# IDR 定理をベースにした定常反復法の性能評価

## A performance estimation of stationary iterative methods based on IDR Theorem

藤野清次 (九州大学) 尾上勇介 (九州大学大学院)

Fujino, S., Onoue, Y., Kyushu University

Sonneveld, P. and van Gijzen, M.B. (Delft University of Technology)

Abstract: The conventional SOR method is well known to be a simple one of stationary iterative methods for solving a linear system of equations with nonsymmetric coefficient matrix, but it converges slowly and sometimes stagnates during iterations. Therefore, we improve the SOR method by means of the extended Induced Dimension Reduction (IDR) Theorem proposed by Sonneveld et al. in 2008 in order to gain robustness of convergence. In this article, we devise the IDR-based SOR method with parameter s. A number of numerical experiments verify effectiveness and robustness of the IDR-based SOR method. Characteristics of convergence of IDR-based SOR method will be effective for a rich variety of applications.

#### 1. はじめに

最近,拡張 IDR(Induced Dimension Reduction) 定理に基づく反復解法が続々と誕生している [3][6-10][12-13][15-17][19][21]. 本稿では,代表的な定常反復法の一つである SOR(Successive Over-Relaxation) 法に定理を適用し,IDR based SOR(以下,IDR(s)-SOR と呼ぶ) 法を提案し,その性能評価と比較を行う。そして,数値実験により,従来の反復法に比べて,IDR(s)-SOR 法の収束優位性を立証するものである [2][4][5][14].

## 1 IDR-SOR 法の算法

IDR-SOR 法の算法を以下に示す。ここでは、任意ベクトルpには乗算合同法による一様乱数を与えた。

#### 算法 1: IDR-SOR 法

- 1. Let  $x_0$  be an initial solution,
- 2. put  $\mathbf{r}_0 = \mathbf{b} A\mathbf{x}_0$ ,
- 3. let p be a random vector,
- 4. set  $\gamma = 0$ ,
- 5. for n = 0, 1, ...,
- 6.  $\mathbf{s}_n = (L + D/\omega)^{-1} (\mathbf{r}_n \gamma d\mathbf{r}_n),$
- 7.  $d\boldsymbol{x}_{n+1} = \boldsymbol{s}_n \gamma d\boldsymbol{x}_n,$
- 8.  $d\mathbf{r}_{n+1} = -((1-1/\omega)D + U)\mathbf{s}_n \mathbf{r}_n,$
- 9.  $r_{n+1} = r_n + dr_{n+1}, \quad x_{n+1} = x_n + dx_{n+1},$
- 10. if  $||r_{n+1}||_2/||r_0||_2 \le \epsilon$  then stop,
- 11.  $\gamma = (\mathbf{p}, \mathbf{r}_{n+1})/(\mathbf{p}, d\mathbf{r}_{n+1}),$
- 13. end for,

# 2 IDR(s)-SOR 法の算法

IDR(s)-SOR 法の算法を以下に示す。ここで、s次元ベクトル  $e_k$  は、k 番目の要素が 1 で、それ以外の要素が 0 とする。

## 算法 2: IDR(s)-SOR 法

- 1. Let  $x_0$  be an initial solution,
- $2. \quad \text{put } \boldsymbol{r}_0 = \boldsymbol{b} A\boldsymbol{x}_0,$
- 3.  $P = (\boldsymbol{p}_1 \ \boldsymbol{p}_2 \ \dots \ \boldsymbol{p}_s) \in R^{N \times s}, \ \text{ set } \gamma = 0,$  {initial loop: build matrices  $E = (d\boldsymbol{r}_1 d\boldsymbol{r}_2 \dots d\boldsymbol{r}_s),$   $Q = (d\boldsymbol{x}_1 d\boldsymbol{x}_2 \dots d\boldsymbol{x}_s) \text{ by ISOR method} \}$
- 5. for  $n = 0, 1, \dots, s 1$
- 6.  $\mathbf{s}_n = (L + \frac{1}{\omega}D)^{-1}(\mathbf{r}_n \gamma d\mathbf{r}_n),$
- 7.  $d\boldsymbol{x}_{n+1} = \boldsymbol{s}_n \gamma d\boldsymbol{x}_n,$
- 8.  $dr_{n+1} = -((1 \omega^{-1})D + U)s_n r_n,$
- 9.  $r_{n+1} = r_n + dr_{n+1}, \quad x_{n+1} = x_n + dx_{n+1},$
- 10. if  $||r_{n+1}||_2/||r_0||_2 \le \epsilon$  then stop,
- 11.  $\gamma = (\mathbf{p}_1, \mathbf{r}_{n+1})/(\mathbf{p}_1, d\mathbf{r}_{n+1}),$
- 12.  $Ee_{n+1} = dr_{n+1}, Qe_{n+1} = dx_{n+1},$
- 13. end for,
- 14.  $M = P^T E$ ,  $\mathbf{f} = P^T \mathbf{r}_s$ ,
- 15. n = s, k = 1,
  - {main loop}
- 16. while  $||r_{n+1}||_2/||r_0||_2 > \epsilon$
- 17. solve c from Mc = f,
- 18.  $s_n = (L + D/\omega)^{-1} (r_n Ec),$
- $19. dx_{n+1} = s_n Qc,$
- 20.  $d\mathbf{r}_{n+1} = -((1 \omega^{-1})D + U)\mathbf{s}_n \mathbf{r}_n,$
- 21.  $r_{n+1} = r_n + dr_{n+1}, \quad x_{n+1} = x_n + dx_{n+1},$

 $log_{10}$ 

1.42

1.22

- 22.  $E\boldsymbol{e}_k = d\boldsymbol{r}_{n+1}, \quad Q\boldsymbol{e}_k = d\boldsymbol{x}_{n+1},$
- 23.  $Me_k = P^T dr_{n+1}, \quad f = f + Me_k,$
- 24.  $n = n + 1, \quad k = k + 1,$
- 25. if k > s then k = 1,
- 26. end while.

## 2.1 SOR 法から IDR-SOR 法へ

以下の手順で、SOR 法から IDR-SOR 法が導出される。

- $r_{k+1} = Br_k \implies r_{k+1} = B(r_k + \gamma_k dr_k)$ . ここで、  $dr_k = r_k - r_{k-1}$ : 残差ベクトルの差,  $\gamma_k$  は スカラー値を表す.
- パラメータ  $\gamma_k$  は任意のベクトル p と  $(r_k + \gamma_k dr_k)$  が 直交するように決定される。すなわち、内積について  $(p, r_k + \gamma_k dr_k) = 0$  の関係から  $\gamma_k$  は求められる。
- 任意のベクトルpには初期残差ベクトル $r_0$ が代入される.

# 2.2 IDR-SOR 法から IDR(s)-SOR 法へ

以下の手順で、IDR-SOR 法から IDR(s)-SOR 法が導出される。

- $r_{k+1} = B(r_k + \gamma_k dr_k) \Longrightarrow r_{k+1} = B(r_k + \sum_{j=0}^s \gamma_{k-j} dr_{k-j})$ . ここで、 $\gamma_{k-j}$  はスカラ値とする。
- $\gamma_{k-j}$  は、ベクトル  $v_k$  (=  $(r_k + \sum_{j=0}^s \gamma_{k-j} dr_{k-j})$ ) が  $P^T$  の零空間となるように決められる。すなわち、 $N \times s$  行列  $P = (p_1 \ p_2 \ \cdots \ p_s)$  の転置  $P^T$  がベクトル  $v_k$  と直交する。具体的には、内積  $P^T v_k = 0$  により決定される。
- 任意ベクトル  $p_j$ ,  $(j=0,\ldots,s)$  には、初期残差ベクトル  $r_0$  または乱数が代入され、Gram-Schmidt の直交化が施される。

#### 3. 数值実験

#### 3.1 テスト問題

Table 1 に 24 個のテスト行列の主な特徴を以下に示す. 行列 waseda, w\_dense は,早稲田大学若尾研提供の行列で, その他 22 行列は Florida 大学疎行列 DB[18] から選出した.

要素 零要素 (domi.) airfoil\_2D 14,214 259,688 18.270 0.49big 13,209 91,465 0.71 dc2116,835 766,396 6.560 0.01 dc3116,835 766,396 6.560 0.01 ecl32 51,993 380,415 7.317 -1.87epb1 14,734 95,053 6.451 0.73 epb2 25,228 175,027 6.938 0.74epb3 84,617 463,625 5.479 0.65 k3plates 11,107 378,927 34.116 1.11 language 399,130 1,216,334 3.047 0.30 memplus 17,758 99,147 5.583 1.04 poisson3Da 13,514 352,762 26.103 1.20 poisson3Db 85,623 2,374,949 27.737 1.19

293,551

1,488,768

90.546

70.225

Table 1: テスト行列の主な特徴

次元数

行列

raefsky2

raefsky3

sme3Da 12,504 874,887 69.969 1.27 sme3Db 29,067 2,081,063 71.5951.28 sme3Dc42,930 3,148,656 73.344 1.29 trans4 116,835 766,396 6.560 1.06 wang3 26,064 177,168 6.797 0.77 wang4 26,068 177,196 6.797 0.75waseda 19,060 | 24,377,548 1670.8 1.72 w\_dense 7,601 57,775,201 7601.0 1.57 xenon1 48,600 1,181,120 24.303

3,242

21,200

各行列の対角優位度の大きさを表す指標として  $\log_{10}(\text{domi.})$  が考えられる。その定義を以下に示す。

domi. = 
$$\frac{\sum_{i} |a_{i,i}|/\text{nd}}{\sum_{i \neq j} |a_{i,j}|/\text{nnd}}.$$
 (1)

ここで,"nd" は対角要素数,"nnd" は非対角の要素数を各々表す。ただ,今回の数値実験では,IDR(s)-SOR 法の収束性とこの指標との相関はとれなかった。

## 3.2 計算機環境と計算条件

計算機環境と計算条件は,以下の通りである.

#### 計算機環境 -

- 1. 計算機は、HP Workstation xw4200(CPU: Intel(R) Pentium(R) 4, クロック周波数: 3.8GHz,メモリ: 3Gbyte, OS: Suse Linux version 9.2).
- 2. プログラムは Fortran90 で, コンパイラは Intel Compiler version 10.1 を用いた.
- 3. 最適化オプションは "-O3" を使用した.
- 4. 計算はすべて倍精度浮動小数点演算で行った。

#### 計昇条件

- 1. 収束判定値は相対残差の 2 ノルム:  $||r_{n+1}||_2/||r_0||_2 \le 10^{-6}$  である.
- 2. 疎行列ベクトル積の打ち切り回数は2万回とした.
- 3. 右辺項には物理的条件から得られる値を用いた。
- 4. 対角 scaling により対角項を1に正規化した.
- 5. ILU(0) 分解つき GMRES(k) 法 [11], 同 BiCGStab 法 [20], 同 GPBi-CG 法 [22], 同 BiCGSafe 法 [1], 同 Bi\_IDR 法 [19], 前処理なし IDR(s)-SOR 法の収束性を調べた.
- 6. IDR(s)-SOR 法の加速係数  $\omega$  は区間 [1.0, 1.90] で 0.1 刻みで 10 通り調べた.
- 7. IDR(s)-SOR 法, $Bi_*IDR(s)$  法のs の値は,1, 2, 4, 8 の計4 通り調べた.
- 8. BiCGStab 法, GPBi-CG 法, BiCGSafe 法の初期 シャドウ残差  $r_0^*$  は初期残差  $r_0$  を用いた.
- 9. GMRES(k) 法のリスタート係数 k は, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000 の計 9 通り 調べた.

#### 2.3 実験結果1

Table 2 に,IDR(s)-SOR,BiJDR(s) 法の収束までに要した行列ベクトル積の回数を表す.同様に,Table 3. に,GMRES(k) 法の収束までに要した行列ベクトル積の回数を表す.表中の "max" は,疎行列ベクトル積の打ち切り回数の 2 万回までに収束しなかったことを示す.SOR 法の加速係数  $\omega$  の値は最適値を表す.この表から以下の観察ができる.

- 例えば、IDR(s)-SOR 法について、行列 airfoil\_2d では、s=1 のとき 259 回が s=8 のとき 238 回 (約 92%) に減ったことが分かる。しかし、後述の Table 6 からわかるように、s=1 のとき 0.45 秒が s=8 のとき 0.55 秒 (約 122%) に逆に増加したことがわかる。
- Bi\_IDR(s) 法についても,同様の傾向が見られる.すなわち,行列 airfoil\_2d では,s=1 のとき 387 回がs=8 のとき 331 回 (約 86%) に減ったことが分かる.しかし,s=1 のとき 0.57 秒が s=8 のとき 0.80 秒 (約 140%) に逆に大幅に増加した (表は割愛).

算時間との間は比例関係ではなく, 疎行列ベクトル積の回数の"多いか少ないか"は反復法の性能を比較する上で指標になり難いことがわかった.

• 一方、 GMRES(k) 法では、行列 airfoil 2d において、k=20 のとき 1234 回が k=1000 のとき 288 回 (約23.3%) に大幅に減ったことが分かる。計算時間については、k=20 のとき 2.28 秒が k=1000 のとき 2.01 秒 (約88.2%) 少し減少した (表は割愛)。ここでも、疎行列ベクトル積の回数の"多いか少ないか"は、性能評価の判断材料の目安にし難い。

Table 2: IDR(s)-SOR,  $Bi_*IDR(s)$  法の行列ベクトル積回数.

| matrix     | $\omega$ | IDR(s)-SOR |                 |      |      | $\operatorname{BiJDR}(s)$ |      |      |      |
|------------|----------|------------|-----------------|------|------|---------------------------|------|------|------|
|            |          | s=1        | $ s=\grave{2} $ | s=4  | s=8  | s=1                       | s=2  | s=4  | s=8  |
| airfoil_2d | 1.9      | 259        | 250             | 248  | 238  | 387                       | 359  | 332  | 331  |
| big        | 1.9      | 684        | 428             | 373  | 361  | 4719                      | 1977 | 1138 | 856  |
| dc2        | 1.9      | 184        | 149             | 129  | 122  | 439                       | 256  | 218  | 231  |
| dc3        | 1.2      | 1048       | 576             | 275  | 164  | 2571                      | 820  | 456  | 439  |
| ecl32      | 1.8      | 293        | 245             | 231  | 216  | 441                       | 459  | 358  | 353  |
| epb1       | 1.5      | 472        | 349             | 320  | 292  | 511                       | 505  | 455  | 443  |
| epb2       | 1.2      | 152        | 129             | 128  | 125  | 230                       | 215  | 216  | 210  |
| epb3       | 1.0      | 1372       | 1057            | 932  | 843  | 2419                      | 1900 | 1668 | 1544 |
| k3plates   | 1.2      | 8396       | max             | 2047 | 3354 | 344                       | 375  | 371  | 508  |
| language   | 1.0      | 16         | 15              | 15   | 14   | 43                        | 41   | 36   | 32   |
| memplus    | 1.9      | 311        | 197             | 190  | 144  | 243                       | 149  | 150  | 123  |
| poi-3Da    | 1.8      | 79         | 78              | 83   | 77   | 146                       | 148  | 134  | 131  |
| poi-3Db    | 1.8      | 224        | 214             | 222  | 211  | 348                       | 320  | 315  | 291  |
| raefsky2   | 1.0      | 350        | 245             | 217  | 196  | 609                       | 448  | 394  | 354  |
| raefsky3   | 1.0      | 1765       | 1653            | 1340 | 1251 | 2673                      | 2863 | 2322 | 2243 |
| sme3Da     | 1.9      | 5239       | 1236            | 1072 | 992  | 5149                      | 4024 | 2543 | 2239 |
| sme3Db     | 1.9      | 9640       | 1503            | 1219 | 1136 | 7147                      | 4946 | 3272 | 2681 |
| sme3Dc     | 1.9      | max        | 3263            | 1626 | 1484 | max                       | max  | 4261 | 3722 |
| trans4     | 1.6      | 124        | 113             | 98   | 95   | 477                       | 214  | 208  | 216  |
| wang3      | 1.7      | 130        | 122             | 115  | 114  | 209                       | 200  | 184  | 182  |
| wang4      | 1.8      | 134        | 135             | 131  | 121  | 213                       | 173  | 184  | 158  |
| waseda     | 1.0      | 165        | 136             | 135  | 147  | 878                       | 538  | 408  | 694  |
| $w_dense$  | 1.0      | 63         | 46              | 35   | 32   | 46                        | 43   | 41   | 40   |
| xenon1     | 1.8      | 1350       | 1029            | 901  | 894  | 924                       | 775  | 717  | 805  |

Table 3: GMRES(k) 法の行列ベクトル積の回数.

|            | parameter: $k$ |      |      |      |      |      |          |      |      |
|------------|----------------|------|------|------|------|------|----------|------|------|
| matrix     | 10             | 20   | 50   | 100  | 200  | 500  | $10^{3}$ | 2000 | 5000 |
| airfoil_2d | max            | 1234 | 580  | 378  | 349  | 288  | 288      | 288  | 288  |
| big        | max            | max  | max  | max  | 6547 | 528  | 506      | 506  | 506  |
| dc2        | 471            | 309  | 167  | 142  | 133  | 133  | 133      | 133  | 133  |
| dc3        | max            | 6557 | 2484 | 563  | 337  | 264  | 264      | 264  | 264  |
| ecl32      | 5646           | 4876 | 3137 | 2186 | 792  | 315  | 315      | 315  | 315  |
| epb1       | 1212           | 880  | 592  | 492  | 511  | 398  | 398      | 398  | 398  |
| epb2       | 398            | 355  | 257  | 215  | 188  | 188  | 188      | 188  | 188  |
| epb3       | max            | max  | max  | 5425 | 3419 | 2357 | 1640     | 1337 | 1337 |
| k3plates   | 1502           | 799  | 401  | 300  | 291  | 264  | 264      | 264  | 264  |
| language   | 97             | 40   | 30   | 30   | 30   | 30   | 30       | 30   | 30   |
| memplus    | 122            | 87   | 74   | 69   | 69   | 69   | 69       | 69   | 69   |
| poi-3Da    | 184            | 175  | 140  | 130  | 113  | 113  | 113      | 113  | 113  |
| poi-3Db    | 809            | 703  | 401  | 299  | 249  | 237  | 237      | 237  | 237  |
| raefsky2   | 3841           | 2475 | 2138 | 977  | 604  | 316  | 316      | 316  | 316  |
| raefsky3   | 3723           | 3441 | 3020 | 2837 | 2417 | 1940 | 1780     | 1548 | 1548 |
| sme3Da     | max            | max  | max  | max  | max  | max  | max      | 1557 | 1557 |
| sme3Db     | max            | max  | max  | max  | max  | max  | max      | 2027 | 2022 |
| sme3Dc     | max            | max  | max  | max  | max  | max  | max      | 9279 | 2782 |
| trans4     | 489            | 391  | 197  | 164  | 154  | 154  | 154      | 154  | 154  |
| wang3      | 532            | 375  | 236  | 218  | 160  | 160  | 160      | 160  | 160  |
| wang4      | max            | max  | 409  | 184  | 141  | 141  | 141      | 141  | 141  |
| waseda     | 267            | 114  | 64   | 53   | 53   | 53   | 53       | 53   | 53   |
| $w_dense$  | 56             | 40   | 34   | 34   | 34   | 34   | 34       | 34   | 34   |
| xenon1     | 8807           | 4398 | 1880 | 1098 | 747  | 672  | 614      | 614  | 614  |

- 上で見たように、同じ反復法でも、疎行列ベクトル積 2.4 実験結果 2 の回数と収束までの計算時間との相関を取れない. し たがって, 異なる反復法どうしの収束性比較を疎行列 ベクトル積の回数で見極めは再考の余地がある。
- このような状況が起こるのは、算法中に占める内積計 算の割合が大きく異なる,ことに起因すると思われる.

次に、 Table 4 に IDR(s)-SOR 法と Bi\_IDR(s) 法のメ モリ使用量 [単位: MBytes] を示す。同様に、Table 5 に GMRES(k) 法のメモリ使用量を示す。各解法の最適なパ ラメータのときのメモリ使用量を太字で示す。GMRES(k)法のメモリ使用量が IDR(s)-SOR 法と  $Bi_*IDR(s)$  法のそれ らに比べて非常に多いことがわかる.

Table 4: IDR(s)-SOR 法と Bi\_IDR(s) 法のメモリ使用量.

| Table 1: IBIt(b) Boit (a C Biabit(b) (a > - > A (i = c)) |       |           |       |       |       |       |       |       |
|----------------------------------------------------------|-------|-----------|-------|-------|-------|-------|-------|-------|
| matrix                                                   |       | Bi_IDR(s) |       |       |       |       |       |       |
| maurix                                                   | s=1   | s=2       | s=4   | s=8   | s=1   | s=2   | s=4   | s=8   |
| airfoil_2d                                               | 7.68  | 8.00      | 8.66  | 9.96  | 4.11  | 4.44  | 5.09  | 6.39  |
| big                                                      | 3.71  | 4.01      | 4.61  | 5.82  | 2.11  | 2.41  | 3.01  | 4.22  |
| dc2                                                      | 31.80 | 34.48     | 39.83 | 50.52 | 18.13 | 20.80 | 26.15 | 36.85 |
| dc3                                                      | 31.80 | 34.48     | 39.83 | 50.52 | 18.13 | 20.80 | 26.15 | 36.85 |
| ecl32                                                    | 15.05 | 16.24     | 18.62 | 23.39 | 8.52  | 9.71  | 12.09 | 16.85 |
| epb1                                                     | 3.97  | 4.31      | 4.99  | 6.34  | 2.27  | 2.61  | 3.28  | 4.63  |
| epb2                                                     | 7.09  | 7.66      | 8.82  | 11.13 | 4.02  | 4.60  | 5.76  | 8.07  |
| epb3                                                     | 20.94 | 22.88     | 26.75 | 34.50 | 12.08 | 14.02 | 17.90 | 25.64 |
| k3plates                                                 | 10.03 | 10.28     | 10.79 | 11.81 | 5.23  | 5.48  | 5.99  | 7.01  |
| language                                                 | 76.56 | 85.70     | 103.  | 140.  | 45.89 | 55.03 | 73.30 | 109.  |
| memplus                                                  | 5.06  | 5.46      | 6.28  | 7.90  | 2.87  | 3.27  | 4.09  | 5.71  |
| poi-3Da                                                  | 9.72  | 10.03     | 10.65 | 11.89 | 5.12  | 5.43  | 6.05  | 7.29  |
| poi-3Db                                                  | 64.81 | 66.77     | 70.69 | 78.53 | 34.04 | 36.00 | 39.92 | 47.76 |
| raefsky2                                                 | 7.13  | 7.21      | 7.35  | 7.65  | 3.63  | 3.70  | 3.85  | 4.15  |
| raefsky3                                                 | 36.66 | 37.15     | 38.12 | 40.06 | 18.74 | 19.22 | 20.19 | 22.13 |
| sme3Da                                                   | 21.55 | 21.84     | 22.41 | 23.56 | 11.01 | 11.30 | 11.87 | 13.02 |
| sme3Db                                                   | 51.18 | 51.85     | 53.18 | 55.84 | 26.14 | 26.81 |       | 30.80 |
| sme3Dc                                                   | 77.31 | 78.29     | 80.26 | 84.19 | 39.47 | 40.46 | 42.42 | 46.35 |
| trans4                                                   | 31.80 | 34.48     | 39.83 | 50.52 | 18.13 | 20.80 | 26.15 | 36.85 |
| wang3                                                    | 7.24  | 7.83      | 9.03  | 11.41 | 4.12  | 4.71  | 5.91  | 8.29  |
| wang4                                                    | 7.24  | 7.84      | 9.03  | 11.42 | 4.12  | 4.71  | 5.91  | 8.29  |
| waseda                                                   | 560   | 560       | 561   | 563   | 280   | 280   | 281   | 283   |
| $w_dense$                                                | 1323  | 1323      | 1323  | 1324  | 661   | 661   | 662   | 663   |
| xenon1                                                   | 32.97 | 34.08     | 36.30 | 40.75 | 17.41 | 18.52 | 20.75 | 25.20 |

Table 5: GMRES(k) 法のメモリ使用量.

|              |       |       |       | parame | ter: k |                 |       |        |
|--------------|-------|-------|-------|--------|--------|-----------------|-------|--------|
| matrix       | 20    | 50    | 100   | 200    | 500    | 10 <sup>3</sup> | 2000  | 5000   |
| airfoil_2d   | 5.96  | 9.23  | 14.71 | 25.79  | 59.93  | 119.            | 251.  | 736.   |
| big          | 3.82  | 6.86  | 11.96 | 22.27  | 54.11  | 110.            | 233.  | 696.   |
| dc2          | 33.29 | 60.05 | 104.  | 194.   | 463.   | 914.            | 1828. | 4663.  |
| dc3          | 33.29 | 60.05 | 104.  | 194.   | 463.   | 914.            | 1828. | 4663.  |
| ecl32        | 15.27 | 27.18 | 47.08 | 86.98  | 207.   | 411.            | 831.  | 2181.  |
| epb1         | 4.18  | 7.57  | 13.25 | 24.72  | 60.06  | 122.            | 257.  | 754.   |
| epb2         | 7.30  | 13.09 | 22.77 | 42.25  | 101.   | 203.            | 418.  | 1156.  |
| epb3         | 23.06 | 42.45 | 74.79 | 139.   | 334.   | 663.            | 1331. | 3428.  |
| k3plates     | 6.67  | 9.23  | 13.53 | 22.23  | 49.26  | 97.             | 205.  | 619.   |
| language     | 97.66 | 189.  | 341.  | 646.   | 1561.  | 3089.           | 6157. | 15453. |
| memplus      | 5.17  | 9.26  | 16.09 | 29.87  | 72.12  | 145.            | 304.  | 870.   |
| poi-3Da      | 6.88  | 9.99  | 15.20 | 25.74  | 58.29  | 115.            | 241.  | 711.   |
| poi-3Db      | 45.15 | 64.76 | 97.48 | 163.   | 360.   | 692.            | 1369. | 3489.  |
| raefsky2     | 4.05  | 4.81  | 6.11  | 8.81   | 17.84  | 35.             | 83.   | 318.   |
| raefsky3     | 21.49 | 26.36 | 34.50 | 50.91  | 101.   | 187.            | 372.  | 1017.  |
| sme3Da       | 12.64 | 15.52 | 20.35 | 30.12  | 60.35  | 113.            | 232.  | 678.   |
| sme3Db       | 29.92 | 36.59 | 47.74 | 70.14  | 138.   | 254.            | 499.  | 1325.  |
| sme3Dc       | 45.04 | 54.89 | 71.32 | 104.   | 204.   | 373.            | 724.  | 1867.  |
| trans4       | 33.29 | 60.05 | 104.  | 194.   | 463.   | 914.            | 1828. | 4663.  |
| wang3        | 7.50  | 13.48 | 23.48 | 43.    | 104.   | 210.            | 431.  | 1188.  |
| wang4        | 7.50  | 13.48 | 23.49 | 43.61  | 104.   | 210.            | 431.  | 1188.  |
| waseda       | 282.  | 287.  | 294.  | 309.   | 354.   | 433.            | 601.  | 1198.  |
| $w_{-}dense$ | 662.  | 664.  | 667.  | 673.   | 692.   | 727.            | 808.  | 1142.  |
| xenon1       | 23.72 | 34.86 | 53.46 | 90.77  | 203.   | 394.            | 788.  | 2061.  |

Table 6: 最適加速係数  $\omega$  と IDR(s)-SOR 法の計算時間.

| $\omega$ | IDR(s)-SOR                                                                                                          |                                                       |                                                       |                                                       |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|--|
|          | s = 1                                                                                                               | s=2                                                   | s=4                                                   | s = 8                                                 |  |  |
| 1.9      | 0.45                                                                                                                | 0.45                                                  | 0.50                                                  | 0.55                                                  |  |  |
| 1.9      | 0.72                                                                                                                | 0.49                                                  | 0.50                                                  | 0.59                                                  |  |  |
| 1.8      | 2.39                                                                                                                | 2.19                                                  | 2.34                                                  | 3.14                                                  |  |  |
| 1.2      | 13.92                                                                                                               | 8.37                                                  | 4.96                                                  | 4.14                                                  |  |  |
| 1.8      | 1.58                                                                                                                | 1.48                                                  | 1.71                                                  | 2.14                                                  |  |  |
| 1.5      | 0.49                                                                                                                | 0.40                                                  | 0.43                                                  | 0.50                                                  |  |  |
| 1.2      | 0.32                                                                                                                | 0.29                                                  | 0.32                                                  | 0.38                                                  |  |  |
| 1.0      | 11.79                                                                                                               | 10.32                                                 | 11.21                                                 | 14.16                                                 |  |  |
| 1.2      | 15.09                                                                                                               | $\infty$                                              | 3.95                                                  | 7.24                                                  |  |  |
| 1.0      | 0.81                                                                                                                | 0.86                                                  | 1.02                                                  | 1.46                                                  |  |  |
| 1.9      | 0.42                                                                                                                | 0.30                                                  | 0.33                                                  | 0.31                                                  |  |  |
| 1.8      | 0.20                                                                                                                | 0.20                                                  | 0.22                                                  | 0.23                                                  |  |  |
| 1.8      | 4.63                                                                                                                | 4.72                                                  | 5.46                                                  | 6.26                                                  |  |  |
| 1.0      | 0.41                                                                                                                | 0.29                                                  | 0.27                                                  | 0.26                                                  |  |  |
| 1.0      | 10.33                                                                                                               | 10.09                                                 | 8.51                                                  | 8.40                                                  |  |  |
| 1.9      | 21.98                                                                                                               | 5.29                                                  | 4.77                                                  | 4.68                                                  |  |  |
| 1.9      | 103.2                                                                                                               | 16.24                                                 | 13.93                                                 | 13.69                                                 |  |  |
| 1.9      | $\infty$                                                                                                            | 58.40                                                 | 30.12                                                 | 30.81                                                 |  |  |
| 1.6      | 1.63                                                                                                                | 1.84                                                  | 1.76                                                  | 2.36                                                  |  |  |
| 1.7      | 0.28                                                                                                                | 0.29                                                  | 0.30                                                  | 0.36                                                  |  |  |
| 1.8      | 0.29                                                                                                                | 0.31                                                  | 0.34                                                  | 0.37                                                  |  |  |
| 1.0      | 13.81                                                                                                               | 11.40                                                 | 11.29                                                 | 12.29                                                 |  |  |
| 1.0      | 13.51                                                                                                               | 10.80                                                 | 8.22                                                  | 7.54                                                  |  |  |
| 1.8      | 10.04                                                                                                               | 8.34                                                  | 8.34                                                  | 10.21                                                 |  |  |
|          | 1.9<br>1.8<br>1.2<br>1.8<br>1.5<br>1.2<br>1.0<br>1.9<br>1.8<br>1.0<br>1.0<br>1.9<br>1.9<br>1.9<br>1.9<br>1.6<br>1.7 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |

Table 7: ILU(0) 前処理つき BiCGStab 法, GPBi-CG 法, BiCGSafe 法の計算時間.

| 2.0004.012 14177 7.14                 |        |        |        |         |        |        |  |
|---------------------------------------|--------|--------|--------|---------|--------|--------|--|
| matrix                                | 前      | j処理な   | し      | ILU(0)+ |        |        |  |
|                                       | BiCG-  | GP-    | BiCG-  | BiCG-   | GP-    | BiCG-  |  |
|                                       | Stab   | BiCG   | Safe   | Stab    | BiCG   | Safe   |  |
| airfoil_2d                            | 0.52   | ∞      | 0.61   | 0.25    | 0.24   | 0.23   |  |
| big                                   | 3.14   | 2.12   | 1.96   | 1.87    | 2.34   | 1.73   |  |
| dc2                                   | 3.88   | 3.54   | 3.50   | 2.17    | 2.30   | 2.19   |  |
| dc3                                   | 20.80  | 17.86  | 15.83  | 5.66    | 8.11   | 7.34   |  |
| ecl32                                 | 1.85   | 2.65   | 2.39   | 1.07    | 1.24   | 1.16   |  |
| epb1                                  | 0.32   | 0.43   | 0.41   | 0.16    | 0.18   | 0.17   |  |
| epb2                                  | 0.27   | 0.41   | 0.37   | 0.10    | 0.11   | 0.11   |  |
| epb3                                  | 10.13  | 11.55  | 11.03  | 0.83    | 1.00   | 0.99   |  |
| k3plates                              | 0.58   | 0.56   | 0.54   | 3.04    | 4.25   | 4.98   |  |
| language                              | 1.11   | 1.42   | 2.92   | 0.92    | 0.97   | 0.96   |  |
| memplus                               | 0.18   | 0.14   | 0.13   | 0.31    | 0.35   | 0.33   |  |
| poi-3Da                               | 0.34   | 0.27   | 0.28   | 0.37    | 0.32   | 0.31   |  |
| poi-3Db                               | 8.65   | 7.85   | 7.97   | 6.18    | 5.69   | 5.23   |  |
| raefsky2                              | 0.60   | 0.56   | 0.55   | 0.20    | 0.20   | 0.20   |  |
| raefsky3                              | 17.15  | 17.91  | 17.01  | 1.70    | 1.74   | 1.75   |  |
| sme3Da                                | 23.94  | 18.79  | 14.68  | 15.52   | 11.18  | 10.43  |  |
| sme3Db                                | 65.41  | 64.50  | 58.90  | 31.25   | 29.75  | 25.70  |  |
| sme3Dc                                | 287.82 | 318.96 | 217.67 | 65.10   | 75.78  | 70.89  |  |
| trans4                                | 3.26   | 3.05   | 3.90   | 1.11    | 1.19   | 1.21   |  |
| wang3                                 | 0.33   | 0.36   | 0.36   | 0.25    | 0.24   | 0.21   |  |
| wang4                                 | 0.25   | 0.35   | 0.37   | 0.17    | 0.20   | 0.18   |  |
| waseda                                | 42.77  | 34.88  | 25.40  | 181.10  | 177.21 | 177.89 |  |
| $\mathbf{w}_{\text{-}}\mathbf{dense}$ | 11.28  | 9.32   | 9.91   | 671.39  | 667.15 | 665.88 |  |
| xenon1                                | 5.19   | 6.05   | 4.48   | ∞       | ∞      | ∞      |  |

ここでは、IDR(s)-SOR 法の計算時間とフィルインを考慮 しないILU(0) 分解つきの従来の反復法との計算時間[単位: 秒] の比較を行う。 Table 6 に最適加速係数  $\omega$  とそのときの

ISOR(s) 法の計算時間を示す.表中の " $\infty$ " 記号は収束しな Table 10 に IDR(s)-SOR および ILU(0) 分解 Bi\_IDR(s)-かったことを表す.Table 7 に ILU(0) 前処理つき BiCGStab GMRES(k), BiCGStab 法, BiCGSafe 法の最適パラメー法,GPBi-CG 法,BiCGSafe 法の計算時間を示す. タのときの計算時間を示す.また,括弧内の数字は最適パラ

Table 8: ILU(0) 前処理つき GMRES(k) 法の計算時間.

| matrix       |          |          | parame   | ter: k   |       |          |
|--------------|----------|----------|----------|----------|-------|----------|
| matrix       | 20       | 50       | 100      | 200      | 500   | $10^{3}$ |
| airfoil_2d   | 0.26     | 0.23     | 0.24     | 0.23     | 0.23  | 0.23     |
| big          | $\infty$ | 11.3     | 3.40     | 1.37     | 1.21  | 1.24     |
| dc2          | 3.63     | 4.44     | 5.70     | 5.93     | 5.89  | 5.92     |
| dc3          | 21.2     | 8.48     | 8.54     | 10.0     | 10.0  | 10.0     |
| ecl32        | 8.36     | 4.13     | 3.14     | 1.99     | 1.96  | 1.91     |
| epb1         | 0.22     | 0.25     | 0.28     | 0.27     | ∙0.27 | 0.27     |
| epb2         | 0.12     | 0.12     | 0.12     | 0.12     | 0.12  | 0.12     |
| epb3         | 1.64     | 2.37     | 1.89     | 1.96     | 2.19  | 2.11     |
| k3plates     | $\infty$ | 2.68     | 1.34     | 1.40     | 1.30  | 1.28     |
| language     | 0.97     | 0.98     | 0.97     | 0.98     | 0.98  | 0.97     |
| memplus      | 0.41     | 0.38     | 0.43     | 0.43     | 0.43  | 0.43     |
| poi-3Da      | 0.35     | 0.33     | 0.33     | 0.34     | 0.34  | 0.34     |
| poi-3Db      | 7.86     | 6.86     | 6.84     | 6.78     | 6.74  | 6.89     |
| raefsky2     | 0.26     | 0.16     | 0.16     | 0.16     | 0.17  | 0.16     |
| raefsky3     | 1.23     | 0.93     | 0.93     | 0.93     | 0.93  | 0.93     |
| sme3Da       | $\infty$ | 8        | $\infty$ | 74.1     | 6.10  | 6.30     |
| sme3Db       | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 53.2  | 25.2     |
| sme3Dc       | $\infty$ | $\infty$ | $\infty$ | 271.     | 246.  | 64.6     |
| trans4       | 1.74     | 2.31     | 2.62     | 2.61     | 2.59  | 2.63     |
| wang3        | 0.28     | 0.26     | 0.26     | 0.28     | 0.26  | 0.26     |
| wang4        | 0.29     | 0.23     | 0.23     | 0.23     | 0.23  | 0.23     |
| waseda       | 175.     | 173.     | 173.     | 173.     | 173.  | 172.     |
| $w_{-}dense$ | 664.     | 666.     | 666.     | 665.     | 666.  | 665.     |
| xenon1       | $\infty$ | $\infty$ | ∞        | $\infty$ | 197.  | 89.3     |

Table 9: ILU(0) 前処理つき Bi\_IDR(s) 法の計算時間.

|            |       | /->      | n        | <del>/ \</del> |
|------------|-------|----------|----------|----------------|
| matrix     |       | _ ` '    | BiJDR    | ` ′            |
| maurix     | s = 1 | s=2      | s=4      | s = 8          |
| airfoil_2d | 0.23  | 0.21     | 0.22     | 0.27           |
| big        | 2.18  | 1.03     | 0.68     | 0.71           |
| dc2        | 2.41  | 2.25     | 2.49     | 3.08           |
| dc3        | 6.77  | 5.71     | 4.34     | 5.19           |
| ecl32      | 1.47  | 1.16     | 1.27     | 1.46           |
| epb1       | 0.16  | 0.16     | 0.18     | 0.21           |
| epb2       | 0.11  | 0.11     | 0.13     | 0.16           |
| epb3       | 0.86  | 0.97     | 0.98     | 1.47           |
| k3plates   | 3.43  | 1.84     | 1.51     | 1.36           |
| language   | 0.93  | 0.96     | 1.14     | 1.44           |
| memplus    | 0.31  | 0.31     | 0.31     | 0.36           |
| poi-3Da    | 0.33  | 0.34     | 0.34     | 0.34           |
| poi-3Db    | 5.15  | 5.58     | 5.49     | 5.50           |
| raefsky2   | 0.20  | 0.18     | 0.18     | 0.17           |
| raefsky3   | 1.63  | 1.38     | 1.28     | 1.19           |
| sme3Da     | 10.89 | 5.76     | 4.68     | 4.40           |
| sme3Db     | 28.55 | 19.37    | 16.28    | 14.32          |
| sme3Dc     | 79.96 | 50.13    | 35.85    | 32.02          |
| trans4     | 1.10  | 1.31     | 1.40     | 1.81           |
| wang3      | 0.22  | 0.21     | 0.22     | 0.28           |
| wang4      | 0.20  | 0.19     | 0.22     | 0.28           |
| waseda     | 178.  | 179.     | 178.     | 178.           |
| $w\_dense$ | 674.  | 673.     | 674.     | 672.           |
| xenon1     | ∞     | $\infty$ | $\infty$ | ∞              |
|            |       |          |          |                |

Table 8 に ILU(0) 分解つき GMRES(k) 法の計算時間を表す。 Table 9 に ILU(0) 分解つき  $Bi \ IDR(s)$  法の計算時間を表す。

Table 10 に IDR(s)-SOR および ILU(0) 分解 Bi.IDR(s), GMRES(k), BiCGStab 法,BiCGSafe 法の最適パラメータのときの計算時間を示す。また,括弧内の数字は最適パラメータの値を示す。ただし,GPBi-CG 法の結果は割愛した。太字の数字は,各行列で最も収束までの計算時間が少なかったケースを表す。また,下線を付けた数字は,IDR(s)-SOR 法が他の反復法に比べて非常に遅かったケースを表す。

Table 10: IDR(s)-SOR,ILU(0) 分解  $Bi_*IDR(s)$ ,同 GMRES(k),同 BiCGStab 法,同 BiCGSafe 法の計算時間.

| CIVILCED   | ites(n), in bleedstab ta, in bleedstate ta shift state. |                   |                    |       |       |  |
|------------|---------------------------------------------------------|-------------------|--------------------|-------|-------|--|
| matrix     |                                                         |                   | ILU(0)+            |       |       |  |
|            | IDR(s)-SOR                                              | BiJDR(s)          | GMRES(k)           | BiCG- | BiCG- |  |
|            | $(s, \omega)$                                           |                   |                    | Stab  | Safe  |  |
| airfoil_2d | 0.45 (1, 1.9)                                           | <b>0.21</b> (s=2) | 0.23 (k=50)        | 0.25  | 0.23  |  |
| big        | 0.49 (2, 1.9)                                           | 0.68 (s=4)        | 1.21 (k=500)       | 1.87  | 1.73  |  |
| dc2        | 2.19 (2, 1.8)                                           | 2.25 (s=2)        | 3.63 (k=20)        | 2.17  | 2.19  |  |
| dc3        | 4.14 (8, 1.2)                                           | 4.34 (s=4)        | 8.48 (k=50)        | 5.66  | 7.34  |  |
| ecl32      | 1.48 (2, 1.8)                                           | 1.16 (s=2)        | $1.91 (k=10^3)$    | 1.07  | 1.16  |  |
| epb1       | 0.40(2, 1.5)                                            | 0.16 (s=1)        | 0.21 (k=10)        | 0.16  | 0.17  |  |
| epb2       | 0.29 (2, 1.2)                                           | 0.11 (s=1)        | 0.12 (k=10)        | 0.10  | 0.11  |  |
| epb3       | 10.3 (2, 1.0)                                           | 0.86 (s=1)        | 1.64 (k=20)        | 0.83  | 0.99  |  |
| k3plates   | 3.95 (4, 1.2)                                           | 1.36 (s=8)        | $1.28 (k=10^3)$    | 3.04  | 4.98  |  |
| language   | <b>0.81</b> (1, 1.0)                                    | 0.93 (s=1)        | 0.97 (k=10)        | 0.92  | 0.96  |  |
| memplus    | 0.30 (2, 1.9)                                           | 0.31 (s=1)        | 0.38 (k=50)        | 0.31  | 0.33  |  |
| poi-3Da    | 0.20 (1, 1.8)                                           | 0.33 (s=1)        | 0.33 (k=50)        | 0.37  | 0.31  |  |
| poi-3Db    | 4.63 (1, 1.8)                                           | 5.15 (s=1)        | 6.78 (k=200)       | 6.18  | 5.23  |  |
| raefsky2   | 0.26 (8, 1.0)                                           | 0.17 (s=8)        | <b>0.16</b> (k=50) | 0.20  | 0.20  |  |
| raefsky3   | 8.40 (8, 1.0)                                           | 1.19 (s=8)        | <b>0.93</b> (k=50) | 1.70  | 1.75  |  |
| sme3Da     | 4.68 (8, 1.9)                                           | 4.40 (s=8)        | 6.10 (k=500)       | 15.52 | 10.43 |  |
| sme3Db     | <b>13.69</b> (8, 1.9)                                   | 14.32 (s=8)       | $25.2 (k=10^3)$    | 31.25 | 25.70 |  |
| sme3Dc     | <b>30.81</b> (8, 1.9)                                   | 32.02 (s=8)       | $64.6 \ (k=10^3)$  | 65.10 | 70.89 |  |
| trans4     | 1.63 (1, 1.6)                                           | 1.10 (s=1)        | 1.72 (k=10)        | 1.11  | 1.21  |  |
| wang3      | 0.28 (1, 1.7)                                           | 0.21 (s=2)        | 0.26 (k=50)        | 0.25  | 0.21  |  |
| wang4      | 0.29 (1, 1.8)                                           | 0.19 (s=2)        | 0.23 (k=50)        | 0.17  | 0.18  |  |
| waseda     | <b>11.29</b> (4, 1.0)                                   | 178. (s=1)        | 172. $(k=10^3)$    | 181.  | 177.  |  |
| $w_dense$  | 7.54 (8, 1.0)                                           | 672. (s=8)        | 664. (k=20)        | 671.  | 665.  |  |
| xenon1     | 8.34 (2, 1.8)                                           | ∞                 | $89.3 (k=10^3)$    | ∞     |       |  |
|            |                                                         |                   |                    |       |       |  |

Table 11 に IDR(s)-SOR 法の収束性比較をまとめた。比較する反復法の対応は次のように行った。

- 1. IDR(s)-SOR 法の加速係数  $\omega=1$  に固定の場合:従来の前処理なし反復法
- 2. IDR(s)-SOR 法の加速係数可変  $(1.0 \le \omega \le 1.9)$  の場合: 従来の ILU(0) 分解前処理つき反復法

この表から,IDR(s)-SOR 法の収束性のよさがわかる.ただし,最少時間が同じ (計測最小単位:0.01 秒) 場合は,重複してカウントをした.そのため,行列の個数 24 個よりも合計行列数は多くなった. $Bi_IDR(s)$  法の性能も非常によい.また, $Bi_IDR(s)$  法の性能も非常によい.また, $Bi_IDR(s)$  法の性間も目立つ.

Table 11: IDR(s)-SOR 法の収束性比較のまとめ.

| parameter $\omega$ |                                            |  |  |  |  |  |
|--------------------|--------------------------------------------|--|--|--|--|--|
| $\omega = 1$ : 固定  | ω: 最適                                      |  |  |  |  |  |
| 10                 | 11                                         |  |  |  |  |  |
| 前処理なし              | ILU(0) 分解                                  |  |  |  |  |  |
| 6                  | 6                                          |  |  |  |  |  |
| 4                  | 5                                          |  |  |  |  |  |
| 0                  | 0                                          |  |  |  |  |  |
| 3                  | 1                                          |  |  |  |  |  |
| 2                  | 2                                          |  |  |  |  |  |
| 25                 | 25                                         |  |  |  |  |  |
|                    | w = 1: 固定   10   前処理なし   6   4   0   3   2 |  |  |  |  |  |

Figure 1(a),(b) に,加速係数 $\omega$  を変動させたときの行列 epb3 と sme3Da における IDR(s)-SOR 法の反復回数の変化の様子を表す.パラメータs は 1, 2, 4, 8 の 4 つの場合である.行列 epb3 では,加速係数 $\omega$  が 1 を越えると収束しなくなった.一方,行列 sme3Da では,加速係数 $\omega$  が 1.9 まで収束しかつ反復回数が最も少なかった.

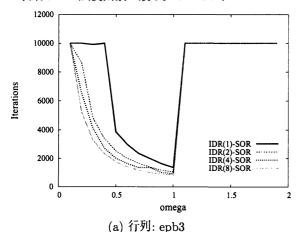





Figure 1: IDR(s)-SOR 法の反復回数の変化の様子。

# 参考文献

- [1] 藤野清次,藤原牧,吉田正浩: 準残差の最小化に基づく BiCGSafe 法の収束性について, Trans. of JSCES, Paper No.20050028, 2005.
- [2] Fujino, S., Sonneveld, P. and van Gijzen, M.B. and Onoue, Y., Application of the IDR Theorem to Stationary Iterative Methods and their Performance Evaluation, The Abstract of SIAM LA09, Monterey, 26th-29th, Oct., 2009.
- [3] Gutknecht, M., IDR explained, Dec. 2008, Oct., 2009, to appear in Electr. Trans. Numer. Anal.
- [4] Harumatsu, M., Kusakabe, Y., Fujino, S., Fukushige, T., Arima, T. and Sonneveld, P., A Proposal of Gauss-Seidel and Successive Over-Relaxation Methods based on IDR Theorem, Technical report of Information Processing Society of Japan, JAXA Chofu, June, 2009. (In Japanese)
- [5] Kusakabe, Y., Fujino, S., A proposal of Jacobi method based on extended Induced Dimension Reduction The-

- orem aimed at high convergence rate, The Proc. of EMAC2009, Adelaide, December, 2009. (To appear)
- [6] Nakashima, N., Fujino, S., Tateiba, M. and Onoue, Y., A State-of-the-Art Linear Solver IDR(s) Method for Large Scale Electromagnetic Multiple Scattering Simulations, Proc. the 2009 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, CD-ROM, 2009.6.
- [7] Nakashima, N., Fujino, S. and Tateiba, M., A state-of-the-art linear solver IDR(s) method for large scale electromagnetic multiple scattering simulations, ACES2010, Tampere, Finland, 2010. (To appear)
- [8] 尾上 勇介, 藤野 清次, 中嶋 徳正, IDR(s) 法の簡便な前処理と 重厚な前処理の違いについて, Transactions of JSCES, Vol. 2008, 20080023, 2008 年 9 月.
- [9] 尾上勇介, 藤野清次, IDR(s) 法系統の反復法に適用可能な計算量削減の工夫, 日本応用数理学会論文誌. 19, 3(2009), pp.329-350.
- [10] 尾上勇介,藤野清次, $\operatorname{BiCGStab}(s,L)$  法の収束安定性の向上,投稿中.
- [11] Saad, Y., Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, pp.856-869, 1986.
- [12] Simoncini, V., Szyld, D., Interpreting IDR as a Petrov-Galerkin method, Report 09-10-22, Temple University, Oct., 2009. http://www.math.temple.edu/~szyld/
- [13] Sleijpen, G., Sonneveld, P. and van Gijzen, M.B., Bi-CGSTAB as an induced dimension reduction method, Applied Numerical Mathematics. (in print)
- [14] Sonneveld, P., AGS IDR CGS BiCGSTAB IDR(s): The circle closed, A case of serendipity, The Proc. of Int. Kyoto Forum 2008 on Krylov subspace methods, pp.1-14, September, 2008.
- [15] Sonneveld, P., van Gijzen, M.B., IDR(s): a family of simple and fast algorithms for solving large nonsymmetric linear systems, SIAM J. Sci. Comput., Vol. 31, No.2, pp.1035-1062, 2008.
- [16] 谷尾真明,双共役幻配法の拡張に関する研究,東京大学大学院情報理工学系研究科修士論文,2009.2.
- [17] 谷尾真明, 杉原正顯, 高次元の shadow residual を持つ Bi-CG 法に高次の加速多項式を付加したアルゴリズム, 日本応 用数理学会 第 5 回研究部会連合発表会, 2009.3.
- [18] University of Florida Sparse Matrix Collection: http://www.cise.ufl.edu/research/sparse/matrices/index.html
- [19] van Gijzen, M.B., Sonneveld, P.: An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties, TR 08-21, Math. Anal., Delft Univ. of Tech., 2008.
- [20] van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Comput., 13, 2, pp.631-644, 1992.
- [21] Wesseling, P., Sonneveld, P., Numerical Experiments with a Multiple Grid- and a Preconditioned Lanczos Type Methods, Lecture Notes in Math., Springer, No.771, pp.543-562, 1980.
- [22] 張紹良, 藤野清次: ランチョスプロセスに基づく積型反復解法, 日本応用数理学会論文誌, 5, pp.343-360, 1995.