<table>
<thead>
<tr>
<th>Title</th>
<th>On generic automorphisms of a tree structure (New developments of independence notions in model theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kikyo, Hirotaka; Tsuboi, Akito</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2010), 1718: 52-57</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/170347</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On generic automorphisms of a tree structure

Graduate School of System Informatics, Kobe University

Graduate School of Pure and Applied Sciences
University of Tsukuba

Abstract

We give a theory T with the strict order property such that for some automorphism σ_0 of a prime model M_0 of T, the theory

$$T + \ "\sigma \text{ is an automorphism} + \ "\sigma|M_0 = \sigma_0"$$

is model complete. Note that $T + \ "\sigma \text{ is an automorphism}"$ has no model companion if T has the strict order property [3]. This seems to have some resemblance with the theory of the rings of Witt Vectors carrying the Frobenius automorphism [1].

We consider each natural number n as the set $\{0, 1, \ldots, n - 1\}$. Consider a structure $(M_0, <)$ with

$$M_0 = \{ f : n \to n + 1 \mid n < \omega, \ f(i) < i + 1 \text{ for } i < n \},$$

and $f < g$ if g is a proper extension of f as a map for $f, g \in M_0$.

For each $f \in M_0$ with $\text{dom} \ f = n$, let f^s be a map such that

$$f^s(i) = (f(i) + 1) \mod (i + 1)$$

for $i < n$. Then the map $s : M_0 \to M_0$ defined by $s(f) = f^s$ is an automorphism of $(M_0, <)$. ϵ denotes the least element of M_0 (i.e., ϵ is the empty sequence). Let $<_1$ be a definable relation on M_0 defined by the formula

$$x < y \land \forall z \neg(x < z < y).$$

Let T_0 be the theory of $(M_0, <, <_1)$. Note that for any model M of T_0, $\text{acl}_M(\emptyset) = M_0$. The root (the least element) of M_0 will be denoted by ϵ.
Proposition 1. Let M be a model of T_0. Then the following sentences are valid in M:

(1) $\forall x \exists y \ x <_1 y$.
(2) $\forall x, y \ x < y \rightarrow \exists z \ x <_1 z \leq y$.
(3) $\forall x, y \ x < y \rightarrow \exists z \ x \leq z <_1 y$.
(4) $\forall x, y, z \ x, y \leq z \rightarrow x < y \lor x = y \lor y < x$.
(5) $\forall x, y \exists u, v \ x \not\leq y \rightarrow u <_1 v \leq x \land u \leq y \land v \not\leq y$.
(6) Let n be any natural number. If $x < y$ and x has (at least) n childs then y has (at least) $n + 1$ childs.

Theorem 2. The theory

$$T_0 \cup \{ \sigma \text{ is a } <\text{-automorphism extending } s \}$$

in the language $\{<,<_1, \sigma\} \cup M_0$ has a model companion. In fact, it is model complete.

We fix models $M \subset M'$ of T and assume that σ is a $<\text{-automorphism of } M'$ extending s and M is σ-invariant.

Lemma 3. If $a, b \in M$ then $\inf_M\{a, b\} = \inf_{M'}\{a, b\}$.

Proof. Let $c = \inf_M\{a, b\}$. If $c = a$ or $c = b$ then there is nothing to prove.

Suppose $c < a, b$. Then we can choose $c_a, c_b \in M$ such that $c <_1 c_a \leq a$, $c <_1 c_b \leq b$, and c_a is incomparable with c_b. Now, we show that $c = \inf_{M'}\{a, b\}$. Let $d \in M' - M$ be such that $d < a, b$. Then d is comparable with both c_a and c_b. Only the case $d < c_a, c_b$ is possible. Therefore, $d < c$.

Definition 4. Suppose $a, b \in M' - M$. We say that a and b are dependent over M if there is $c \in M' - M$ such that $c \leq a$ and $c \leq b$. We call such c a witness of the dependence. a and b are dependent over M if and only if $\inf\{a, b\} \in M' - M$.

We say that a and b are independent over M if a and b are not dependent over M.

Lemma 5. The dependence over M is an equivalence relation on $M' - M$.

Proof. The reflexivity and the symmetry are trivial. We show the transitivity. Suppose b and c are dependent over M with a witness u, and c and d are dependent over M with a witness v. Since $u \leq c$ and $v \leq c$, u and v are comparable. Without loss of generality, we can assume that $u \leq v$. Then $u \leq v \leq d$. Therefore, b and d are dependent over M with a witness u.

Lemma 6. If $b \in M' - M_0$ then b and σ^mb are independent over M_0 for any integer $m \neq 0$.
Proof. Let \(m \neq 0 \) be an integer and \(b \in M' - M \). Choose \(f < b \) such that \(f \in M_0 \) and \(\text{dom } f \supset m \). Then \(f \) and \(s^m f \) are incomparable and also \(s^m f < \sigma^m b \).

Suppose there is \(a \in M' - M_0 \) such that \(a < b \) and \(a \leq \sigma^m b \). \(f \) and \(a \) are comparable by \(f < b \) and \(a \leq b \). Since \(f \) has a finite distance from the root, we have \(f < a \). Similarly, \(s^m f < a \). Therefore, \(f \) and \(s^m f \) are comparable. A contradiction.

Corollary 7. If \(a, b \in M' - M \) are dependent over \(M \) then \(a \) and \(\sigma^m b \) are independent over \(M \) for any integer \(m \neq 0 \).

Proof. Suppose \(a, b \in M' - M \) are dependent over \(M \) and \(a \) and \(\sigma^m b \) are dependent over \(M \) for some integer \(m \neq 0 \). Suppose \(c \leq a, c \leq b \) with \(c \in M' - M \), and \(d \leq a, d \leq \sigma^m b \) with \(d \in M' - M \).

Since \(c, d \leq a \) and \(d \) are comparable. Therefore, \(\min\{c, d\} \leq \inf\{b, \sigma^m b\} \), and hence \(\inf\{b, \sigma^m b\} \in M' - M \) contradicting Lemma 6.

Definition 8. Suppose \(a, b \in M' - M \). We say that \(a \) and \(b \) are quasi-connected over \(M \) if there is \(c \in M' \) such that

1. \(M' \models c \leq a, b \),
2. \(M' \models c \leq y \leq a \) implies \(y \in M' - M \), and
3. \(M' \models c \leq y \leq b \) implies \(y \in M' - M \).

We call \(c \) a witness of this property. Note that if \(a \) and \(b \) are quasi-connected over \(M \) then it is dependent over \(M \).

Lemma 9. The quasi-connectedness over \(M \) is an equivalence relation on \(M' - M \).

Proof. The reflexivity and the symmetry are trivial. We show the transitivity. Suppose \(b \) and \(c \) are quasi-connected over \(M \) with a witness \(u \) and \(c \) and \(d \) are quasi-connected over \(M \) with a witness \(v \). Since \(u \leq c \) and \(v \leq c \), \(u \) and \(v \) are comparable. Without loss of generality, we can assume that \(u \leq v \). We show that \(u \) is a witness for quasi-connectedness of \(b \) and \(d \) over \(M \). If \(u \leq w \leq b \) then \(w \in M' - M \) since \(u \) is a witness for quasi-connectedness of \(b \) and \(c \).

Suppose \(u \leq w \leq d \). Then \(w \) and \(v \) are comparable. If \(w \leq v \) then \(u \leq w \leq c \) and thus \(w \in M' - M \). If \(v < w \) then \(v \leq w \leq d \) and thus \(w \in M' - M \).

Lemma 10. Suppose that \(B \) is a finite subset of \(M' - M \) quasi-connected over \(M \), \(a_1, \ldots, a_m \in M \) and for each \(a_i \) there is \(b_i \in B \) such that \(b_i < a_i \). Then there is \(b \in B \) such that \(b < \inf\{a_1, \ldots, a_m\} \).

Proof. Let \(a = \inf\{a_1, \ldots, a_m\} \) in \(M \). Then \(a = \inf\{a_1, \ldots, a_m\} \) in \(M' \) by Lemma 3.

Let \(b = \inf B \) in \(M' \). We have \(b \in M' - M \) because \(B \) is quasi-connected over \(M \). Since \(b \) is a lower bound for \(\{a_1, \ldots, a_m\} \), we have \(b \leq a \). Choose \(b_1 \in B \) such that \(b_1 < a_1 \). Then \(b_1 \) and \(a \) are comparable. If \(a \leq b_1 \) then \(b \leq a \leq b_1 \), but this cannot happen since there is no element \(y \in M \) such that \(b \leq y \leq b_1 \). Therefore, \(b_1 < a \).
Lemma 11. (1) Suppose $M' \models a <_{1} b$ with $a \in M$ and $b \in M' - M$. Then there is no $a' \in M$ such that $M' \models b < a'$.

(2) If $b \in M' - M$ then there is no $a \in M$ such that $M' \models b <_{1} a$.

Proof. (1) Suppose $M' \models a <_{1} b < a'$ with $a, a' \in M$ and $b \in M' - M$. Then there must be $a'' \in M$ such that $M \models a < a'' < a'$, and thus $M' \models a < a'' < a'$. But this cannot happen because $b \neq a''$.

(2) Suppose there is $b \in M' - M$ and $a \in M$ such that $M' \models b <_{1} a$. Since $M' \models \epsilon < a$, we have $M \models \epsilon < a$. Therefore, $M \models a' <_{1} a$ for some $a' \in M$ and thus $M' \models a' <_{1} a$. But this cannot happen because $b \neq a'$.

Definition 12. Suppose C and D are subsets of M'. We write $C < D$ if there is $c \in C$ such that $c \leq d$ for any $d \in D$.

Definition 13. A finite subset X of $M' - M$ is called canonical if the following conditions are satisfied:

(1) For any $x, y \in X$, whenever x and $\sigma^m(y)$ with $m \in \mathbb{Z}$ are dependent over M then $m = 0$;

(2) if $x, y \in X$ are dependent over M then there is $z \in X$ witnessing the dependence; and

(3) if $x, y \in X$ are quasi-connected over M then there is $z \in X$ witnessing the quasi-connectedness.

Definition 14. Let B be a subset of M'. $\langle B \rangle_{\sigma}$ denotes the set $\{\sigma^m(b) \mid b \in B, m \in \mathbb{Z}\}$.

Lemma 15. For any finite subset $X \subset M' - M$ there is a canonical subset $Z \subset M' - M$ such that $X \subset \langle Z \rangle_{\sigma}$.

Proof. We prove the statement by induction on the number of elements in X. It is trivial if $|X| = 0$. Suppose $X = \{a\} \cup X'$ with $|X'| < |X|$. By the induction hypothesis, there is a canonical subset Y' of $M' - M$ such that $X' \subset \langle Y' \rangle_{\sigma}$.

We split the proof into the following cases.

Case 1. $\sigma^m a$ and b are quasi-connected over M for some $b \in Y'$ and an integer m.

Let b_0 be the least element in Y' which is quasi-connected to $\sigma^m a$ over M. Let $c = \inf \{\sigma^m a, b_0\}$. We claim that $Y = Y' \cup \{\sigma^m a, c\}$ is canonical and has the desired property.

Let C_{b_0} be the quasi-connected component of Y containing b_0 and D_{b_0} be the dependent component of Y containing b_0. It is easy to see that $\{c\} \cup C_{b_0}$ is a tree. $\{c\} \cup D_{b_0}$ is also a tree. Let d be the least element of D_{b_0}. Since $c \leq b_0$ and $d \leq b_0$, c and d are comparable. Therefore, $\{c\} \cup D_{b_0}$ is a tree.
Now, suppose that $\sigma^{m_1}a$ and $b \in Y'$ are dependent over M. Then $\sigma^l b_0$ and $\sigma^{m_1}a$ are dependent over M and thus $\sigma^l b_0$ and $b \in Y'$ are dependent over M. Since Y' is canonical, we have $l = 0$.

Case 2. Case 1 does not hold but $\sigma^{m}a$ and b are dependent over M for some $b \in Y'$ and an integer m.

Let b_0 be the least element in Y' which is dependent to $\sigma^{m}a$ over M. Choose a witness $c \in M' - M$ of dependence of b_0 and $\sigma^{m}a$. $Y = Y' \cup \{\sigma^{m}a, c\}$ is canonical and has the desired property. The argument is the same as that for Case 1.

Case 3. There is no integer m and $b \in Y'$ such that $\sigma^{m}a$ and b are dependent over M. In this case, $Y = Y' \cup \{a\}$ is canonical and has the desired property. ☐

Lemma 16. Suppose $\{t_1, \ldots, t_n\} \subset M' - M$ is canonical. Then any formula in $\text{qftp}_{\{<,1}\}}(t_1, \ldots, t_n/M)$ is realised in M.

Proof. Suppose $\{t_1, \ldots, t_n\} \subset M' - M$ is canonical. Let t be the tuple (t_1, \cdots, t_n) and $\varphi(x)$ a formula with $x = (x_1, \ldots, x_n)$ belonging to $\text{qftp}_{\{<,1\}}(t/M)$. Let N be a natural number such that if $\sigma^{m_1}(x_i)$ occurs in $\varphi(x)$ then $m \leq N$. Let A be a finite subset of M such that $\varphi(x)$ is over A.

By adding finitely many points of M to A if necessary, we can assume the following:

- If C is a quasi-connected component of t then $\{a\} < C$ for some $a \in A$;
- if C and C' are two quasi-connected components of t with $C < C'$ then there is $a \in A$ such that $C < \{a\} < C'$;
- if C is a quasi-connected component of t and there is $a \in M$ and $c \in M' - M$ quasi-connected to C over M such that $a <_1 c$ then $a \in A$ and $c \in C$;
- if C is a quasi-connected component of t such that $\{a \in A \mid C < \{a\}\}$ is non-empty then $\inf \{a \in A \mid C < \{a\}\} \in A$;
- if $a \in A$ is comparable with t_i for some i then $\sigma^{m_1}(a) \in A$ for $m \leq N$; and
- if $a \in A$ is comparable with $\sigma^{m_1}(t_i)$ for some i and a natural number $m \leq N$ then $\sigma^{-m_1}(a) \in A$.

We can assume that $t = C_1 \cdots C_l$ where each C_i is an enumeration of a quasi-connected component of t.

Let a_i be the maximum element in A such that $\{a_i\} <_1 C_i$ and b_i be the minimum element in A such that $C_i < \{b_i\}$. Such a_i exists by the assumption on A and such b_i exists if there is $b \in A$ such that $C_i < \{b\}$ by Lemma 10 and the assumption on A.

Suppose that there are infinitely many elements d of M connected to a_i such that $a_i < d < C_i$. Choose $a'_i \in M$ connected to a_i with the following properties:

- If $x \in A$ and $M \models \sigma^{m_1}b_1 \not\leq x$ with $0 \leq m \leq N$ then $M \models \sigma^{m_1}a_i \not\leq x$; and
- if C' is a quasi-connected component of t such that $C_i \not\leq C'$ then $\{a'_i\} \not\leq C'$.
In the case that b_i exists, choose a tuple C_i' from M such that \(\text{qftp}_{\langle,\langle} (C_i/a'_i, b_i) = \text{qftp}_{\langle,\langle} (C_i'/a'_i, b_i) \). Then we have \(\text{qftp}_{\langle,\langle} (\sigma^m C_i/A) = \text{qftp}_{\langle,\langle} (\sigma^m C_i'/A) \) for \(m = 0, 1, \ldots, N \).

In the case that there is no such b_i for C_i, choose a tuple C_i' from M such that \(\text{qftp}_{\langle,\langle} (C_i/a'_i) = \text{qftp}_{\langle,\langle} (C_i'/a'_i) \). Then we have \(\text{qftp}_{\langle,\langle} (\sigma^m C_i/A) = \text{qftp}_{\langle,\langle} (\sigma^m C_i'/A) \) for \(m = 0, 1, \ldots, N \).

Let \(t' = C_1' \cdots C_k' \).

Claim 1. \(\text{qftp}_{\langle,\langle} (t^\sigma \sigma^2 t^\sigma \cdots \sigma^N t/A) = \text{qftp}_{\langle,\langle} (t^\sigma t^\sigma^2 t^\sigma \cdots \sigma^N t'/A) \)

\[\square \]

Proof of Theorem 2. We show that \((M, <, \sigma|M)\) is existentially closed in \((M', <, \sigma)\).

Choose a finite tuple \((t_1, \ldots, t_n)\) from \(M' - M\) and let \(\varphi(x_1, \ldots, x_n) \) be a quantifier-
free formula of \(\langle, \sigma \rangle \cup M\) realised by \((t_1, \ldots, t_n)\). By Lemma 15, we can choose \(t_1', \ldots, t_n' \in M' - M\) such that \(t_i = \sigma^{k_i}(t'_i) \) for each \(i \) with some \(k_i \geq 0 \) and the set \(\{t_1', \ldots, t_n'\} \) is canonical. We have

\[
M' \models \varphi(\sigma^{k_1}(t_1'), \ldots, \sigma^{k_n}(t_n')).
\]

By Lemma 16, we can choose \(t_1'', \ldots, t_n'' \in M\) such that

\[
M \models \varphi(\sigma^{k_1}(t_1''), \ldots, \sigma^{k_n}(t_n'')).
\]

Therefore, \(\varphi(x_1, \ldots, x_n) \) is realised in \(M \).

\[\square \]

References

