Fractional integral equation fory < -2,
\Fractional differintegral equation for -2 <y <O,
applying N- fractional calculus.
Proof of (i). Operate N- fractional calculus operator N’ to the both sides of
(14 ), we have then

@, =(sinz-(z-b)),. (17)
« L(y+)D )

= Z z~-b),. (18)

&y +1-p G
= (sinz),(z~- b) +y (sinz), 4(z - b), (19)
= (sinz),(z-b) +y (sinz), ,; , (20)

by Lemma (iv).
Therefore, we have

@, =(sinz), (2= D)+ (y +1)(sinz), , (21)

and
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@,.,, = (sinz),,,(z - b) +(y +2)(sinz2),, (22)

from ( 20 ) respectively.
Then applying ( 20 ) and ( 21 ) we obtain

LHS of (15 )= (sinz),,,(z = b)+ (y +D(sinz),

~(sinz), (y +1) - (sinz), , %-)' (23)
=(z-b+ y2+y>(cosz) (24)
\ z-b v

for arbitrary vy .
Proof of (ii). Applying (20),(21)and (22 ), we obtain

LHS of (16) = (sinz),,,(z ~b) +(y +2)(sinz)

y+1

_ (Yzi i){(sinz)m(z - b)+ (y +1)(sinz),}
DU D iy (2 -b)+ y(sin2), 3 (25)
(z-b)
_(sinz), ,(z~b) +(sing), LY DX+ 2) (26)
Y Y (Z _ b)
. D(y +2
= —(sin z),(z ~ b) - (cosz), Y(Y(Z—)§7§2+ ) (27)

for arbitrary v .

§ 2. N- Fractional Calculus Method to The Equations
obtained in Previous Section

Theorem 3. Let pEF={@;0=lg@ |l<»,yER}, (@=9¢(z)), thenthe

homogeneous fractional differintegral equations

‘y
—o-d - ~b)=0), 1
@, -@-a (1+a(2'b)> 0, (a(z-b)=0) (1)

have a particular solution

@ =e*(z-D). (2)
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Proof. Since y €ER , setting y =1in (1), we have

- @ =0. (3)
pi-p{ar—)

A particular solution to this variable separable form equation is givenby (2)
omitting the arbitrary constant for integration, clearly. And the function given by
(2) satisfies equation (1), as we seein § 1.

Theorem 4. Let 9 EF ={@;0=l¢ l<»,y ER}, (¢=¢(2)), thenthe
homogeneous fractional differintegral equations

2
a

—_— -b 0) , (4)
P, a(z-b)+y 0, (az-b)+y=0)

Cyiz =Py a-
have a particular solution
@ =e“(z-Db). (2)
Proof. Since y €ER , setting y =0 in(4 ), we have
@, (z-b)-@,-a(z-b)- ¢-a=0. (5)

Operate N” to the both sides of ( 5), we have then

(@, (z-b)), - (¢,"a(z- b)), — (¢-a), =0 . (6)
Now we have
((pl'(z—b))v:(p}{-v .(Z—b)+V(p1+v y (7)
(p,-a(z -b)), =a(p,"(z- b)), ‘ (8)
=aq,, z-b)+ave,. (9)
and
(p-a), =9, a. (10)

Thereforé, we obtain
®,,, (z-b)+g,, (v+ab-az)-¢-a(v+1)=0 (11)
from (6 ), applying ( 7 ), (9) and ( 10).

We have then
@, (z-b)+@-(ab-1-az)=0 (12)

from (11), choosing v =-1.
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A particular solution to this variable separable form equation is givenby (2)
omitting the arbitrary constant for integration, clearly. And the function ( 2 ) sati-

sfies equation (4 ), as we seein § 1.

Theorem 5. Let pEF={¢;0=lgl<xo,yER}, (¢=¢(2)), thenthe

nonhomogeneous fractional differintegral equations

y +1 y:+y
¢,+l-¢,';jz={z—b+ Z~b}(cosz), (z-b)=0), (13)
have a particular solution

@ =(sinz)(z-b). (14)

Proof. Since y ER ,setting y =0in( 13 ), we have

1
@,- ¢-——=(cosz)(z-b) . (15)
-z=-b

A particular solution to this linear first order equation is given by ( 14 ) without
the consideration of arbitrary constant for integration.

Inversely, the function shown by ( 14 ) satisfies equation ( 13 ) clearly, as we
seein § 1. (Refer to Theorem 2.(1).)

Theorem 6. Let 9 EF={@;0=1¢,1<»,y ER}, (@=¢(2)), thenthe

nonhomogeneous fractional differintegral equations

Y2 (41 +2)

-5 T (L oby

¢y +2 (py+1

y(y +D(y +2)
(z-b)’

=—(z-b)(sinz), - (cosz), , ((z-b)=0) (16)

have a particular solution
@ =(sinz)(z-0b). (14)
Proof. Since y ER , setting y =0 in (16 ), we have

2 2
z-b (p(z—b)z

Q- = —(sinz)(z - b) (17)

hence
@, (z-b) —@,-2(z -b)+ @2 = —(sinz)(z - b)’ (18)



Operate N” to the both sides of ( 18 ), we have then

@ "(2=0)"), ~(, -2z - 1)), +(92), = ~((sinD)"(z-b)°), .

Now we have

2 z ['(v+1)
@, (z-b) >v=;k!m+1_

0 (@,), . ((z=B)),

=0,., (2= B+ @, 2v(z- D)+ @, V(v -1),
(@, 2@ -b), =2(¢," (z- b)),

=A@, (z-b)+q@, "V}
and
(p-2),=9,2.

Therefore, we obtain
Qr (2= B+, (2~ D)2V -2)+ 9, (v =3v +2) = -((sin2)(z - by’),

from (19 ), applying ( 21 ), (23 ) and ( 24 ).
Choose v such that
vi-3v+2=(v-2)(v-1)=0,
we have then
v=1,2.
(I) When v =1, we obtain
@;(2-b)" =-((sin2)(z-5)?),
from ( 25 ), hence |
@; = —(cosz)(z —b)—-3sinz .
Therefore, we obtain

@ =-((cos z)(z ~ b) )_; —3(sinz)_,
from (29)

Now we have
(sinz)_5 =cosz

and
((cosz)(z ~b))_5 =—(z-b)sinz —3cosz .
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(19)

(20)

(21)
(22)

(23)

(24)

(26)

(27)

(28)

(29)

(30)
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Then we obtain
@ =(sinz)(z-b). (14)
from ( 30), ( 31 ) and ( 32), without the consideration of arbitrary constant for
integrations.
Inversely, the function shown by ( 14 ) satisfies equation ( 16 ) clearly, as we

seein § 1. ( Refer to Theorem 2. (ii).)
(II) When v =2 , we obtain

@, (2= b)* +@;-2(z - b) =— ((sinz)(z—- b)°), (33)
from ( 25 ), hence
¢, (z=b)* +¢-2(z —=b) = —((sinz)(z - b)’), (34)
(linear first order equations )

from ( 33 ), setting

@;=¢=9(z). (35)
Therefore, we obtain

(¢ (z-b)*), = -((sinz)(z -b)’), (36)

from ( 34 ), hence

(sin)(z- b))

- . (37)
(z-b)
=—(cos z:(z - b) +3sinz) . (38)
Then we obtain
Q=¢,=-(cosz"(z-b))_5—3(sinz)_4 (39)
=sinz-(z-b), (14)

as a particular solution to eqﬁation( 16 ), from ( 35 ) and ( 38 ), without the consi-
deration of arbitrary constants for integrations.
Inversely, the function shown by ( 14 ) satisfies equation ( 16) clearly, as we

seein § 1. (Refer to Theorem 2. (ii).)

§ 3. Propositions
After the consideration on the theoremsin § 1. and § 2. we obtain the propo-
sitions stated below clearly.

Proposition 1. Let g EF ={¢;0=1g <o,y ER}, (@ =¢(2)), andthe
fractional differintegral equations be
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@, +9 9= f(2) (1)

Fractional differential equation for 0 <y,
\ Fractional integral equation for y <O . \)

Then setting y =1, we obtain
(1) @ +@-g(z) = f(2) (2)

( linear first order equation for f(z)=0 )

and

(ii) @, +@-g(z) =0 (3)
( variable separable form equation for f(z)=0)

from(1).

The particular solutions to equations (2 ) and ( 3 ) are the particular ones to equa-
tion ( 1) respectively.
Note 1. In this case we can't set y =0 in(1), though y is arbitrary, because

(1)is reduced to not a differintegral equation for y = 0.
Proposition 2. Let pEF ={¢@ ;0= @, l<o,yER}, (@=¢(z)), and the
nonhomogeneous fractional differintegral equations be

Pyi2 ¥ 9,.19(2)+9, "h(2) = f(z) (4)

Fractional differential equation for O<y, \
Fractional integral equation for y <-2, J .
Fractional differitegral equation for — 2<y <O.

P i

Set y =0, then we obtain

(1) P, +@ 9@+ hz)=f(z), (for f(z)=0) (5)
and

(11) P, +@ 9@ +@-hz)=0,  (for f(z)=0) (6)
from(4).

The particular solutions to equations (5) and ( 6 ) are the particular ones to equa-

tions (4 ) respectively.

§ 4. Commentary
(I) The linear second order ordinary differential equations, whose solutions
are so called " special functions ", are called as " special differential equations
(SDE)".
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The SDE shown by (5 ) and (6 ) ( non-homogeneous and homogeneous ) in §3,
can be solved by our " N-fractional calculus method ( NFCM ) " which are described
in § 2. (Usually, so called SDE is given by ( 5) or ( 6 ) in its form. )

That is,

(i) nonhomogeneous equation § 3. ( 5) is reduced to linear first order one,
and

(ii) homogeneous equation § 3. ( 6) is reduced to variable separable form
one,
respectively., by our NFCM.

Then we can obtain the particular solutions to the original fractional differ-
integral equations § 3. ( 4), when the reduced ones are integrable. ([ 6 ] ~
[31])

Hitherto, only the homogeneous SDE are solved by means of Frobenius.
However we can solve the nonhomogeneous SDE by our NFCM, as we see
in § 2.

Note. N=Fractional calculus of exponential and trigonometric functions

We have

- .. -az -ixy Yy _—az
(l) (ea-Z)y =a}'eaz , (ll) (e )‘}’ =e ae y

) 7
(iii) (cosaz)y - cos{az+32£}’> , (iv) (sinaz)y =a sm(az+‘2‘)’> )

where a =0, respectively.( [1] Vol. 1)
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