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On superstable generic structures

HWHZE—ER (Koichiro IKEDA) *
EBCR AR E D

(Faculty of Business Administration, Hosei University)

This manuscript is an expansion of my talk at Kirishima meeting. In this
talk, we mainly gave a counter-example of Baldwin’s question. Proofs of our
results can be found in [18]. So we do not explain all of those details here.

1 Baldwin’s question

Many papers [5, 8, 10, 11, 12, 19, 21, 25] have laid out the basics of generic
structures in various situations. In particular, this manuscript was influenced
by papers of Wagner [25] and Baldwin-Shi [8].

Generic structures Let L be a countable relational language. Let K be
a class of finite L-structures that is closed under substructures. Let < be a
reflexive and transitive relation on K satisfying the following:

(C1) A< B € K implies A C B;

(C2) A< B<C €K implies A < C;
(C3) A,B< C € K implies ANB < C;
(C4) A € K implies § < A.

Then, for each A, B with A C B there is the smallest set C < B containing
A. We call such a C the closure of A in B, and denoted by clg(A). (K, <)
has the amalgamation property (for short AP), if whenever A < B € K and
A < C € K then there is a D € K such that B and C are closedly embedded
in D over A.
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Definition 1.1 A countable L-structure M is said to be (K, <)-generic, if
it satisfies the following:

1. Any finite A C M belongs to K;

2. M is rich, i.e., For any A < B € K with A < M there is B’ =4 B with
B' < M;

3. M has finite closures, i.e., for any finite A C M, |clp(A)]| is finite.

If (K, <) has AP, then there exists a (K, <)-generic M. By the back-and-
forth argument, if M, N are (K, <)-generic then M = N. It can be seen also
that the generic M is ultra-homogeneous over closed sets, i.e., if B,B' < M
and B = B’ then tp(B) = tp(B’).

Ab initio generic structures Let L be a countable relational language,
where each R € L is symmetric and irreflexive, i.e., if = R(a@) then the
elements of a are without repetition and = R(o(a)) for any permutation o.
Thus, for an L-structure A and R € L with arity n, R4 can be thought of as
a set of n-element subsets of A. For a finite L-structure A, a predimension
of A is defined by
5(A) = |A| - > ar|RY|
ReL

where 0 < agp <1 for R € L. Write 6(B/A) = §(BA) — §(A).

Let K* denote the class of all finite L-structures A with §(B) > 0 for
every B C A. For A C B € K*, define A < B to have §(X/AN X) > 0 for
any finite X C B. Note that (K*, <) satisfies (C1)-(C4). Take any K Cc K*
closed under substructures. Clearly (K, <) also satisfies (C1)-(C4). So, if
(K, <) has AP, then there exists the generic M. M is a generic structure
derived from the predimension §. Such a M is called ab initio generic.

Theories having finite closures By definition, an ab initio generic struc-
ture M has finite closures, however each model of Th(M) does not always
have finite closures. We say that a theory T has finite closures, if any model
of T has finite closures.

Let M be an ab initio generic structure such that Th(M) has finite
closures, and M a big model of Th(M). For a finite A C M, a dimen-
sion of A is defined by d(A) = d(clp(A)). For finite A, B C M, put
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d(A/B) = d(AUB)—d(B). For an infinite B, let d(A/B) = inf{d(A/B,) : By
is a finite subset of B}. For A,B,C ¢ M with BN C C A, we say that
B and C are free over A (write BLC), if RAP¢ = RAB U RAC for each
R € L. The free amalgamation of B and C over A, denoted by B @4 C, is
the structure B U C with B1 4C.

Examples and Question The following are examples of ab initio generic
structures:

e L is finite, and the generic is saturated: An Ry-categorical stable pseu-
doplane (Hrushovski [13]), A strongly minimal structure with a new
geometry (Hrushovski [14]), An R;-categorical non-Desarguesian pro-
jective plane (Baldwin [4]), An almost strongly minimal generalized
n-gon (Debonis-Nesin [9], Tent [23] ), A minimal but not strongly min-
imal structure with arbitrary finite dimension (Ikeda [15]).

e L is finite, and the generic is not saturated: A sparse random graph
(Shelah-Spencer [22], Baldwin-Shelah [7], Laskowski [20]).

e [ is infinite, and the generic is saturated: A stable small structure with
infinite weight (Herwig [12]).

All known examples are either strictly stable or w-stable. Therefore the
following question arises naturally.

Question 1.2 (Baldwin [3, 6]) Is there an ab initio generic structure which
is superstable but not w-stable?

2 Results

Here we deal with an ab initio generic graph M with coefficient 1: Let L =
{R(x, %)} and §(A) = |A| — |R4|.

Proposition 2.1 Let M be an ab initio generic graph with coefficient 1.
Then Th(M) is A-stable for each A > |S(Th(M))].
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Sketch of Proof. Let M be a big model. Take any N < M with |[N| = A,
and take any p € S(N). For b |= p, there is a finite A C N with d(b/N) =
d(b/A). Let B = cl(bA). We can assume that B @4 N < M. Note that
Th(M) is not always ultra-homogeneous over closed sets. As a = 1, tp(B/N)
is determined by tp(B/A). Hence |S(N)| < |[N|<¥ - |S(Th(M))| = A.

Remark 2.2 The case of o = 1 is particular. When « is rational with a < 1,
the above statement does not necessarily hold. However, if M is saturated,
it can be shown that Th(M) is w-stable.

First Example Here we construct an ab initio generic graph which has
coefficient 1 and is not saturated.

A graph A = {ag,ai,...,ax} is called a line, if the relations of A are
R(ag,ay), ..., R(ax_1,ax). A graph A = {ao, a1, ...,ax} is called a cycle, if the
relations of A are R(ag,a1),..., R(ak-1,axr), R(ak,ao). A connected acyclic
graph is called a tree.

Let T be the class of all finite trees. Let C be the class of all cycles. Let
K, ={A;® --®A,: Ay,...,An € TUC,n € w}. Clearly K| is closed under
substructures. Moreover, the following lemma can be seen easily.

Lemma 2.3 K; has the free amalgamation property, ie.,if A< Be K;, A<
C € K; and BL4C, then B®, C € K;.

By Lemma. 2.3, we can take the (K;, <)-generic M;. Let M, be a big
model. By compactness, M; has infinite lines without endpoints as con-
nected components. So we have the following lemma.

Lemma 2.4 M, is not saturated.

It is seen that any connected component of M, is isomorphic to either a
cycle, an infinite line without endpoints, or a tree with deg = oo. Then we
have the following lemma.

Lemma 2.5 Th(M;) is small.

By Proposition 2.1 and Lemma 2.4, 2.5, we have the following theorem.

Theorem 2.6 ([18]) There is an ab initio generic graph which has coefli-
cient 1 and is not saturated. Moreover, the theory is w-stable.
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Second Example As an answer to Question 1.2, we construct an ab initio
generic graph with coefficient 1 such that the theory is superstable but not

w-stable.
The construction is as follows. Let Fy = {ao} and F; = {a;, bl} be graphs
with no relations. For n € w and 7 € "2, a graph E, = (E,, REv) is defined

as follows:

o Fé“(k) = Fox) for each k with 0 < k < n;

E,={ex: —n<k<n}uU U F,;c(k);

0<k<n

[ REW={(ek,ek+1):—nﬁkSn—l}U{(ek, ) aGF(k),OSkSTt}

el LU

€s€;3;€,€,€ € € € ¢

Figure 1: The graph E, where n =4 and n = (01101)

Take a 1-1 onto map f: “?2 — w —{0,1,2}. Using f and E,, a graph
D, = (Dn, RPn) is defined as follows:

E} = e_,E, for each i with 0 < i < f(n);

0<i<f(n)
-1 1
« RPr= ) REU{(el, el,), (072 L7, (207 e},

0<i< f(n)

Let T be the class of all finite trees. Let D be the class of all finite
substructures of D, for every n € w and n € "2. Let Ko = {4 ®--- @ A,
Ag,... An € TUD,n € w}.

Lemma 2.7 K, has the amalgamation property.
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Figure 2: The graph D, where f(n) =6

Sketch of Proof. Suppose that A < B € Ky and A < C € K;. We can
assume that B and C are connected, B1 ,C and A # (. If both B and C
have no cycles, then we have D € T C K;,. So we can assume that either
B or C has a cycle. Then any cycle in B or C' must be contained in A.
Moreover it has the unique n-cycle for some n € w. Let n = f~!(n). We can
assume that A < D;. Then both of B and C can be closedly embedded over
A in D, € K,. Hence B and C are amalgamated over A.

m,‘
&

oy

Figure 3: B and C can be closedly embedded over A in Dj-1(5.
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By Lemma 2.7, we can take the (Kj, <)-generic M. Let M, be a big
model. For 3 € “2, a graph Ej is defined as the following figure:

Es

Figure 4: The graph Ejs where 8 = (01101 - --)

By compactness, in a big model My, there are continuously many Eg’s
as connected components. Hence we have the following lemma.

Lemma 2.8 |S(Th(M,))| = 2%

By Proposition 2.1 and Lemma 2.11, we have the following theorem.

Theorem 2.9 ([18]) There is an ab initio generic structure which is super-
stable but not w-stable.

In Kirishima meeting, Baldwin suggested to me that the following ques-
tion should arise naturally.

Question 2.10 Is there an ab initio generic structure which is small and
superstable but not w-stable?

This question is still open.

Saturated Generic Structures We have a negative answer to Question
1.2 under the assumption that L is finite and the generic is saturated. To get
this result, we need the following lemma. The proof of the lemma is similar
to that of Lemma 2.4 in [1].

Lemma 2.11 Let M be an ab initio generic structure and M a big model of
Th(M). Suppose that M is saturated. If A < B < M and BNacl(A) = A,
then B U acl(4) < M.

The following theorem is a generalization of that of [17], and the proof is
a modification of [1].
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Theorem 2.12 ([18]) Let M be an ab initio generic L-structure. If L is
finite and M is saturated, then Th(M) is strictly stable or w-stable.

Question 2.13 Let M be an ab nitio generic structure in a countable re-
lational language. If M is saturated, then is the theory strictly stable or
w-stable?

References

[1] Y. Anbo and K. Ikeda, A note on stability spectrum of generic struc-
tures, to appear in Mathematical Logic Quarterly

[2] Roman Aref’ev, J. T. Baldwin and M. Mazzucco, 4-invariant amalga-
mation classes, The Journal of Symbolic Logic 64 (1999) 1743-1750

[3] J. T. Baldwin, Problems on pathological structures, In Helmut Wolter
Martin Weese, editor, Proceedings of 10th Easter Conference in Model
Theory (1993) 1-9

[4] J. T. Baldwin, An almost strongly minimal non-Desarguesian projective
plane, Transactions of American Mathematical Society 342 (1994) 695—
711

[5] J. T. Baldwin, Rank and homogeneous structures, In Tits Buildings and
the Theory of Groups, Cambridge University Press, Cambridge (2002)
215-233

6] J. T. Baldwin, A field guide to Hrushovski’s constructions,
http://www.math.uic.edu/ " jbaldwin/pub/hrutrav.pdf, 2009

[7] J. T. Baldwin and S. Shelah, Randomness and semigenericity, Transac-
tions of the American Mathematical Society 349 (1997) 1359-1376

(8] J. T. Baldwin and N. Shi, Stable generic structures, Annals of Pure and
Applied Logic 79 (1996) 1-35

[9] A. Nesin and M. J. De Bonis, There are 2% many almost strongly min-

imal generalized n-gons that do not interpret an infinite group, Journal
of Symbolic Logic 63 (1998), no.2, 485-508



153

[10] D. Evans, Ry-categorical structures with a predimension, Annals of Pure
and Applied Logic 116 (2002) 157-186

[11] J. Goode, Hrushovski’s geometries, In Helmut Wolter Bernd Dahn, edi-
tor, Proceedings of 7th Easter Conference on Model Theory (1989) 106~
118

[12] B. Herwig, Weight w in stable theories with few types, Journal of Sym-
bolic Logic 60 (1995) 353-373

[13] E. Hrushovski, A stable Ro-categorical pseudoplane, preprint, 1988

[14] E. Hrushovski, A new strongly minimal set, Annals of Pure and Applied
Logic 62 (1993) 147-166

[15] K. Ikeda, Minimal but not strongly minimal structures with arbitrary
finite dimension, Journal of Symbolic Logic 66 (2001) 117-126

[16] K. Ikeda, A note on generic projective planes, Notre Dame Journal of
Formal Logic 43 (2002) 249-254

[17) K. Ikeda, A remark on the stability of saturated generic graphs, Journal
of the Mathematical Society of Japan 57 (2005) 1229-1234

[18] K. Ikeda, The stability spectrum of ab initio generic structures, submit-
ted

[19] D. W. Kueker and C. Laskowski, On generic structures, Notre Dame
Journal of Formal Logic 33(1992) 147-166

[20] C. Laskowski, A simpler axiomatization of the Shelah-Spencer almost
sure theory, Israel Journal of Mathematics 161(2007) 157-186

[21] B. Poizat, Amalgames de hrushovski, In Tits Buildings and the Theory
of Groups, Cambridge University Press, Cambridge (2002) 195-214

[22] S. Shelah and J. Spencer, Zero-one laws for sparse random graphs, Jour-
nal of the American Mathematical Society 1 (1988) 97-115

[23] K. Tent, Very homogeneous generalized n-gons of finite Morley rank,
Journal of the London Mathematical Society 62 (2000) 1-15



154

[24] V. V. Verbovskiy and I. Yoneda, Cm-triviality and relational structures,
Annals of Pure and Applied Logic 122 (2003) 175-194

[25] F. O. Wagner, Relational structures and dimensions, In Automorphisms
of first-order structures, Clarendon Press, Oxford (1994) 153-181



