<table>
<thead>
<tr>
<th>Title</th>
<th>Coefficient estimates of functions in the class concerning with spirallike functions (Extensions of the historical calculus transforms in the geometric function theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hamai, Kensei; Hayami, Toshio; Kuroki, Kazuo; Owa, Shigeyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2010), 1717: 1-7</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/170332</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Coefficient estimates of functions in the class concerning with spirallike functions

Kensei Hamai, Toshio Hayami, Kazuo Kuroki and Shigeyoshi Owa

Abstract

For analytic functions \(f(z) \) normalized by \(f(0) = 0 \) and \(f'(0) = 1 \) in the open unit disk \(U \), a new subclass \(S_\alpha \) of \(f(z) \) concerning with spirallike functions in \(U \) is introduced. The object of the present paper is to discuss an extremal function for the class \(S_\alpha \) and coefficient estimates of functions \(f(z) \) belonging to the class \(S_\alpha \).

1 Introduction

Let \(\mathcal{A} \) be the class of functions \(f(z) \) of the form

\[
(1.1) \quad f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

which are analytic in the open unit disk \(U = \{ z \in \mathbb{C}; |z| < 1 \} \).

If \(f(z) \in \mathcal{A} \) satisfies the following inequality

\[
(1.2) \quad \text{Re} \left(\frac{1}{\alpha} \frac{zf'(z)}{f(z)} \right) > 1 \quad (z \in U)
\]

for some complex number \(\alpha (|\alpha - \frac{1}{2}| < \frac{1}{2}) \), then we say that \(f(z) \in S_\alpha \). If \(\alpha = |\alpha| e^{i\varphi} \), then the condition (1.2) is equivalent to

\[
\text{Re} \left(e^{-i\varphi} \frac{zf'(z)}{f(z)} \right) > |\alpha| \quad (z \in U).
\]

Therefore, we note that a function \(f(z) \in S_\alpha \) is spirallike in \(U \) which implies that \(f(z) \) is univalent in \(U \).

Further, if \(0 < \alpha < 1 \), then \(f(z) \in S_\alpha \) is starlike of order \(\alpha \) (cf. Robertson[3]).

Let \(\mathcal{P} \) denote the class of functions \(p(z) \) of the form

\[
(1.3) \quad p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k
\]

2000 Mathematics Subject Classification: Primary 30C45.

Key Word and Phrases: Analytic, univalent, spirallike, extremal function.
which are analytic in U and satisfy
\[\text{Re } p(z) > 0 \quad (z \in U). \]

Then we say that $p(z) \in \mathcal{P}$ is the Carathéodory function (cf. Carathéodory [1] or Duren [2]).

Remark 1.1 Let us consider a function $f(z) \in \mathcal{A}$ which satisfies
\[|\frac{f(z)}{zf'(z)} - \frac{1}{2\alpha}| < \frac{1}{2\alpha} \quad (z \in U) \]
for $|\alpha - \frac{1}{2}| < \frac{1}{2}$. If we write that $F(z) = \frac{zf'(z)}{f(z)}$, then the inequality (1.4) can be written by
\[\left| \frac{2\alpha - F(z)}{F(z)} \right| < 1 \quad (z \in U). \]

This implies that
\[\alpha \overline{F(z)} + \overline{\alpha} F(z) > 2|\alpha|^2 \quad (z \in U). \]
It follows that
\[\left(\frac{F(z)}{\alpha} \right) + \overline{\left(\frac{F(z)}{\alpha} \right)} > 2 \quad (z \in U). \]
Therefore, the inequality (1.4) is equivalent to
\[\text{Re} \left(\frac{1}{\alpha} \frac{zf'(z)}{f(z)} \right) > 1 \quad (z \in U). \]

2 Coefficient estimates

In this section, we discuss the coefficient estimates of a_n for $f(z) \in S_\alpha$. To establish our results, we need the following lemma due to Carathéodory [1].

Lemma 2.1 If a function $p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k \in \mathcal{P}$ satisfies the following inequality
\[\text{Re } p(z) > 0 \quad (z \in U), \]
then
\[|c_k| \leq 2 \quad (k = 1, 2, 3, \cdots) \]
with equality for
\[p(z) = \frac{1 + z}{1 - z}. \]

Now, we introduce the following theorem.

Theorem 2.2 Extremal function for the class S_α is $f(z)$ defined by
\[f(z) = \frac{z}{(1 - z)^{2\alpha(\text{Re} \frac{1}{2\alpha}) + 1}}. \]
Proof. From the definition of the class S_α, we have that
\[\text{Re}\left(\frac{1}{\alpha} \frac{zf'(z)}{f(z)} - 1\right) > 0. \]
Moreover, it is clear that
\[\text{Re}\left(\frac{1}{\alpha}\right) > 1 \quad (|\alpha - \frac{1}{2}| < \frac{1}{2}). \]
Then, if the function $F(z)$ is defined by
\[F(z) = \frac{\frac{1}{\alpha} \frac{zf'(z)}{f(z)} - 1 - i\text{Im}(\frac{1}{\alpha})}{\text{Re}(\frac{1}{\alpha}) - 1}, \]
we see that
\[\text{Re}F(z) > 0 \text{ and } F(0) = 1, \]
so that, $F(z) \in \mathcal{P}$.
Therefore, Lemma 2.1 shows us that
\[F(z) = \frac{\frac{1}{\alpha} \frac{zf'(z)}{f(z)} - 1 - i\text{Im}(\frac{1}{\alpha})}{\text{Re}(\frac{1}{\alpha}) - 1} = \frac{1+z}{1-z}. \]
It follows that,
\[\frac{f'(z)}{f(z)} - \frac{1}{z} = 2\alpha \left(\text{Re}\left(\frac{1}{\alpha}\right) - 1\right) \frac{1}{1-z}. \]
Integrating both sides from 0 to z on t, we have that
\[\int_0^z \left(\frac{f'(t)}{f(t)} - \frac{1}{t}\right)dt = 2\alpha \left(\text{Re}\left(\frac{1}{\alpha}\right) - 1\right) \int_0^z \frac{1}{1-t}dt, \]
which implies that
\[\log\frac{f(z)}{z} = \log\frac{1}{(1-z)^{2\alpha(\text{Re}(\frac{1}{\alpha}) - 1)}}. \]
Therefore, we obtain that
\[f(z) = \frac{z}{(1-z)^{2\alpha(\text{Re}(\frac{1}{\alpha}) - 1)}}. \]
This is the extremal function of the class S_α. \hfill \Box

Next, we discuss the coefficient estimates of $f(z)$ belonging to the class S_α.

Theorem 2.3 If a function $f(z) \in S_\alpha$, then
\[|a_n| \leq \frac{1}{(n-1)!} \prod_{k=1}^{n-1} (2(\cos(\arg(\alpha))) - |\alpha| + (k-1)) \quad (n = 2, 3, 4 \cdots). \]
Equality holds true for $f(z)$ given by (2.1).
Proof. By using same method with Theorem 2.2, if we set $F(z)$ that

\[(2.2)\]

\[F(z) = \frac{\frac{1}{\alpha} \frac{zf'(z)}{f(z)} - 1 - i\text{Im}\left(\frac{1}{\alpha}\right)}{\text{Re}\left(\frac{1}{\alpha}\right) - 1},\]

then it is clear that $F(z) \in P$.

Letting

\[F(z) = 1 + c_1 z + c_2 z^2 + \cdots,\]

Lemma 2.1 gives us that

\[|c_m| \leq 2 \quad (m = 1, 2, 3 \cdots).\]

Now, from (2.2),

\[
\left(\text{Re}\left(\frac{1}{\alpha}\right) - 1\right) F(z) = \frac{1}{\alpha} \frac{zf'(z)}{f(z)} - 1 - i\text{Im}\left(\frac{1}{\alpha}\right).
\]

Let $\text{Re}(\frac{1}{\alpha}) - 1 = s$ and $1 + i\text{Im}(\frac{1}{\alpha}) = A$.

This implies that

\[(\alpha s F(z) + \alpha A)f(z) = zf'(z).\]

Then, the coefficients of z^n in both sides lead to

\[na_n = (\alpha s + \alpha A) a_n + \alpha s (a_{n-1} c_1 + a_{n-2} c_2 + \cdots + a_{n-r} c_r + \cdots + a_2 c_{n-2} + c_{n-1}).\]

Therefore, we see that

\[a_n = \frac{\alpha s}{n - \alpha s - \alpha A} (a_{n-1} c_1 + a_{n-2} c_2 + \cdots + a_{n-r} c_r + \cdots + a_2 c_{n-2} + c_{n-1}).\]

This shows that

\[|a_n| = \frac{|\alpha (\text{Re}\left(\frac{1}{\alpha}\right) - 1)|}{n - \alpha (\text{Re}\left(\frac{1}{\alpha}\right) - 1) - \alpha (1 + i\text{Im}(\frac{1}{\alpha}))} |a_{n-1} c_1 + a_{n-2} c_2 + \cdots + a_{n-r} c_r + \cdots + a_2 c_{n-2} + c_{n-1}|\]

\[\leq \frac{\cos(\arg(\alpha)) - |\alpha|}{n - 1} |a_{n-1} c_1 + a_{n-2} c_2 + \cdots + a_{n-r} c_r + \cdots + a_2 c_{n-2} + c_{n-1}|\]

\[\leq \frac{\cos(\arg(\alpha)) - |\alpha|}{n - 1} (|a_{n-1}| |c_1| + |a_{n-2}| |c_2| + \cdots + |a_{n-r}| |c_r| + \cdots + |a_2| |c_{n-2}| + |c_{n-1}|)\]

\[\leq \frac{\cos(\arg(\alpha)) - |\alpha|}{n - 1} \left(2|a_{n-1}| + 2|a_{n-2}| + \cdots + 2|a_2| + 2\right)\]

\[\leq \frac{2(\cos(\arg(\alpha)) - |\alpha|)}{n - 1} \sum_{k=1}^{n-1} |a_k| \quad (|a_1| = 1).\]

To prove that

\[|a_n| \leq \frac{1}{(n - 1)!} \prod_{k=1}^{n-1} (2(\cos(\arg(\alpha)) - |\alpha|) + (k - 1)),\]
we need to show that

$$|a_n| \leq \frac{2(\cos(\arg(\alpha)) - |\alpha|)}{n-1} \sum_{k=1}^{n-1} |a_k| \leq \frac{1}{(n-1)!} \prod_{k=1}^{n-1} (2(\cos(\arg(\alpha)) - |\alpha|) + (k-1)).$$

We use the mathematical induction for the proof.

When \(n = 2 \), this assertion is true.

We assume that the proposition is true for \(n = 2, 3, 4, \ldots, m-1 \).

For \(n = m \), we obtain that

$$|a_m| \leq \frac{2(\cos(\arg(\alpha)) - |\alpha|)}{m-1} \sum_{k=1}^{m-1} |a_k|$$

$$= \frac{2(\cos(\arg(\alpha)) - |\alpha|)}{m-1} \left(\sum_{k=1}^{m-2} |a_k| + |a_{m-1}| \right)$$

$$= \frac{m-2}{m-1} \left(\sum_{k=1}^{m-2} |a_k| + |a_{m-1}| \right)$$

$$\leq \frac{m-2}{(m-1)!} \prod_{k=1}^{m-2} (2(\cos(\arg(\alpha)) - |\alpha|) + k-1)$$

$$+ \frac{2(\cos(\arg(\alpha)) - |\alpha|)}{m-1} \frac{1}{(m-2)!} \prod_{k=1}^{m-2} (2(\cos(\arg(\alpha)) - |\alpha|) + k-1)$$

$$= \frac{1}{(m-1)!} \prod_{k=1}^{m-1} (2(\cos(\arg(\alpha)) - |\alpha|) + k-1) (m-2 + 2(\cos(\arg(\alpha)) - |\alpha|))$$

Thus the inequality (2.3) is true for \(n = m \). By the mathematical induction, we prove that

$$|a_n| \leq \frac{1}{(n-1)!} \prod_{k=1}^{n-1} (2(\cos(\arg(\alpha)) - |\alpha|) + (k-1)) \quad (n = 2, 3, 4 \ldots).$$

For the equality, we consider the extremal function \(f(z) \) given by Theorem 2.2. Since

$$f(z) = \frac{z}{(1-z)^{2\alpha(\text{Re}(\frac{1}{\alpha})-1)}},$$

if we let

$$2\alpha(\text{Re}(\frac{1}{\alpha}) - 1) = j,$$

then \(f(z) \) becomes that

$$f(z) = z(1-z)^{-j} = z \left(\sum_{n=0}^{\infty} \binom{-j}{n} (-z)^n \right) = z + \sum_{n=2}^{\infty} \frac{j(j+1) \cdots (j+n-2)}{(n-1)!} z^n.$$
From the above, we obtained

\[a_n = \frac{1}{(n-1)!} \prod_{k=1}^{n-1} (2\alpha(\Re\left(\frac{1}{\alpha}\right) - 1) + k - 1). \]

For \(n = 2 \),

\[|a_2| = 2|\alpha||\Re\left(\frac{1}{\alpha}\right) - 1| = 2(\cos(\arg(\alpha)) - |\alpha|). \]

Furthermore, for \(n \geq 3 \), we have that

\[
|a_n| = \left| \frac{1}{(n-1)!} \prod_{k=1}^{n-1} (2\alpha(\Re\left(\frac{1}{\alpha}\right) - 1) + k - 1) \right| \\
= \frac{1}{(n-1)!} \prod_{k=1}^{n-1} |2\alpha(\Re\left(\frac{1}{\alpha}\right) - 1) + k - 1| \\
\leq \frac{1}{(n-1)!} \prod_{k=1}^{n-1} (2(\cos(\arg(\alpha)) - |\alpha|) + k - 1).
\]

Equality holds true for some real \(\alpha (0 < \alpha < 1) \).

This completes the proof of Theorem 2.3.

Example 2.4 Let \(\alpha = \frac{1}{2} + \frac{1}{4}i \) in (2.1). Then we have that

\[f(z) = \frac{z}{(1 - z)^{\frac{6+3i}{10}}}. \]

This function \(f(z) \) maps the unit disk \(U \) onto the following domain.
Example 2.5 If we take $\alpha = \frac{2}{3} + \frac{1}{4}i$ in (2.1), then we have that

$$f(z) = \frac{z}{(1-z)^{\frac{184+69i}{438}}}.$$

This function $f(z)$ maps the unit disk U onto the following domain.

References

