<table>
<thead>
<tr>
<th>Title</th>
<th>(α, δ)-neighborhood defining by a new operator for certain analytic functions (Extensions of the historical calculus transforms in the geometric function theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kugita, Kazuyuki; Kuroki, Kazuo; Owa, Shigeyosi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2010), 1717: 38-45</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/170328</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
(α, δ)-neighborhood defining by a new operator for certain analytic functions

Kazuyuki Kugita, Kazuo Kuroki and Shigeyosi Owa

Abstract

For analytic functions $f(z)$ in the open unit disk U, a new operator $D^j f(z)$ for any integer j which is the generalization of Salagean differential operator and Alexander integral operator is introduced. The object of the present paper is to discuss some properties for $(α, δ)$-neighborhood defining by a new operator $D^j f(z)$ and to apply Miller-Mocanu lemma (J. Math. Anal. Appl. 65(1978)) for $(α, δ)$-neighborhood.

1. Introduction and definitions

Let \mathcal{A} be the class of functions $f(z)$ of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

that are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. For $f(z) \in \mathcal{A}$, Salagean [3] has introduced the following operator $D^j f(z)$ which is called Salagean differential operator.

$$D^0 f(z) = f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

$$D^1 f(z) = Df(z) = zf'(z) = z + \sum_{n=2}^{\infty} na_n z^n$$

and

$$D^j f(z) = D(D^{j-1} f(z)) = z + \sum_{n=2}^{\infty} n^j a_n z^n \quad (j = 1, 2, 3, \cdots).$$

Also, Alexander [1] has defined the following Alexander integral operator

$$D^{-1} f(z) = \int_{0}^{z} \frac{f(\zeta)}{\zeta} d\zeta = z + \sum_{n=2}^{\infty} n^{-1} a_n z^n.$$
Further, we introduce
\[D^{-j} f(z) = D^{-1}(D^{-(j-1)} f(z)) = z + \sum_{n=2}^{\infty} n^{-j} a_n z^n \quad (j = 1, 2, 3, \cdots) \]
which is the generalization integral operator of Alexander integral operator. Therefore, combining Sălăgean differential operator and Alexander integral operator, we introduce the operator \(D^j f(z) \) by
\[D^j f(z) = z + \sum_{n=2}^{\infty} n^j a_n z^n \]
for any integer \(j \). Applying the above operator, we consider the subclass \((\alpha_1, \alpha_2, \cdots, \alpha_p; \delta) - N_{m+1}^{j+1}(g_1, g_2, \cdots, g_p)\) of \(A \) as follows. A function \(f(z) \in A \) is said to be in the class \((\alpha_1, \alpha_2, \cdots, \alpha_p; \delta) - N_{m+1}^{j+1}(g_1, g_2, \cdots, g_p)\) if it satisfies
\[\left| \frac{D^{j+1} f(z)}{z} - \sum_{k=1}^{p} \alpha_k \frac{D^{m+1} g_k(z)}{z} \right| < \delta \quad (z \in U) \]
for some \(\delta > \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2} \), where \(\beta = \arg \alpha_k \) for all \(k \) with \(-\pi \leq \beta \leq \pi\), and for some \(g_k(z) \in A \) \((k = 1, 2, \cdots, p)\). Let us define \((\alpha_1, \alpha_2, \cdots, \alpha_p; \delta) - N_{m+1}^{j+1}(g_1, g_2, \cdots, g_p)\) by
\[(\alpha, \delta) - N_{m+1}^{j+1}(g) \equiv (\alpha_1, \alpha_2, \cdots, \alpha_p; \delta) - N_{m+1}^{j+1}(g_1, g_2, \cdots, g_p) \]
through this paper.

2 Main theorem

Let us define \(g_k(z) \in A \) \((k = 1, 2, \cdots, p)\) by
\[g_k(z) = z + \sum_{n=2}^{\infty} b_{n,k} z^n \]
through this paper. Our first result of \(f(z) \) for \((\alpha, \delta) - N_{m+1}^{j+1}(g)\) is contained in

Theorem 2.1 If \(f(z) \in A \) satisfies
\[\sum_{n=2}^{\infty} n |n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k}| \leq \delta - \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2} \]
for some \(\delta > \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2} \), where \(\beta = \arg \alpha_k \) for all \(k \) with \(-\pi \leq \beta \leq \pi\), and for some \(g_k(z) \in A \) \((k = 1, 2, \cdots, p)\), then \(f(z) \in (\alpha, \delta) - N_{m+1}^{j+1}(g) \).
Proof. Note that
\[
\left| \frac{D^{j+1} f(z)}{z} - \sum_{k=1}^{p} \alpha_k \frac{D^{m+1} g_k(z)}{z} \right| = \left| 1 + \sum_{n=2}^{\infty} n^{j+1} a_n z^{n-1} - \sum_{k=1}^{p} \alpha_k \left(1 + \sum_{n=2}^{\infty} n^{m+1} b_{n,k} z^{n-1} \right) \right|
\]
\[
= \left| 1 - \sum_{k=1}^{p} \alpha_k + \sum_{n=2}^{\infty} n \left(n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k} \right) z^{n-1} \right|
\]
\[
\leq \left| 1 - \sum_{k=1}^{p} \alpha_k \right| + \sum_{n=2}^{\infty} n \left| n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k} \right| z^{n-1}
\]
\[
< \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2} + \sum_{n=2}^{\infty} n |n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k}|.
\]

If
\[
\sum_{n=2}^{\infty} n |n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k}| \leq \delta - \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2},
\]
then we see that
\[
\left| \frac{D^{j+1} f(z)}{z} - \sum_{k=1}^{p} \alpha_k \frac{D^{m+1} g_k(z)}{z} \right| < \delta \quad (z \in U).
\]

This gives us that \(f(z) \in (\alpha, \delta) - N_{m+1}^{j+1}(g) \). \(\square \)

Example 2.2 For given \(g_k(z) = z + \sum_{n=2}^{\infty} b_{n,k} z^n \in \mathcal{A} \), we consider \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{A} \) with
\[
a_n = \frac{\delta - \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2}}{n^{j+2}(n-1)} e^{i \gamma} + n^{m-j} \sum_{k=1}^{p} \alpha_k b_{n,k} \quad (n = 2, 3, 4, \cdots).
\]

Then, we have that
\[
\sum_{n=2}^{\infty} n |n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k}| = \sum_{n=2}^{\infty} n \left| \frac{\delta - \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2}}{n^{j+2}(n-1)} e^{i \gamma} \right|
\]
\[
= \left(\delta - \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2} \right) \left(\sum_{n=2}^{\infty} \frac{1}{n(n-1)} \right)
\]
\[
= \left(\delta - \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2} \right) \left(\sum_{n=2}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n} \right) \right)
\]
\[
= \delta - \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2}.
\]

Therefore, \(f(z) \in (\alpha, \delta) - N_{m+1}^{j+1}(g) \).
In view of Theorem 2.1, we have the following corollary.

Corollary 2.3 Let \(f(z) \in A \) satisfy

\[
\sum_{n=2}^{\infty} n \left| n^j a_n \right| - n^m \sum_{k=1}^{p} |\alpha_k| |b_{n,k}| \leq \delta - \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2}
\]

for some \(\delta > \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2} \), where \(\beta = \arg \alpha_k \) for all \(k \) with \(-\pi \leq \beta \leq \pi \), and for some \(g_k(z) \in A \) \((k = 1, 2, \ldots, p)\) with \(\arg a_n - \arg b_{n,k} = \beta \) \((n = 2, 3, 4, \ldots)\) for all \(k \), then \(f(z) \in (\alpha, \delta) - N_{m+1}^{j+1}(g) \).

Proof. By Theorem 2.1, we have that if \(f(z) \in A \) satisfies

\[
\sum_{n=2}^{\infty} n \left| n^j a_n \right| - n^m \sum_{k=1}^{p} |\alpha_k| |b_{n,k}| \leq \delta - \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2},
\]

then \(f(z) \in (\alpha, \delta) - N_{m+1}^{j+1}(g) \). Since \(\arg a_n - \arg b_{n,k} = \beta \), if \(\arg a_n = \varphi_n \), then \(\arg b_{n,k} = \varphi_n - \beta \). Therefore, we see that

\[
n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k} = n^j |a_n| e^{i\varphi_n} - n^m \sum_{k=1}^{p} |\alpha_k| e^{i\beta} |b_{n,k}| e^{i(\varphi_n - \beta)}
\]

\[
= \left(n^j |a_n| - n^m \sum_{k=1}^{p} |\alpha_k| |b_{n,k}| \right) e^{i\varphi_n},
\]

that is, that

\[
\left| n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k} \right| = \left| n^j |a_n| - n^m \sum_{k=1}^{p} |\alpha_k| |b_{n,k}| \right|.
\]

This completes the proof of the corollary. \(\square \)

Next, we discuss the necessary conditions for neighborhoods.

Theorem 2.4 If \(f(z) \in (\alpha, \delta) - N_{m+1}^{j+1}(g) \) with

\[
\arg \left(n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k} \right) = (n - 1)\varphi \quad (\varphi \in \mathbb{R}),
\]

for \(n = 2, 3, 4, \ldots, \) then,

\[
\sum_{n=2}^{\infty} n \left| n^j a_n \right| - n^m \sum_{k=1}^{p} |\alpha_k| |b_{n,k}| \leq -1 + \sum_{k=1}^{p} |\alpha_k| \cos \beta + \sqrt{\delta^2 - \left(\sum_{k=1}^{p} |\alpha_k| \sin \beta \right)^2}.
\]
Proof. For \(f(z) \in (\alpha, \delta) - N_{m+1}^{j+1}(g) \), if we consider a point \(z \in U \) such that \(\arg z = -\varphi \), then
\[
z^{n-1} = |z|^{n-1} e^{-i(n-1)\varphi},
\]
and hence we have
\[
\left| \frac{D^{j+1}f(z)}{z} - \sum_{k=1}^{p} \alpha_k \frac{D^{m+1}g_k(z)}{z} \right| = \left| 1 - \sum_{k=1}^{p} \alpha_k + \sum_{n=2}^{\infty} n \left(n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k} \right) z^{n-1} \right|
\]
\[
= \left| 1 - \sum_{k=1}^{p} \alpha_k + \sum_{n=2}^{\infty} n \left| n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k} \right| |z|^{n-1} \right| < \delta.
\]
Letting \(|z| \rightarrow 1^- \) we have
\[
\left| 1 - \sum_{k=1}^{p} \alpha_k + \sum_{n=2}^{\infty} n \left| n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k} \right| \right|
\]
\[
= \left\{ \left(1 - \sum_{k=1}^{p} |\alpha_k| \cos \beta + \sum_{n=2}^{\infty} n \left| n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k} \right| \right)^2 + \left(\sum_{k=1}^{p} |\alpha_k| \sin \beta \right)^2 \right\}^{\frac{1}{2}} \leq \delta,
\]
which implies that
\[
\left(\sum_{n=2}^{\infty} n \left| n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k} \right| \right)^2 + 2 \left(1 - \sum_{k=1}^{p} |\alpha_k| \cos \beta \right) \left(\sum_{n=2}^{\infty} n \left| n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k} \right| \right)
\]
\[
+ 1 + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta - \delta^2 \leq 0.
\]
Therefore, it is easy to see that
\[
\sum_{n=2}^{\infty} n \left| n^j a_n - n^m \sum_{k=1}^{p} \alpha_k b_{n,k} \right| \leq -1 + \sum_{k=1}^{p} |\alpha_k| \cos \beta + \sqrt{\delta^2 - \left(\sum_{k=1}^{p} |\alpha_k| \sin \beta \right)^2}.
\]

\[\square\]

3 Applications of Miller-Mocanu lemma

In this section, we will give a certain implication for the class \((\alpha, \delta) - N_{m+1}^{j+1}(g)\). To considering our problem, we need the following lemma given by Miller and Mocanu [2].

Lemma 3.1 Let \(n \) be a positive integer, and let \(F(z) \) be analytic in \(U \) with \(F^{(k)}(0) = 0 \) \((k = 1, 2, \cdots, n - 1)\), \(F(0) = a \) and \(F(z) \neq a \) for a complex number \(a \). If there exists a point \(z_0 \in U \) such that
\[
\max_{|z| \leq |z_0|} |F(z)| = |F(z_0)|,
\]
then
\[
\frac{z_0 F'(z_0)}{F(z_0)} = m,
\]
where m is real and
\[
m \geq n \frac{|F(z_0) - a|^2}{|F(z_0)|^2 - |a|^2} \geq n \frac{|F(z_0)| - |a|}{|F(z_0)| + |a|}.
\]

Applying Lemma 3.1, we derive

Theorem 3.2 If $f(z) \in A$ satisfies
\[
\left| \frac{D^{j+1}f(z)}{z} - \sum_{k=1}^{p} \alpha_k \frac{D^{m+1}g_k(z)}{z} \right| < \frac{2\delta^2}{\delta + \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2}} \quad (z \in \mathbb{U})
\]
for some $\delta \geq \sqrt{1 - 2 \sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2}$, where $\beta = \arg \alpha_k$ for all k with $-\pi \leq \beta \leq \pi$, and for some $g_k(z) \in A$ $(k = 1, 2, \ldots, p)$, then
\[
\left| \frac{D^j f(z)}{z} - \sum_{k=1}^{p} \alpha_k \frac{D^m g_k(z)}{z} \right| < \delta \quad (z \in \mathbb{U}),
\]
which implies that $f(z) \in (\alpha, \delta) - N_{m+1}^{j+1}(g)$.

Proof. We define the function $F(z)$ by
\[
F(z) = \frac{D^j f(z)}{z} - \sum_{k=1}^{p} \alpha_k \frac{D^m g_k(z)}{z} \quad (z \in \mathbb{U}).
\]
Then,
\[
z \frac{F'(z)}{F(z)} = \frac{D^{j+1} f(z)}{z} - \frac{D^j f(z)}{z} - \sum_{k=1}^{p} \alpha_k \left(\frac{D^{m+1} g_k(z)}{z} - \frac{D^m g_k(z)}{z} \right)
= \frac{1}{F(z)} \left(\frac{D^{j+1} f(z)}{z} - \sum_{k=1}^{p} \alpha_k \frac{D^{m+1} g_k(z)}{z} \right) - 1.
\]
Therefore,
\[
\left| \frac{D^{j+1} f(z)}{z} - \sum_{k=1}^{p} \alpha_k \frac{D^{m+1} g_k(z)}{z} \right| = \left(1 + \frac{z F'(z)}{F(z)} \right) F(z).
\]
Then $F(z)$ is analytic in \mathbb{U} with $F(0) = 1 - \sum_{k=1}^{p} \alpha_k$ and $|F(0)| < \delta$. In view of the condition, let us suppose that there is a point $z_0 \in \mathbb{U}$ such that $\max_{|z| \leq |z_0|} |F(z)| = |F(z_0)| = \delta$. Then, by Lemma 3.1, we can write that
\[
F(z_0) = \delta e^{i\theta}, \quad \frac{z_0 F'(z_0)}{F(z_0)} = m \quad \text{and} \quad m \geq \left| \frac{\delta e^{i\theta} - \left(1 - \sum_{k=1}^{p} \alpha_k \right)}{\delta^2 - \left(1 - \sum_{k=1}^{p} \alpha_k \right)^2} \right|^2.
\]
Therefore, we see that
\[
\left| \frac{D^{j+1}f(z_0)}{z_0} - \sum_{k=1}^{p} \alpha_k \frac{D^{m+1}g_k(z_0)}{z_0} \right| = |1 + m| |F(z_0)|
\]
\[
= \delta (1 + m)
\]
\[
\geq \delta + \delta \frac{\left| e^{i\theta} - \left(1 - \sum_{k=1}^{p} \alpha_k \right) \right|^2}{\delta^2 - \left| 1 - \sum_{k=1}^{p} \alpha_k \right|^2}
\]
\[
\geq \delta + \delta \frac{\delta - \left| 1 - \sum_{k=1}^{p} \alpha_k \right|}{\delta + \left| 1 - \sum_{k=1}^{p} \alpha_k \right|}
\]
\[
= \frac{2\tilde{\delta}^2}{\delta + \sqrt{1 - 2\sum_{k=1}^{p} |\alpha_k| \cos \beta + \left(\sum_{k=1}^{p} |\alpha_k| \right)^2}}
\]

This contradicts our condition in Theorem 3.2. Thus, there is no point \(z_0 \in U \) such that \(|F(z_0)| = \delta \). This means that \(|F(z)| < \delta \) for all \(z \in U \). Therefore, we have that
\[
\left| \frac{D^j f(z)}{z} - \sum_{k=1}^{p} \alpha_k \frac{D^m g_k(z)}{z} \right| < \delta \quad (z \in U).
\]

\(\square \)

Taking \(p = 1 \) in Theorem 3.2, and letting
\[\alpha_1 = e^{i\alpha} \text{ and } g_1(z) = g(z), \]
we find the following corollary.

Corollary 3.3 If \(f(z) \in A \) satisfies
\[
\left| \frac{D^{j+1}f(z)}{z} - e^{i\alpha} \frac{D^{m+1}g(z)}{z} \right| < \frac{2\tilde{\delta}^2}{\delta + \sqrt{2(1 - \cos \alpha)}} \quad (z \in U)
\]
for some \(-\pi \leq \alpha \leq \pi \), \(\delta > \sqrt{2(1 - \cos \alpha)} \) and for some \(g(z) \in A \), then
\[
\left| \frac{D^j f(z)}{z} - e^{i\alpha} \frac{D^m g(z)}{z} \right| < \delta \quad (z \in U).
\]

In particular, by putting \(\delta = \tilde{\delta} + \sqrt{2(1 - \cos \alpha)} \) for some \(-\pi \leq \alpha \leq \pi \) and \(\tilde{\delta} > 0 \), we can obtain the assertion as follows.

Corollary 3.4 If \(f(z) \in A \) satisfies
\[
(3.1) \quad \left| \frac{D^{j+1}f(z)}{z} - e^{i\alpha} \frac{D^{m+1}g(z)}{z} \right| < 2\tilde{\delta} + \frac{4(1 - \cos \alpha)}{\delta + 2\sqrt{2(1 - \cos \alpha)}} \quad (z \in U)
\]
for some $-\pi \leq \alpha \leq \pi$, $\tilde{\delta} > 0$ and for some $g(z) \in \mathcal{A}$, then

\begin{equation}
\left| \frac{D^j f(z)}{z} - e^{i\alpha} \frac{D^m g(z)}{z} \right| < \tilde{\delta} + \sqrt{2(1 - \cos \alpha)} \quad (z \in \mathbb{U}).
\end{equation}

Remark 3.5 Recently, in the paper by Kugita, Kuroki and Owa [4], we obtained the implication that

\begin{equation}
\left| \frac{D^{j+1} f(z)}{z} - e^{i\alpha} \frac{D^{m+1} g(z)}{z} \right| < 2\tilde{\delta} - \sqrt{2(1 - \cos \alpha)} \quad (z \in \mathbb{U})
\end{equation}

implies the inequality (3.2), where $\tilde{\delta} > \sqrt{2(1 - \cos \alpha)}$. Here, a simple check gives us that if $f(z) \in \mathcal{A}$ satisfies the inequality (3.3), then $f(z)$ satisfies the inequality (3.1). Hence, it follows this fact that if $f(z) \in \mathcal{A}$ satisfies the assertion of Corollary 3.4, then the implication which were proven by Kugita, Kuroki and Owa [4] holds.

References

