Morley's theorem on Omitting types

MAKOTO YANAGAWA Tokyo University of Science

Abstract

We think about Morley's omitting types theorem for countable first-order theory. Then I introduce the result of having been related to Morley's theorem shown by [4].

1 Introduction

Definition.(\beth -number) $\beth_0 = \omega$, $\beth_{\alpha+1} = 2^{\beth_{\alpha}}$, $\beth_{\delta} = \sup_{\alpha < \kappa} \beth_{\alpha}$.

Fact.(Erdös-Rado) Let α be infinite cardinal and $n < \omega$. Then $\beth_n^+ \to (\omega^+)_\omega^{n+1}$, $\beth_{\alpha+n}^+ \to (\beth_\alpha^+)_{\beth_\alpha^{n+1}}^{n+1}$.

Note. $\alpha \to (\beta)^n_{\gamma}$ means whenever $|X| = \alpha$ and given any function f from $[X]^n$ into γ , there exists a subset Y of X with $|Y| = \beta$ and an $i < \gamma$ such that for all $\overline{y} \in [Y]^n$, $f(\overline{y}) = i$.

Theorem.(Stretching) Let \mathcal{L} be countable language, M be a model of theory T of \mathcal{L} , $\langle A, < \rangle$ be an infinite set of indiscernibles in M, and $\langle B, < \rangle$ be an arbitrary infinite lineary ordered set. Then there exist a model N of T such that $\langle B, < \rangle$ is a set of indiscernibles in N, and for any $a_1 < \cdots < a_n \in A$ and $b_1 < \cdots < b_n \in B$, $tp(a_1, \ldots, a_n) = tp(b_1, \ldots, b_n)$.

Proof. Put $\Sigma := \{t(x_1, \ldots, x_n) : t \text{ is term in } \mathcal{L}\}$. We define an equivalence relation \sim on Σ as follows. If $t(x_1, \ldots, x_n), t'(x_1, \ldots, x_n) \in \Sigma$, define $t \sim t'$ iff for any $a_1 < \cdots < a_n \in A, M \models t(a_1, \ldots, a_n) = t'(a_1, \ldots, a_n)$. Put $\overline{N} := \{t(b_1, \ldots, b_n) : t(x_1, \ldots, x_n) \in \Sigma, b_1 < \cdots < b_n \in B\}$. We define an equivalence relation \approx on \overline{N} as follows. If $t(b_1, \ldots, b_n), t'(b'_1, \ldots, b'_m) \in \overline{N}$, define $t \approx t'$ iff $t_0(z_1, \ldots, z_s) \sim t'_0(z_1, \ldots, z_s)$, where $\{z_1, \ldots, z_s\} := \{x_1, \ldots, x_n\} \cup \{x'_1, \ldots, x'_m\}$ and $t_0(z_1, \ldots, z_s) := t(x_1, \ldots, x_n), t'_0(z_1, \ldots, z_s) := t'(x'_1, \ldots, x'_m)$. Put $N := \{t(\overline{b})^{\approx} : t(\overline{b}) \in \overline{N}\}$. Note that for any $t_1(\overline{b}_1)^{\approx}, \ldots, t_n(\overline{b}_n)^{\approx} \in N$ there exists, for some $\overline{b}' \in B$ and $t'_i \in \Sigma$ such that $t_i(\overline{b}_i)^{\approx} = t'_i(\overline{b}')^{\approx}$. We treat B as a subset of N by identifying each $b \in B$ with b^{\approx} .

N can be made into a \mathcal{L} -structure by defining constants, functions and relations as follows:

```
(Constants) N \models c_N = c^{\approx}.

(Functions) N \models F(t_1(\overline{b})^{\approx}, \dots, t_n(\overline{b})^{\approx}) = (F(t_1(\overline{b}), \dots, t_n(\overline{b})))^{\approx}.

(Relations) N \models R(t_1(\overline{b})^{\approx}, \dots, t_n(\overline{b})^{\approx})

: \stackrel{\text{def}}{\Leftrightarrow} \text{ for all } a_1 < \dots < a_m \in A, M \models R(t_1(\overline{a}), \dots, t_n(\overline{a})).
```

This definition dose not depend on the choice of representatives of the equivalence classes under \approx .

By induction on the complexity of formulas and use Skolem function it can be shown that for any $b_1 < \cdots < b_n \in B$ and $\phi(x_1, \ldots, x_n) \in \mathcal{L}$,

$$N \models \phi(b_1, \dots, b_n)$$
 iff for all $a_1 < \dots < a_n \in A$, $M \models \phi(a_1, \dots, a_n)$.

By indiscernibility of $\langle A, < \rangle$, $\langle B, < \rangle$ is a set of indiscrnibles in N and for any $a_1 < \cdots < a_n \in A$ and $b_1 < \cdots < b_n \in B$, $tp(a_1, \ldots, a_n) = tp(b_1, \ldots, b_n)$. In particular, $N \equiv M$, hence N is a model of T.

2 Morley's Theorem

Theorem. (Morley's omitting types theorem) Let T be a theory of countable language \mathcal{L} , Γ a set of partial types in finitely many variables over \emptyset , $\mu = (2^{\omega})^+$. Suppose $\{M_{\alpha} : \alpha < \mu\}$ is a sequence of models of T such that

- 1. $|M_{\alpha}| > \beth_{\alpha}$
- 2. M_{α} omits each member of Γ .

Then for every $\lambda \geq \omega$, there is a model N with $|N| = \lambda$ of T such that N omits each member of Γ .

Proof. Assume to simplify an argument T has built-in Skolem functions and the set of formulas Γ in the unary. Let $C = \langle c_i : i < \omega \rangle$ be a sequence of new constant symbols, $\mathcal{L}^* = \mathcal{L} \cup C$.

Now we construct the consistent \mathcal{L}^* -theory Φ as following properties:

- 1. $T \cup \{c_i \neq c_j : i < j < \omega\} \subset \Phi$;
- 2. for each term $t(x_1, \ldots, x_n)$ and $p \in \Gamma$, there is a $\phi_p \in p$ such that for all $i_1 < \cdots < i_n < \omega$,

$$\neg \phi_p(t(c_{i_1},\ldots,c_{i_n})) \in \Phi;$$

3. for any $\psi(x_1, \ldots, x_n) \in \mathcal{L}$ if $i_1 < \cdots < i_n < \omega$ and $j_1 < \cdots < j_n < \omega$,

$$\psi(c_{i_1},\ldots,c_{i_n}) \leftrightarrow \psi(c_{j_1},\ldots,c_{j_n}) \in \Phi.$$

Notation. $F := \{(M_{\alpha}, A_{\alpha}) : \alpha < \mu\}$ is a sequence such that M_{α} is satisfied the hypotheses of the theorem and A_{α} is subset of M_{α} with $|A_{\alpha}| > \beth_{\alpha}$.

We say that $F' = \{(M'_{\alpha}, B_{\alpha}) : \alpha < \mu\}$ is subsequence of F if for each M'_{α} there is $\beta \geq \alpha$ such that $M'_{\alpha} = M_{\beta}$ and $B_{\alpha} \subset A_{\beta}$ with $|B_{\alpha}| > \beth_{\alpha}$.

Fix a linear ordering of each M_{α} in an arbitrary fashion denoting them all by <.

Claim 1. Fix a term $t(x_1, \ldots, x_n)$. There is subsequence F' of F as following property: for each $p \in \Gamma$ there is a $\phi_p \in p$ such that for any $(M'_{\alpha}, B'_{\alpha}) \in F'$, if $i_1 < \cdots < i_n < \omega$ and $b_{i_j} \in B'_{\alpha}$ then $M'_{\alpha} \models \neg \phi_p(t(b_{i_1}, \ldots, b_{i_n}))$.

<u>Proof of claim 1.</u> Note $|\Gamma| \leq 2^{\omega}$. Let $N_{\alpha} = M_{\alpha+n}$. Define, for all $\alpha < \mu$, $f_{\alpha} : [A_{\alpha+n}]^n \to \mathcal{L}^{\Gamma}$ $(\overline{a} \mapsto f_{\alpha}(\overline{a}))$ where $f_{\alpha}(\overline{a}) : \Gamma \to \mathcal{L}$ $(p \mapsto (f_{\alpha}(\overline{a}))(p) := \phi_{\overline{a},p} \in p)$ such that $N_{\alpha} \models \neg \phi_{\overline{a},p}(t(\overline{a}))$ such a $\phi_{\overline{a},p}$ exists since N_{α} omits p.

Now $|A_{\alpha+n}| > \beth_{\alpha+n}$ and for $\alpha \geq 3$, $\beth_{\alpha} \geq |\mathcal{L}^{\Gamma}|$. By Erdös-Rado Theorem, $(\beth_{\alpha+n})^+ \to (\beth_{\alpha}^+)^n_{|\mathcal{L}^{\Gamma}|}$. Thus we obtain $B_{\alpha} \subset A_{\alpha+n}$ and $\phi_{\alpha,p} \in \mathcal{L}$ such that

- 1. $|B_{\alpha}| > \beth_{\alpha}$
- 2. for all $\overline{b} \in [B_{\alpha}]^n$, $N_{\alpha} \models \neg \phi_{\alpha,p}(t(\overline{b}))$.

Namely, for all $\overline{b} \in [B_{\alpha}]^n$, $f_{\alpha}(\overline{b}) = \text{constant}$.

As $\mu = (2^{\omega})^+$, by Erdös-Rado, there is subsequence $\{M'_{\alpha} : \alpha < \mu\}$ of $\{N_{\alpha} : \alpha < \mu\}$ such that for all $\bar{b} \in [B'_{\alpha}]^n$ and $p \in \Gamma$, $(f_{\alpha}(\bar{b}))(p) = \text{constant}$. Thus $\{(M'_{\alpha}, B'_{\alpha}) : \alpha < \mu\}$ and $\phi_p := (f_{\alpha}(\bar{b}))(p)$ are required.

Claim 2. Fix a \mathcal{L} -formula $\psi(x_1, \ldots, x_n)$. There is subsequence F' of F as following property: for any $(M'_{\alpha}, B_{\alpha}) \in F'$ if $i_1 < \cdots < i_n < \mu, j_1 < \cdots < j_n < \mu$ and $b_{i_k}, b_{j_k} \in B_{\alpha}$

$$M'_{\alpha} \models \psi(b_{i_1}, \ldots, b_{i_n}) \leftrightarrow \psi(b_{j_1}, \ldots, b_{j_n}).$$

<u>Proof of Claim 2.</u> Define, for all $\alpha < \mu$, $h_{\alpha} : [A_{\alpha}]^n \to 2$ as follows:

$$h_{\alpha}(\overline{a}) = \begin{cases} 0 & \text{if } M_{\alpha} \models \psi(\overline{a}), \\ 1 & \text{otherwise.} \end{cases}$$

By Erdös-Rado theorem, there is $B_{\alpha} \subset A_{\alpha}$ such that $|B_{\alpha}| > \beth_{\alpha}$ and for all $\bar{b} \in [B_{\alpha}]^n$, $h_{\alpha}(\bar{b}) = \text{constant}$. Thus, $\{(M_{\alpha}, B_{\alpha}) : \alpha < \mu\}$ is required.

Let $\{t_i : i < \omega, t_i \text{ is a term of } \mathcal{L}\}$ and $\{\psi_i : i < \omega, \psi_i \text{ is a \mathcal{L}-formula}\}$ be enumerations of all the terms of \mathcal{L} and all the \mathcal{L} -formula, respectively. Now we construct Φ by induction on $i < \omega$. Suppose $F_0 := \{(M_\alpha, M_\alpha) : \alpha < \mu\}$ and $\Phi_0 := T \cup \{c_i \neq c_j : i < j < \omega\}$. Clearly, for any $(M_\alpha, M_\alpha) \in F_0$, $M_\alpha \models \Phi_0$ and $|M_\alpha| > \beth_\alpha$.

Case 1 $(i < \omega \text{ is even})$. Assume we have found F_i and Φ_i . We take new term $\overline{t(x_1, \ldots, x_n)} \in \{t_i : i < \omega, t_i \text{ is a term of } \mathcal{L}\}$, by claim 1,

there is subsequence F_{i+1} of F_i as following property: for each $p \in \Gamma$, there is a $\phi_p \in p$ such that for any $(M'_{\alpha}, B_{\alpha}) \in F_{i+1}$, if $i_1 < \cdots < i_n < \omega$ and $b_{i_j} \in B_{\alpha}$,

$$M'_{\alpha} \models \neg \phi_p(t(b_{i_1},\ldots,b_{i_n})).$$

We put $\Phi_{i+1} = \Phi_i \cup \{ \neg \phi_p(t(c_{i_1}, \dots, c_{i_n})) : p \in \Gamma, i_1 < \dots < i_n < \omega \}.$

Case 2 $(i < \kappa \text{ is odd})$. Assume we have found F_i and Φ_i . We take new formula $\overline{\psi(x_1,\ldots,x_n)} \in \{\psi_i: i < \omega, \ \psi_i \text{ is a \mathcal{L}-formula}\}$, by claim 2, there is subsequence F_{i+1} of F_i as following property: for any $(M'_{\alpha},B_{\alpha}) \in F_{i+1}$ if $i_1 < \cdots < i_n < \mu$, $j_1 < \cdots < j_n < \mu$ and $b_{i_k},b_{j_k} \in B_{\alpha}$

$$M'_{\alpha} \models \psi(b_{i_1},\ldots,b_{i_n}) \leftrightarrow \psi(b_{j_1},\ldots,b_{j_n}).$$

We put $\Phi_{i+1} := \Phi_i \cup \{ \psi(c_{i_1}, \ldots, c_{i_n}) \leftrightarrow \psi(c_{j_1}, \ldots, c_{j_n}) : i_1 < \cdots < i_n < \omega, \ j_1 < \cdots < j_n < \omega \}.$

If put $\Phi := \bigcup_{i < \omega} \Phi_i$ then it is required \mathcal{L}^* -theory. We take any $(M_{\alpha}, A_{\alpha}) \in F := \bigcap_{i < \omega} F_i$. By construction $M_{\alpha} \models \Phi$.

Let A be the set of all interpretation $C = \{c_i : i < \omega\}$ in M_{α} , N be Skolem closure of A in M_{α} . Thus N is model of T, omitting Γ , indicernibles in M_{α} , and $|N| = \omega$.

Take any $\lambda \geq \omega$. By stretching theorem, there is a model of T which the cardinality of λ such that omitting Γ . Note that if $|\Gamma| \leq \omega$ then it is sufficient $\mu = \omega_1$, see [2].

It is known that Morley's theorem is proved in infinitary logic, and it is effective means to show existence of models in infinitary logic that the compactness theorem is false generally, see [1], [3].

3 Related Result

The following result is related to Morley's omitting type theorem. This theorem says the thing that is stronger than Morley's theorem under a certain condition.

Theorem.(Tsuboi) Let T be a countable complete \mathcal{L} -theory and Γ a set of complete types with $|\Gamma| < 2^{\omega}$. Suppose that for each $\alpha < \omega_1$, there is a model $M_{\alpha} \models T$ with the following properties:

- 1. $|M_{\alpha}| > \beth_{\alpha}$
- 2. M_{α} omits each member of Γ .

Then for each $\lambda \geq \omega$ there is a model N omitting Γ and with $|N| = \lambda$.

Proof. Let $X = \omega_1$ and $\{I_i : i \in X\}$ be a set of infinite indiscernible sequences and $\{t_n; n < \omega\}$ be an enumeration of all the \mathcal{L} -terms. We may assume that t_n has n-variables. We will say that the set $\{I_i : i \in X\}$ is t_n -uniform if the following condition holds: If $i, j \in X$, then $tp(t_n(I_i)) = tp(t_n(I_j))$ where $tp(t_n(I_i)) := tp(t_n(a_0, \ldots, a_{n-1}))$ $(a_0 < \cdots < a_{n-1} \in I_i)$. We will say that $\{I_i : i \in X\}$ is essentially t_n -uniform if there is an uncountable subset Y of X such that $\{I_i : i \in Y\}$ is t_n -uniform. For a formula $\phi(x)$, define $X^{\phi,t_n} := \{i \in X : \phi(x) \in tp(t_n(I_i))\}$. Put $X_{\emptyset} = \omega_1$, and for each $i \in X_{\emptyset}$ we fix a sequence $I_{\emptyset}(i)$ enumerating the universe M_i .

Using the argument in the paper([4]), for $\eta \in 2^{<\omega}$ and $k < \omega$, we can inductively choose $X_{\eta} \subset \omega_1$, $\{I_{\eta}(i) : i \in X_{\eta}\}$ and formulas $\phi_{\eta,k}$ with the following properties:

- 1. If $\eta < \nu$, then
 - (a) X_{ν} is an uncountable subset of X_{η} ;
 - (b) $I_{\nu}(i)$ is a subsequence of $I_{\eta}(i)$ for each $i \in X_{\nu}$.
- 2. $i < j \Rightarrow |I_{\eta}(i)| < |I_{\eta}(j)|$, and $\sup\{|I_{\eta}(i)| : i \in X_{\eta}\} \geq \beth_{\omega_1}$.

- 3. If $\eta \in 2^n$ then
 - (a) each $I_n(i)$ is an infinite indiscernible sequence;
 - (b) $\{I_n(i): i \in X_n\}$: essentially t_n -uniform \Rightarrow it is t_n -uniform.
- 4. If $\eta \in 2^n$ and $k \leq n$ then

$$\begin{split} \{I_{\eta}(i): i \in X_{\eta}\}: & \text{ not } t_{n}\text{-uniform} \\ \Rightarrow X_{\eta \hat{\ }0} \subset (X_{\eta})^{(\phi_{\eta,k}),t_{k}} & \text{ and } X_{\eta \hat{\ }1} \subset (X_{\eta})^{(\neg\phi_{\eta,k}),t_{k}}. \end{split}$$

For all $\nu \in 2^{\omega}$, we define the following:

- 1. K_{ν} is the set of all $n < \omega$ such that $\{I_{\nu|n}(i) : i \in X_{\nu|n}\}$ is not t_n -uniform;
- 2. for $n \in K_{\nu}$, $\Delta_{\nu}^{n}(x) := \bigcup_{n \leq m < \omega} \{ \phi_{\nu|m,n}(x) : \nu(m) = 0 \} \cup \bigcup_{n \leq m < \omega} \{ \neg \phi_{\nu|m,n}(x) : \nu(n) = 1 \};$
- 3. $\Phi_{\nu} := \{\{x_i\}_{i<\omega} \text{ is indiscernible}\} \cup \bigcup_{n\in K_{\nu}} \Delta_{\nu}^n(t_n(\overline{x}_n)) \cup \bigcup_{n\notin K_{\nu}} p_{\nu|n}(t_n(\overline{x}_n));$
- 4. $F_{\nu} := \{ (M_i^{\nu}, I_{\nu}(i)) : i \in X_{\nu} \} \quad (I_{\nu}(i) \subset M_i^{\nu}).$

$$2^{\omega} \begin{cases} F_{\langle 0 \cdots \rangle} : (M_0^{\langle 0 \cdots \rangle}, I_{\langle 0 \cdots \rangle}(0)), \cdots, (M_i^{\langle 0 \cdots \rangle}, I_{\langle 0 \cdots \rangle}(i)), \cdots & \models \varPhi_{\langle 0 \cdots \rangle} \\ \vdots & \vdots & & \vdots \\ F_{\nu} & : (M_0^{\nu}, I_{\nu}(0)), \cdots, (M_i^{\nu}, I_{\nu}(i)), \cdots & \models \varPhi_{\nu} \\ \vdots & & \vdots & & \vdots \\ F_{\langle 1 \cdots \rangle} : (M_0^{\langle 1 \cdots \rangle}, I_{\langle 1 \cdots \rangle}(0)), \cdots, (M_i^{\langle 1 \cdots \rangle}, I_{\langle 1 \cdots \rangle}(i)), \cdots & \models \varPhi_{\langle 1 \cdots \rangle} \end{cases}$$

We can take $\nu \in 2^{\omega}$ well, see [4], such that if $\{c_i : i < \omega\}$ realizing Φ_{ν} in M_0^{ν} , and N is Skolem closure of $\{c_i : i < \omega\}$ in M_0^{ν} then N omits Γ . The rest of the statement is clear from Stretching Theorem.

References

- [1] J.T.Baldwin. Categoricity. Amer Mathematical Society (2009).
- [2] C.C.Chang. H.J.Keisler. Model Theory. North-Holland (1973).
- [3] H.J.Keisler. Model Theory for Infinitary Logic. North-Holland(1971).
- [4] A.Tsuboi. *Models Omitting Given Complete types*. Notre Dame Journal of Formal Logic, Volume 49, Number 4 (2008).