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Braided differential structure on affine Weyl
groups and nil-Hecke algebras
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This article is based on my joint work with A. N. Kirillov [5]. We con-
struct a model of the affine nil-Hecke algebra as a subalgebra of the Nichols-
Woronowicz algebra associated to a Yetter-Drinfeld module over the affine
Weyl group. We also discuss the Peterson isomorphism between the homol-
ogy of the affine Grassmannian and the small quantum cohomology ring of
the flag variety in terms of the braided differential calculus.

1 Affine nil-Hecke algebra

Let G be a simply-connected semisimple complex Lie group and W its Weyl
group. Denote by A the set of the roots. We fix the set A of the positive
roots by choosing a set of simple roots ay, ... ,a,. The Weyl group W acts
on the weight lattice P and the coroot lattice Q¥ of G. The affine Weyl group
Wag is generated by the affine reflections s, k, @ € A, k € Z, with respect
to the affine hyperplanes H, s := {A € PR | (A\,a) = k}. The affine Weyl
group is the semidirect product of W and QV, i.e., Wog = W x @Q". The affine
Weyl group W,g is generated by the simple reflections s; := sq4,0,...,8r i=
Sar,0 and sg := sg 1 where § = —ay is the highest root. The affine Weyl group
W has the presentation as a Coxeter group as follows:

Wag = (0,8, | sg =+ = 87 =1, (si55)™ = 1).

Definition 1.1. The affine nil-Coxeter algebra Ay is the associative algebra
generated by 79, ..., 7, subject to the relations

2 __ 2 mi;i /2] Vii __ maa /2] _Vij
7'0 A T‘P — 0’ (7-17-])[ ’tJ/ ]T'L — (T]Tz)[ 1]/ ]7-] 'J,
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where Vij = My — Q[mm/Z]

For a reduced expression z = s;, - - - s;, of an element z € Wg, the element
Tz i= Ti, -+ Tiy € Ag is independent of the choice of the reduced expression of
z. It is known that {7, },ew,; form a linear basis of Ay.

The nil-Coxeter algebra A acts on S := SymPy via

To(f) = 8a0(f) = —(f - SO,Of)/ga

Ti(f) = 0u,(f) = (f — Sai0f)/cu, i=1,...,m,
for f e S.

Definition 1.2. ([6]) The nil-Hecke algebra A is defined to be the cross
product Ay x S, where the cross relation is given by

Tif = 0u,(f) +s:(f)s fE€8,i=1,...,r

The affine Grassmannian Gr := G (C((¢)))/G(C[[t])) is homotopic to the
loop group 2K of the maximal compact subgroup K C G. Let T' C G be the
maximal torus. An associative algebra structure on the T-equivariant ho-
mology group HI(Gr) & HT(QK) is induced from the group multiplication

QK x QK — QK.

It is known that the algebra HT(Gr) is commutative. The algebra HT (QK)
is called the Pontryagin ring. .

We regard the T-equivariant homology HI (Gr) as an S-algebra by iden-
tifying S = H7(pt). The diagonal embedding

QK — QK x QK
induces a coproduct on HY ((/}\r)

Proposition 1.1. ([10]) The T-equivariant homology HY ((/}\r) is isomorphic
to the centralizer Zx(S) of S in A as Hopf algebras.
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2 Nichols-Woronowicz algebra for affine Weyl
groups

Let M be a vector space over a field of characteristic zero and ¢ : M®? —
M®? be a fixed linear endomorphism satisfying the braid relations ¥;9;11¢; =
Yir1 Vi1 where 1; : M® — M®" is a linear endomorphism obtained by
applying v to the i-th and (i + 1)-st components. Denote by s; the simple
transposition (4,7 + 1) € S,. For any reduced expression w = s;, - -+ 85, € Sy,
the endomorphism W, = ;, ---¢;, : M® — M®" is well-defined. The
Woronowicz symmetrizer [11] is given by o, := Y, c5 Vo

Definition 2.1. ([11]) The Nichols-Woronowicz algebra associated to a braided
vector space M is defined by

B(M) = @ M®"/Ker(o,),

n>0
where o, : M®" — M®" is the Woronowicz symmetrizer.

Definition 2.2. A vector space M is called a Yetter-Drinfeld module over
a group I', if the following conditions are satisfied:

(1) M is a I'-module,

(2) M is I'-graded, i.e. M = @ My, where M, is a linear subspace of M,
(3) for h €T and v € My, h(v) € Mpgp-1.

The Yetter-Drinfeld module M over a group I' is naturally braided with
the braiding 1 : M®? — M®?2 defined by ¥(a ®b) = g(b) ® a for a € M, and
be M.

In the following we are interested in the Yetter-Drinfeld module over the
affine Weyl groups W,g. Denote by t) € W,g the translation by A € QY. We
define a Yetter-Drinfeld module V,g over W,g by

V= @ Q- lokl/ (o k] + [—a, k),
a€AkEZ

where the W,g acts on Vg by
wlo, k] := [w(a), k], weW, t\ak]:=[ak+(a,N)], €@

The Wag-grading is given by degy, ([, k]) := sax. Then it is easy to check
the conditions in Definition 2.1. Now we have the Nichols-Woronowicz alge-
bra B.g := B(Vag) associated to the Yetter-Drinfeld module V,g.
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Let us define the extension B,g(S) = Bag % S by the cross relation
[0, k] f = Oaf + sa0(f)le, k], [a,k] € Vg, f € S.

Proposition 2.1. There exists a homomorphism ¢ : A — B,g(S) given by
To — [ao, =1, i — [04,0),i=1,...,r, and f — f, f € S.

Proof. 1t is enough to check the Coxeter relations among (1), . .. , ©(7)
in B.g(S) based on the classification of the affine root systems. This is done
by the direct computation of the symmetrizer for the subsystems of rank 2
in the similar manner to [1, Section 6].

Example 2.1. Here we list the Coxeter relations in B,g involving [6,1] =
— [, —1] for the root systems of rank 2. Let (&1,... ,&,) be an orthonormal
basis of the r-dimensional Euclidean space. Put [ij, k] := [e; —¢;, k], [1], k] :=
lei + €5, k], [i, k] := [ei, k] and [a] := [, 0)].

(i) (Type Ay case)

[13,1][23][13, 1] + [23][13, 1][23] = 0, [13,1][12][13,1] + [12][13,1][12] =0

(ii) (Type Bj case)

12, 1[2)[T2, 1){2] = [2)[T2, 1)[2)(T2, 1

(iii) (Type G case) Let a;, as be the simple roots for Go-system. We assume
that o, is a short root and a5 is a long one. Then we have 6 = 3a; + 2as.

(6, 1][e2] (8, 1] + [a2][6, 1][ex2] = 0.

3 Model of nil-Hecke algebra

The connected components of P ® R\ Ugea, kezHox are called alcoves. The
affine Weyl group W,g acts on the set of the alcoves simply and transitively.

Definition 3.1. ([8]) (1) A sequence (A, ..., A;) of alcoves A; is called an
alcove path if A; and A;,; have a common wall and A; # A;,1.

(2) An alcove path (Ao, ..., A;) is called reduced if the length [ of the path
is minimal among all alcove paths connecting Ay and A;.

(3) We use the symbol A, LA A;+1 when A; and A;;; have a common wall
of the form Hgj and the direction of the root 3 is from A; to A;y.
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The alcove A° defined by the inequalities (A, o) > —1 and (), a;) > 0,
¢t =1,...,r, is called the fundamental alcove. For a reduced alcove path
v:Ag= A° et S Aj, we define an element [v] € B,g by

] = (=B, —ka] -+ [~ B, — k]

When A; = £71(A°) for £ € W,g, we will also use the symbol [z] instead of
[v], since [v] depends only on z thanks to the Yang-Baxter relation.

For a braided vector space M, it is known that an element a € M acts
on B(M*) as a braided differential operator (see [1], [9]). Let us identify M*
with M via the W,g-invariant inner product (, ) given by |

1, ifa=LFand k =1,

0, otherwise,

([a’ k]’ [ﬂv l]) = {

for a,8 € Ay, k,l € Z. In our case, the differential operator ﬁ[a,k], [, k] €
Vast, acting from the right is determined by the following characterization:
(0) (C)(ﬁ[aﬂz 0,ceqQ,
(1) ([a’ k]) D[ﬂ,l] = ([a’ k]’ [ﬂ’ l])’
(2) (FG) Diajy = F(GD o) + (FDja)sai(),
for o, 8 € A, k,l € Z, F,G € B,g. The operator ﬁ[a,k] extends to the one
acting on B,g(S) by the commutation relation f - ﬁ[a,k] = (—D-[a,k] - 8o k(f),
fes.

We use the abbreviation (_D-o = TD[ao,—ll, (—5, = 41_7[0[1.,0], i1 =1,...,r.
For x € W,g, fix a reduced decomposition z = s;, ---s;. We define the
corresponding braided differential operator (l_)x acting on B,g by the formula

— o —

D,:=D;---D,,

which is also independent of the choice of the reduced decomposition of z
because of the braid relations.

Lemma 3.1. For x € W,g, take a reduced alcg_z_)e path v from the fundamen-
tal alcove A° to z7!(A°). Then, we have ([7]) D, = 1.

Proof. Let us take a reduced path

1k 1k K -
yiAg= A28 4, B8 PR A 2140,
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Define a sequence o7, ... ,0; € W,g inductively by

01 = 8B1,k1y Oj+1 = 0558;,1,k;1105-

Then it is easy to see that 0,(A;) # A°, 1 <v < j—1, 0;(4;) = A° and the
walls 0;(Hpg,,, ;,,) are corresponding to simple roots. Hence, o1,...,0; are
simple reflections. This sequence gives a reduced expression z = o0;---0;.
Put o; = Sa;,- Since the direction of 3, is chosen to be from A; to A;4q,
we have ’

MDe = (81, k1)) D, - (01([B2, k2)) Dy - - - (01-1([Bi, ki) Dy, = 1.

Example 3.1. (1) (Az-case) The standard realization is given by a; = ¢; —
€2, Qg = €3 — €3, 0y = €3 —€1. Consider the translation ¢,, by the simple root
a;. If we take a reduced path

_a2a0 al’l —QQ 1 a1,2 o
'72A0=A° > Ay > Ay > As *A4=ta1(A )’

then we have [y] = [23][21, —1][31, —1][21, —2]. On the other hand, the dif-
ferent1al operator correspondlng to t_.a1 is given by D D D Dl, where
DO = D[31 —1) D1 = D[lg], Dz = D[23 It is easy to check by direct com-
putation

(123][21, -1][31, —1][12,2])) D2 D¢ D, D, = 1.

(2) (Bz-case) The standard realization is given by a; = &; — €3, az = &3,

ap = —€;1 — &;. Let us consider the translation ¢,., and a reduced path
o M2,1] 2,1 12,1 12,2 1,2 12,2 o
v Ao"A[ A1[ ]>A2[ JASF;*]A4'("_]’A5[ ]Aﬁ—t261(A)

Then we have
] = (=12, 1)(=[2, 1])(=[12, 1])(—[12, 2])(=[1, 2])(~[12,2))

= [12,1][2, 1][12, 1][12, 2][1, 2][12, 2].
The differential operator corresponding to t_o, is given by
D., =D¢D;D¢D,D,D,;.
So we have

MD.,. = (1212112, 1][12,2[1,2][12,2]) Do D2 D¢ D1 D2 D, = 1.
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Theorem 3.1. The algebra homomorphism ¢ : A — B,g(S) is injective.

Proof. The nil-Hecke algebra A is also W,g-graded. Since the homomor-
phism ¢ : A — B.g(S) preserves the Wyg-grading, it is enough to check
o(1z) # 0, for £ € W,g in order to show the injectivity of ¢. On the other
hand, B.g? acts on B,g itself via the braded differential operators. Let v be
a reduced alcove path from A° to z7'(A°). Then we have ([’y])‘l_)_z =1 from
Lemma 3.1. This shows D, # 0, so ¢(7;) # 0.

This theorem implies the following (see Proposition 1.1):

Corollary 3.1. The T-equivariant Pontryagin ring HY ((/j\r) s a subalgebra
of Bag(S).
By taking the non-equivariant limit, we also have:

Corollary 3.2. The Pontryagin ring H*(é\r) is a subalgebra of B.g.

4 Affine Bruhat operators

We denote by x — y the cover relation in the Bruhat ordering of Wg, i.e.
Y = ZSq for some a € A and k € Z, and I(y) = l(z) + 1.

We will use some terminology from [7]. Denote by Q the set of antidom-
inant elements in )V. An element z € W,g can be expressed uniquely as a
product of form z = wt,y € Wag with v,w € W, A € Q. We say that z = wt,,
belongs to the "v-chamber”. An element A € Q is called superregular when
(N, )| > 2(#W) +2 for all @ € A, If A € Q is superregular, then = wt,,
is called superregular. The subset of superregular elements in W,g is de-
noted by W,g"°¢. We say that a property holds for sufficiently superregular
elements W g*'®® C W,g if there is a positive constant k£ € Z such that the
property holds for all z € W, g**® satisfying the following condition:

Y€ W, y<z, and l(z) — l(y) < k = y € Wog*"t.

The meaning of W,g*™®® depends on the context, see [7, Section 4] for the
details. For v € W, consider the S-submodule M8 in B,s generated by the
sufficiently superregular elements [z] where = belongs to the v-chamber.

Lemma 4.1. Let x € W,og. For a € A and k € Z~g, we have

— | [zsak], ifl(z) =Uzsax)+ 1,
(2] D fagy = { 0, otherwise.
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Proof. The fundamental alcove A° is contained in the region {\ € P ®

R[(A\,a) < k} for @ € A and k € Zs¢. Let us choose any reduced path

yor Ay 2B BB A 271(4°) with ki > 0. If I(z) > {(25ak), then

(Bi, ki) = (a, k) for some i. Take the largest i and consider the path

/ / / /
/. B1,k1 Bi-1,ki-1 Bit1kipy Bitakita
,-}, : AO — e —_— A'L—l —_— Sa,k(Az+1) —_ N

. M Sa,k(Al) = Sa,kx_l(Ao) = (a:sa,k)—l(A°),

where (0}, k;) is determined by the condition s, x(Hg, ;) = Hg i, 1 () =
[(z8ak) + 1, then the path ' is a reduced path. In this case, we have
[x]ﬁ[a,k] = [zSax]. If I(x) > l(zSak) + 1, the above path ' is not reduced
and [:B]f[a,k] = 0. When [(z) < [(zsq,), the element [, k] does not appear
, . =

in the monomial [7], so we have [z] D 44 = 0.

Proposition 4.1. ([7, Proposition 4.1]) Let A € Q be superregular. For
T = Wtyy and Y = TSyq,—n with v,w € W, we have the cover relation y—x
if and only if one of the following conditions holds:

(1) l(wv) = l(wvse) — 1 and n = (), @), giving y = WSy(a)tu(n)s

(2) l(wv) = Hwvse)+(aV,20)—1 and n = (A, a)+1, givingy = WSy(a)bu(rt+aY),
(3) l(v) =1(vse) + 1 and n = 0, giving y = WSy(a)tusa(A)s
(4) l(v) = l(vsa) — (@Y, 2p) + 1 and n = —1, giving y = WSy(a)buse (A+a)-

In [7], the first kind of the conditions (1) and (2) are called the near
relation because z and y belong to the same chamber. In this paper we
denote the near relation by y —,eqr .

The affine Bruhat operator B* : S(W,g*8) — S(W,g"), u € P, due to
Lam and Shimozono [7, Section 5] is an S-linear map defined by the formula

B*(z) = (0 — wop)x + Z Z (@Y, 1) TSy k

CIEA+ TSy(a),k *nearT

for x = wt, ) € W,g*"8. We also introduce the operator B, 1 € P, acting on
each M 58 by

Bo(le]) = (p —wop)a] + 2] Y. (@Y, 1) Dyl

a€A k>1
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where £ = wt,y, € Wog™" 8. Denote by W,>"*¢(v) the subset of W,g con-
sisting of the superregular elements belonging to the v-chamber. Fix a left
S-module isomorphism

L S(War™E(v)) — M

T - [x]

Proposition 4.2. For each v € W and a sufficiently superregular element
T € W ssreg( )’

By ([z]) = u(B* ().

Proof. This can be shown by using Lemma 4.1 and Proposition 4.1.

,35([33]) (,U, wvu) SIJ] + [CC Z <a 1/"' D[v(a) k]

a€A4 k>1

= (p—wop)lz] + ) > (@, w)[@Sy(a).4]

a€A k> 1,l(ms[v(a)'k])=l(z)—1

=(u-woplz]+ Y Y (@' mzsywal = UBH(2)).

a€A 4+ ISy(a),k nearT

Remark 4.1. In [4] the authors introduced the quantization operators 7,
acting on the model of H*(G/B) ® Clqi, ... ,q,] realized as a subalgebra
of By ® Clgi,...,qn-1]- For a superregular element \ € Q and w € W,
consider a homomorphism 6 from the A-small elements (see [7, Section 5])
of H*(G/B) ® C|g] to B,g defined by

02(q"0") = [ow™ tuirew),

where o? is the Schubert class of G/B corresponding to v € W and ¢* =
gyt - gf for p =37, wey. The following is an interpretation of the for-
mula of [7, Proposition 5.1) in our setting:

00 (Ma(0)) = B> (03,(0)).

In [5, Section 5], the comparison between the operators 3 and the quan-
tum Bruhat representation of the quantized Fomin-Kirillov quadratic algebra
&3 is discussed.
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