<table>
<thead>
<tr>
<th>Title</th>
<th>A note on lowness for Robinson theories (New developments of independence notions in model theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Anbo, Yuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2010), 1718: 64-69</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/170345</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A note on lowness for Robinson theories

Yuki Anbo (安保 勇希)
Graduate School of Pure and Applied Sciences,
Tsukuba University
(筑波大学大学院数理物質科学研究科)

Abstract
We show following two theorems. Theorem A: for thick simple existentially universal domain, the equality of Lascar strong types is definable by an existential type. Theorem B: for thick low existentially universal domain, Lascar strong types equal strong types. Theorem A is already proved by Ben-Yaacov [2].

1 Preliminaries

Definition 1.1 We say that an L-structure M is κ-existentially universal domain (e.u.domain) if

- if $\Sigma(x)$ is a partial existential type over A ($|A| < \kappa$) which is finitely satisfiable in M, then Σ is satisfiable in M, and

- for $|A|, |B| < \kappa$, and $f : A \to B :$ a bijection such that $\text{etp}(a) \subset \text{etp}(f(a))$ for all tuples a from A, f extends to an automorphism of M.

Remark 1.1 An e.u.domain M is an existentially closed model for the universal theory of M, $\text{Th}(M)_{\forall}$.

Let \mathcal{M} be a κ-e.u.domain for an enoughly big cardinal κ. Put $T = \text{Th}_{\forall}(\mathcal{M})$. M, N, \ldots denote existentially closed models of T, a, b, \ldots denote finite tuples in \mathcal{M}, and A, B, \ldots denote small subsets of \mathcal{M}.

Definition 1.2 Let $\Sigma(x, B)$ be an existential type over B.

1. We say that $\Sigma(x, B)$ divides over A if there exists an existentially indiscernible sequence $(B_i : i < \omega)$ over A with $B_0 = B$ such that $\bigcup_{i < \omega} \Sigma(x, B_i)$ is not realized in \mathcal{M}.
2. We say that $\Sigma(x)$ forks over A if there exists a small set of dividing (/A) existential formulas Ψ (with parameters) such that $\mathcal{M} \models \Sigma \rightarrow \bigvee \Psi$.

Remark 1.2

- If $\Sigma(x)$ divides over A, then there is an existential formula $\varphi(x)$ such that $\Sigma \vdash \varphi(x)$ and $\varphi(x)$ divides over A.

- It is not known whether if Σ forks over A, then there are an existential formula θ where $\Sigma \vdash \theta$ and dividing (/A) existential formulas ψ_1, \ldots, ψ_n such that $\mathcal{M} \models \theta \rightarrow \bigvee_{i=1}^n \psi_i$.

Definition 1.3 We say that \mathcal{M} is simple if for all $a \in \mathcal{M}$, $A \subset \mathcal{M}$, there exists $B \subset A$ with $|B| \leq |T| + \aleph_0$ such that etp(a/A) does not fork over B.

Fact 1.1 [3] Suppose that \mathcal{M} is simple. Then, Σ forks over A if and only if Σ divides over A.

Definition 1.4

1. We say that lstp(a) = lstp(b) if for any bounded \emptyset-invariant equivalence relation $E(x, y)$, $E(a, b)$ holds.

2. We say that $d(a, b) \leq 1$ if there is an existentially indiscernible sequence I such that $a, b \in I$.

3. We say that $d(a, b) \leq n$ if there exist a_0, \ldots, a_n with $a_0 = a, a_n = b$ such that $d(a_i, a_{i+1}) \leq 1$ for any $i < n$.

4. We say that $d(a, b) < \omega$ if $d(a, b) \leq n$ for some $n < \omega$.

Fact 1.2 [3] lstp(a) = lstp(b) if and only if $d(a, b) < \omega$.

Fact 1.3 [3] If $(a_i : i < \lambda)$ is an enoughly long sequence and $A \subset M$, then there is an existentially indiscernible sequence $(b_i : i < \omega)$ such that for any $n < \omega$, there are $i_0 < \cdots < i_{n-1} < \lambda$ such that etp($b_0, \ldots, b_{n-1}/A$) = etp($a_{i_0}, \ldots, a_{i_{n-1}}/A$).

Fact 1.4 [3] Suppose that \mathcal{M} is simple. Then, for all a, $A \subset B$, there exists a' such that

- lstp(a'/A) = lstp(a/A) and

- etp(a'/B) does not fork over A.

We write $a \not\rightarrow b$ to mean that etp(a/b) does not fork over \emptyset.

65
Fact 1.5 (Independence theorem for simple e.u.domain, [3]) Suppose that \mathcal{M} is simple and a_1, a_2, b_1, b_2 satisfy the following:

- lstp(a_1) = lstp(a_2),
- $a_1 \perp b_1$, $a_2 \perp b_2$, $b_1 \perp b_2$.

Then, there exists a such that

- $a \models$ etp(a_1/b_1) ∪ etp(a_2/b_2)
- $a \perp b_1 b_2$.

2 Proof of Theorem A

In this section, we prove Theorem A. For simplicity, we show over \emptyset.

Definition 2.1 We say that \mathcal{M} is thick if "$d(x, y) \leq 1$" is definable by an existential type. If \mathcal{M} is thick, then we assume that $q_1(x, y)$ defines "$d(x, y) \leq 1$".

Lemma 2.1 Suppose that \mathcal{M} is thick. Then, "$d(x, y) \leq 2$" is definable by an existential type.

Proof: It is defined by $\{\exists z \varphi(x, z) \land \varphi(z, y) | \varphi(x, y) \in q_1(x, y)\}$.

Lemma 2.2 Suppose that \mathcal{M} is thick and simple. Then, the following are equivalent:

1. lstp(a) = lstp(b)
2. $d(a, b) \leq 2$
3. $q_1(x, a) \cup q_1(x, b)$ does not fork over \emptyset

Proof: $(3 \rightarrow 2 \rightarrow 1)$ is trivial. $(1 \rightarrow 2)$ Let c be a tuple such that lstp(c) = lstp(a) = lstp(b) and $c \perp ab$. Take a' such that etp($a'a$) = etp(ac). Then lstp(a') = lstp(a) and $a' \perp a$. So, by independence theorem, we can get a_2 such that $a_2 \models$ etp(a/c) ∪ etp(a'/a) and $a_2 \perp ac$.

Iterating this, we can get a sequence $(a_i : i < \omega)$ such that etp($a_i a_j$) = etp(ac) for each $j < i < \omega$. By compactness and Fact 1.3, we can assume this sequence is existentially indiscernible. So, we get existentially indiscernible sequences I, J such that $a, c \in I$ and $b, c \in J$.
Theorem A [2] Suppose that \mathcal{M} is thick and simple. Then, "lstp(x) = lstp(y)" is definable by an existential type.

Proof: By above lemmas.

3 Proof of Theorem B

In this section, we prove Theorem B. Again for simplicity, we show over \emptyset.

Definition 3.1 We say that stp(a) = stp(b) if for any definable (by an existential formula over \emptyset) finite equivalence relation $E(x, y)$, $E(a, b)$ holds.

Definition 3.2 1. Let $\varphi(x, y)$ be an existential formula. An existential formula $\psi(y_0, \ldots, y_{k-1})$ where lh(y_i) = lh(y) for each $i < k$ is said to be a k-inconsistency witness for φ if $\mathcal{M} \models \forall y_0 \cdots y_{k-1}(\psi(y_0, \ldots, y_{k-1}) \rightarrow \neg \exists x \wedge \forall i \leq k \varphi(x, y_i))$.

2. Let $\Sigma(x)$ be an existential type and $\varphi(x, y)$ be an existential formula.
 - We say that $D(\Sigma, \varphi) \geq 0$ if Σ is satisfiable.
 - We say that $D(\Sigma, \varphi) \geq n + 1$ if there is a natural number k, a k-inconsistency witness ψ, and an existentially indiscernible sequence $(b_i : i \leq \omega)$ such that $D(\Sigma(x) \cup \{\varphi(x, b_i)\}, \varphi) \geq n$ for each $i < \omega$ and $\mathcal{M} \models \psi(b_{i_0}, \ldots b_{i_{k-1}})$ for all $i_0, \ldots, i_{k-1} < \omega$.

3. We say that \mathcal{M} is low if
 - \mathcal{M} is simple and
 - $D(x = x, \varphi) < \omega$ for any existential formula φ.

Lemma 3.1 Suppose that \mathcal{M} is thick and low. Then,

1. $\{a : \varphi(x, a) \text{ divides over } \emptyset\}$ is definable by an existential type.

2. $\{(a, b) : \varphi(x, a) \land \varphi(x, b) \text{ does not divide over } \emptyset\}$ is definable by an existential type if it is restricted to $(p \otimes p)^{\mathcal{M}} = \{(a, b) : a, b \models p, a \downarrow b\}$. So, it is definable by an existential universal formula if it is restricted to $(p \otimes p)^{\mathcal{M}}$

Proof: (1) Note that by lowness, for any $\varphi(x, y)$ there is an existentially indiscernible sequence ψ such that for all a, if $\varphi(x, a)$ divides over \emptyset, then φ divides by an existentially indiscernible sequence in which any k-elements satisfies ψ.

(2) For $a, b \models p$ where $a \downarrow b$, the following are equivalent:
1. $\varphi(x, a) \land \varphi(x, b)$ does not divide over \emptyset

2. there exist a^* and b^* such that
 - $\mathcal{M} \models \varphi(a^*, a)$ and $a^* \perp a$;
 - $\mathcal{M} \models \varphi(b^*, b)$ and $b^* \perp b$;
 - lstp$(a^*) = lstp(b^*)$

By Theorem A, "lstp$(a^*) = lstp(b^*)" is expressible by an existential type. "a* \perp a" is expressible by "$D(\text{etp}(a/a^*), \varphi, \psi) \geq D(p, \varphi, \psi)$" for any φ, ψ.

We sat that $E_{p(x), \varphi(x,y)}(b, c)$ if for all $a \models p$ with $a \perp bc$, $\varphi(x, a) \land \varphi(x, b)$ does not divide over \emptyset if and only if $\varphi(x, a) \land \varphi(x, c)$ does not divide over \emptyset.

Lemma 3.2 Suppose that \mathcal{M} is thick and low. For any $a \models p$ where $\varphi(x, a)$ does not divide over \emptyset, $E_{p(x), \varphi(x,y)}$ is a definable (by an existential formula) finite equivalence relation on $(p^2)M$.

Proof: We can check that $E_{p, \varphi}$ is a bounded equivalence relation boundedness is by "lstp$(x) = lstp(y) \Rightarrow E_{p, \varphi}(x, y)". On the other hand, by the above lemma $\neg E_{p, \varphi}$ is definable by an existential type. So, $E_{p, \varphi}$ is a finite equivalence relation. Let a_1, \ldots, a_n be representations of classes. Then $\bigcup\{\neg E(x, a_i) : i \leq n\}$ is not satisfiable. For simplicity, we assume $n = 3$. There exists an existential formula $\varphi(x, y)$ such that

1. $\neg E(x, a_i) \vdash \varphi(x, a_i)$ for each $i \leq 3$

2. $\mathcal{M} \models \neg \exists x \varphi(x, a_1) \land \varphi(x, a_2) \land \varphi(x, a_3)$.

Put $\psi(x, y) = \neg \varphi(x, y)$. Note that $\mathcal{M} \models \forall x(\psi(x, a_1) \leftrightarrow \varphi(x, a_2) \land \varphi(x, a_3))$. So, $\psi(x, a_1)$ is also existential. By a symmetric argument, $\psi(x, a_2), \psi(x, a_3)$ are all existential. Then we have

$$E(x, y) \leftrightarrow \bigwedge_{i \leq 3} (\psi(x, a_i) \leftrightarrow \psi(y, a_i)).$$

We can omit parameters a_i's because this does not depend on a choice of representations and $\psi(x, a_i)$ is existential universal.

Theorem B Suppose that \mathcal{M} is thick and low. Then, stp = lstp

Proof: If stp$(a) = stp(b)$, then by the above lemma $a, b \models E_{p, \varphi}$ for any φ. Take c such that lstp$(c) = lstp(a)$ and $c \perp ab$. Then, $q_1(x, a) \cup q_1(x, c)$ does not divide by Lemma 3. Then, $q_1(x, b) \cup q_1(x, c)$ does not divide by $E_{p, \varphi}(a, b)$. Again by Lemma 3, we have lstp$(b) = lstp(c)$.

References

