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Path Integrals for Schrodinger Equation
(A Kind of Operator-Valued Integration)

Kiyoko FURUYA (& & F)*

Abstract

In this paper we shall introduce a generalized equi-continuity of a family of semigroups and prove a
new type of Trotter-Kato Theorem, applicable to the weak convergence of semigroups. In [13], we prove
the existence of non-unitary solutions to formally self-adjoint Schrodinger equations. In that paper, we
need the Trotter-Kato Theorem for the weak convergence. However, various versions of the Trotter-Kato
Theorem in locally convex spaces already published are not applicable to the weak convergence as far as
the authors knows. Therefore we shall give a generalized form of the Trotter-Kato Theorem in Yosida
[18].

Next we shall define a kind of operator-valued integration and define the Feynman path integrals of
Riemann integral type. It seems that it is one of the best possible conditions of the existence of the
path integrals of Riemann integral type for Schrodinger equation with singular potentials. Our class of
potentials is wide enough:the real measurable potential U should be continuous except a closed set of

measure zero.
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§2. Trotter-Kato Theorem for Weak Covergence

We shall introduce a generalized equicontinuity of a family of semigroups and prove a new
type of Trotter-Kato Theorem, applicable to the weak convergence of semigroups. We begin by
introducing some terminology and notation and present those aspects of the basic theory which

are required in subsequent subsections.

§2.1. Filter

Definition 2.1. Given a set E, a partial ordering C can be defined on the powerset P(E) by
subset inclusion. Define a filter F on E as a subset of P(E) with the following properties:

i) @ € F (the empty set is not in F);
ii) If A€ F and B € F, then A[ B € F (F is closed under finite meets);
iii) If A € F and A C B, then B € F (therefore E € F).
Definition 2.2, Let B is a subset of P(E). B is called filter base on E if
i) The intersection of any two sets of 3 contains a set of B,
ii) B is non-empty and the empty set is not in B.
Let X be a topological space.
Definition 2.3. U(x) is called the neighborhood filter at point x for X if /(x) is the set of all
topological neighborhoods of the point x.

Definition 2.4. We say that filter base B converges to x, denoted by B — x, if for every
neighborhood U of x, there is a B € B such that B C U. In this case, x is called a limit of 3 and
B is called a convergent filter base.

Lemma 2.5. For every neighbourhood base U(x) of x, it follows that U(x) — x.

Lemma 2.6. X is a Hausdorff space if and only if every filter base on X has at most one limit.

For details concerning the filter, we refer to Bourbaki [1].

§2.2. Locally Convex Topologies

Definition 2.7. A linear topological space X over the complex number field C is called a
locally convex linear topological space, or, in short, a locally convex space, if and only if its
open sets 3 0 contains a convex, balanced and absorbing open set. Let M C X. Then:
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1. M is said to be balanced if x € M and @ € C with |a| < 1 imply ax € M.
2. M s said to be absorbing if for any x € X, there exists 0 < @ € R such that e 'xeM.

§2.3. Mackey Topology

Let X, X’ be two linear spaces over the complex number field C and a scalar product (x,x') €
C (x € X, x¥' € X’) be defined. We say (X,X’) is a dual pair. Let 7 be a locally convex topology
on a linear space X and U, = {U, } be a fundamental system of 7-neighbourhoods of zero. We
denote by X, the space X equipped with the topology 7.

Definition 2.8. Let X be topological vector space. The weak topology on X, denoted by
o(X,X’), is the weakest topology such that all elements of X’ remains continuous.

Definition 2.9. Let X be topological vector space. The Macky topology on X, denoted by
7),(X,X"), is the strongest topology such that all elements of X’ remains continuous.

The weak topology o(X,X’) is the weakest locally convex topology in all locally convex
topologies {7, } such that X,’y = X' and the Mackey topology 7), = 7,(X,X’) is the strongest
one in {7, } such that X;y =X

§2.4. Compact Open Topology
Definition 2.10. The strong topology B8 of X’ is the topology of uniform convergence on
every o(X,X’)-bounded set in X. We denote by Xﬁ’, the space (X')g.

Definition 2.11. We denote by 7, the locally convex topology on X defined by the seminorm
system P = {p, | p,(f) = sup [(f,9)|.C, € C}, where C = {C,} denotes the family of the
g€ty

compact subsets of Xz. Equivalently, Uy, = {Up}pep> where U, = {x€ X | p(x) < 1} is a
fundamental system of 7(-neighbourhoods of zero. 7, is called the compact open topology.

In the case of Banach space, J. Dieudonné has proved the following theorem.

Theorem 2.12 (Dieudonné [3]). The bounded weak* topology in a Banach space is identical
with the compact open tpoplogy.

We denote by X"* the space of linear functionals bounded on every bounded set in Xé.

Proposition 2.13. Let 7,0 be the completion of the space X, . Then (Xg)' C on C X',
Corollary 2.14. IfX is a Banach space, then (Xz) =X 7"

§ 2.5. Locally Convex Topologies

Definition 2.15. Let X be a locally convex linear topological space, and {7} | # > 0} a one-
parameter family of continuous linear operators in the algebra £(X,X) of all continuous linear
operators defined on X into X. If for any continuous seminorm p on X, there exists a continuous
seminorm q on X such that

2.1) p(Tx) < q(x), foranyt>0Oand x€ X,
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then {7} is said to be equicontinuous.

Definition 2.16. Let X be a locally convex linear topological space, and {7, | > 0} be a one-
parameter family of continuous linear operators in £(X, X) satisfying the following conditions:

2.2) TT,=T,, Ty=I

(2.3) tlm? Tix= T,Ox for any 1y > 0 and x € X,
"

(2.4) the family of mappings{7,} is equicontinuous in z.

Then such a family {7,} is called an equicontinuous semigroup of class (Cj).
Theorem 2.17 ([18, p. 233 Theorem]). Assume that a family {T, | t > 0} of operators in
L(X,X) satisfy (2.2). Then condition (2.3) is equivalent to the condition
(2.5) w-liirg T,x=x foreveryxcX.
t

§2.6. Generalization of Equi-Continuity of Semigroups

Let X be a locally convex linear topological space and X’ its dual, and 7 the compact-open
topology of X.

Remark. Note that 7, is equal to the weak topology o(X,X’) on any o(X,X’)-compact set;
that is, a sequence {x,} is weakly convergent if and only if it is 7j-convergent. However, a
bounded Cy-semigroup {7, } is not necessarily equicontinuous with respect to the weak topology
but equicontinuous with respect to the topology 7,. In order to apply Hille-Yosida or Trotter-
Kato Theorem, the equicontinuity of semigroups is necessary.

Let (X,7) = X, be a linear space X equipped with a locally convex topology 7. Denote by
7), the Mackey topolpgy of (X,7). Their duals are equal : (X,7)’ = (X,7,)’ by definition
and o < 7 < 7),. We consider an infinite semi-orderd index set A = {@} and a family of
semigroups {7;” }oc.4. From Definition 2.15 the condition of equi-continuity of the family is:

for any continuous seminorm p on X, there exists continuous seminorm q on X such that

(2.6) p(T7x) <gq(x), forallt>0, x€X, acA
The relation (2.6) is writtenas | 72V CcUforU={x€X|px) <1} andV ={x€X|
acAr>0

q(x) < 1}. This is the equicontinuity of the family {7;*: X; — X;}ac.4. We shall define the
equicontinuity of the family {T,*: X, — X;}ae., a modified form of (2.1).

Definition 2.18. The family {7,%} is said to be (7, T3,)-equicontinuous if for any 7-continuous
seminorm p on X, there exists a T,,-continuous seminorm g, on XTM such that p(T%x) < gqy(x)
t>0,xeX,ac A.

Remark. We may define the (7, 7,)-equicontinuity for a locally convex topology 7, satisfying
X, =X ,1'1)’ . However, (7,7,)-equicontinuity implies (T, T)s)-€quicontinuity.
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The Hille-Yosida Theorem for (7, T,,)-equicontinuous semigroups is:

Theorem 2.19. Suppose that A is a linear operator with dense domain D(A) in X and the
resolvent R(n;A) = (nl — A)~! € L(X,X) exists for n € N. Then A is the generator of an -
equicontinuous semigroup if and only if the family {(I — n='AY"} = {nR(n; A)™} is (7,7y)-
equicontinuous inm € N and n € N.

§2.7. Trotter-Kato Theorem

Now we shall give a generalized form of the Trotter-Kato Theorem.

Theorem 2.20. Suppose the following conditions:
1) for any @ € A, a semigroup {T,*} is T-equicontinuous and C type with respect to T.
2) the family {T }ac A is (T,7)y)-equicontinuous; that is, for any T-neighbourhood U of zero,

there exists Ty,-neighbourhood V of zero suchthat |} |J TV C U.
a€A>0

3) there exists some filter @ of subsets of A and some complex number Ay with Re Ay > 0, such
that the following holds: there exists pseudo-resolvent J(4;))x in X such that for any f € X,
there exists g = T- éirr€1¢(1 - /I,Aa)‘l f, where {4,} IeN IS a sequence of distinct points in C

acy
and A) — Ay as | — oo in such a way that the range R(J(4))) is dense in X .

Thus the operator (I -/loAd,)‘l can be defined. If the range R((I —A )~ YYisdense inX, then Agp
is a densely defined closed operator and generates a semigroup {T,®}, which is a Cy-semigroup
with respect to the topology T and - éi‘tmeq) Tex=TPxforall xcX.

a

Lemma 2.21. The family {(I — n='A)"} = {nR(n;A)"} is (1,7),)-equicontinuous in m € N
andn € N.
By Theorem 2.19, we have

Lemma 2.22. A, generates a semigroup {T,%}.

§2.8. Weak Convergence of Semigroups

We consider a family of contraction C-semigroups {7;% }¢c 4 in a reflexive Banach space X.
Theorem 2.23. Suppose that for some filter D, for all f € X, there exists @5 = w- éirg(p(l -
a€y
Aa)"'f.
Thus the operator (I —Ag)~\ is defined. If the range R((I — Ap)~") is dense in X, Ag is a densely
defined closed operator and generates a semigroup {T,®} : w- li(;nq) TPx =T%x, VxeX.
acoe

Moreover, we have {T2} is a contraction Cy-semigroup in X .
Proof. By Corollary 2.14, X;, is complete. The family {7,*} is norm-equi-continuous, since

each semigroup 7% is a contraction : |T;%|| < 1. For a contraction semigroup, we have ||( —
A7 <1 H =w- lim (I—Ap)~!f impli =710- lim (I —Ag)”'f. Si
o) < ence g = w ael;gq)( o) "' f implies pp = 19 ael(;g(b( 2)” ' f. Since
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R((I — Ap)™!) is dense in X, Theorem 2.20 implies o- li‘;nd)Tt"x = T,‘Dx for some semigroup
aEpe
T2 of Co-type with respect to 9. Hence the Co-semigroup T,° in Xr,, T,%¢ = 7o- li‘;g(b T2y,
ae
exists. Since we have
2.7 20| = |lw- lim Tl < lim [Tl = e,
@7 1720l = llo-_lim T2l < lim_177%] = el

T2 is a contraction. It suffices to show the strong continuity of T;®¢. This follows from Theorem
2.17 which says a weakly continuous semigroup in a Banach space is strongly continuous.
Therefore the proof is complete. (W

In the case of Hilbert space we can give more simple proof.

§3. Trotter-Kato Theorem for Weak Convergence on Hilbert Space Cases

Here we study this theorem in Hilbert space. In the case of Hilbert spaces we can give
more simple proof. We consider a family of contraction Cp-semigroups {T;"},¢n in a separable
Hilbert space H, with inner product denoted by (-,-) and crresponding norm || - ||. In this paper
we prove the weak convergence of {7 },en. Our main theorem is as follows:

Theorem 3.1. Let A, be the infinitegimal generator of unitary Co-semigroups {1} } neN. Sup-
pose that, for some Ay in C with Re A9 > O there exists J(A;)x in H such that

J(A)x=w- lim (4] — Ap)"'x
n—00
for any x € H, where {A;}jeN is a sequence of distinct points in C and 4; — g as | — oo in such

a way that the range R (J(A))) is dense in H. Then J(Ag) is the resolvent of the densely defined
closed operator Ao, which generates a contraction semigroup T of class (Co) in H and

3.1) w- lim Tx = T®x

n—oo
forallxinH.

§ 3.1. Basic Theory of Hilbert Spaces

In this subsection we present those aspects of the basic theory of Hilbert spaces which are
required in subsequent sections. Let H be a Hilbert space with inner product denoted by <, >
and crresponding norm || - ||.

Definition 3.2. A subset S C H is said to be fundamental if the closed span of S is H (in other
wards, if the span of S is everywhere dense).

Definition 3.3. H is separable if H contain a countable subset which is dense in H.

Lemma 3.4. For the separability of H, it sufficient that H contains a countable subset S

which is fundamental. A subset of a separable set is separable.

Example. C(Q) is separable, where Q is a compact space. L*(R") is also separable. Sobolev
space H'(R") is also separable for /in N.
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Definition 3.5. A sequence u, in H is said to converge weakly if (f,un) converges for every
f in H. If this limit is equal to {f,u) for some u in H for every f, then {u,} is said to converge

weakly to u or have weak limit u. We denote this by the symbol u = w- nlingo Upy.

Lemma 3.6. (1) A sequence can have at most one weak limit.
(2) ||lul| < liminf ||uy|| for u = w- lim u,
n-—00 n—oo

(3) A weakly convergent sequence is bounded.

Lemma 3.7. (1) Ifu, in H is a bounded sequence, then there is a subsequence {uy,} of {un}
such that w- lim u,, = u for some uin H.

ng— 00

(2) Let u, in H be a bounded sequence. In order that u, converge weakly to u, it suffices that

(f,un) converge to (f,u) for all f of a fundamental subset S of H.

Lemma 3.8. H is weakly complete (i.e. every weakly convergent sequence has a weak limit).

Definition 3.9. Let Q be open domain of C. f: Q — H is called weakly holomorphic for A
in C if, for each x in H, the numerical function (f(1),x) of A is holomorphic in Q.

Lemma 3.10. Let Q be open domain of C and f: Q — H. If f is weakly holomorphic on Q,
then f is holomorphic on Q.

Using this lemma we obtain that Hilbert space valued holomorphic function has the same
character as the usual holomorphic function of a complex number value. The result in the case
of a complex number value is extended to the holomorphic function of a Hiibert space value.

Thus we have Cauchy’s integral theorem, Taylor’s and Laurent’s expantion, and so on,
§3.2. Proof of Theorem 3.1

3.2.1. A, is the infinitesimal generator of a semigroup
We first prove that if there exists the operator Ay, it is the infinitesimal generator of a contraction
semigroup T, of class (Cp).

Lemma 3.11. Let A, be the infinitegimal generator of unitary Co-semigroups {T;" } ,eN.
Suppose that for any x in H (Ag] — Axo) " 'x = w-nl_i'rgo (Ao — Ap)~'x, in such a way that the
range R((Aol + Ao)™!) is dence in H. Then A, generates a contraction semigroup I,>® of
class (Cp) in H.

Proof. Note that ‘A, = —A,. We obtain that
(Aol — Aco) ' xy) = (Aol — Ap) "' x,y) = ”irgo(x,(ﬂol + A7 y) = (0, (Ao + Aco) ')

Assume that (1o] — Ao) ! is not one to one mapping, that is to say, there exists xo € H such that
x0 # 0 and (o] — Aso) ™' xg = 0. Therefore (xg, (o] + Aoo)~'y) = 0 for any y € H. It follows
that R((Ao] + Axo)™!) C {x0}*, where {xo}* is the orthogonal complement of xg. At the same
time for any y € R((Ado] — Aoo) ~") there exists x € H such that y = (o] — Aso) ™' x. Then we have

lim
n—00
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A0y — Acoy = x and Agy + Acoy = —x + 2oy which implies y = (Aol + Aco) ™} (—x + 240y). It
means that R((Ao] + Aco)™ 1) D (Ao] — Aco) ™! - H = R((Ao] — Aso)™1).

Since R((Ao] —Aso) ™) is dense in H, R((Ao] + Aoso)~!) is also dense in H. Itis contradiction.
Then we obtain that (1p] — Ax)~! is one to one mapping and Ao, is a closed operator. By
[l(Af — Aco) ™| < 1 Hille-Yosida Theorem implies that A is the infinitesimal generator of a
contraction semigroup {7;°°} of class (Cy). a

3.2.2. The properties of resolvent equations
Lemma 3.12. (A — A,)~! x converge weakly to a holomorphic function J(3)x as n — oo for
Rel > 0: w- lim A=A~ x=J)x,
Lemma 3.13. For A€ Aandm €N,
w- lim (U —A) " Y"x = (U — Aso) ™.

3.23. {T;'}nen Converges {T,>°}
We show in section 4,1 that A, is the infinitesimal generator of a contraction semigroup 7,°° of
class (Cp). Now we show (3.1) in Theorem 3.1. A fundamental system of neighborhoods of xo
in H of weak topology o (H,H) is V(xo;y1,"* »yn: &) = {x € H;|(x—x0,y;)| <&, j=1,---,n},
where y1,- - ,yp are an arbitrary finite system of element of H.
Lemma 3.14. We fixed xo,y1,- - ,yx in H and t > 0. Then we obtain that
Ve >0,3np € N: (T'x0 — T x0,y;)| < &, Vn > ng.

Lemma 3.15. w- lim T"x = T>x, for all x€H.

n—0o0

If {T,} is weakly convergent, it is uniformly bounded, that is, {||7,]|} is bounded. To see
this we recall that by lemma 3.6 {||T,,x||} is bounded for each x € H since {T,x} is weakly
convergent. The assertion then follows by the principle of uniformness. Finally since by lemma
3.6 we have ||T x| = ||w-n&ngo T!x|| < Jim I T;x|| = ||x||,it follows that T,> is a contraction.
Then the proof of Theorem 1 is complete.

Remark. (1) For simplicity we assume that H is separable. But this assumption is not neces-
sary condition.
(2) s lim Tyx=T;*xif and only if lim T x| = |T°x].
(3) Strong convergence implies weak convergence. The converse is not true unless H is finite-
dimensional.

§4. Schridinger Equation

In this section we make an attempt to apply our results to the Schrodinger equation. For

details concerning this equation, we refer to Komura [13]. We shall construct a family of unique

87
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solutions to the Schrodinger equation in RY

)
@.1) pOBX) I ey — iUut %), w(0,x) = p(x),
ot 2m

for U € L°(RV \W,R) where V is a closed set of measure 0 (for further information, see (4.3)

loc

). Here h and m are positive constants.

For simplicity we consider the following normalized equation :
ou(t, x)
ot
where HA (RN C) denote the Sobolev space of L2-functions with first and second distributional

4.2) = iDu(t,x) —iU(xX)u(t,x), u(0,x)=¢(x), ¢ € HYRN;0),

derivatives also in L? on R” to C.
If A —U is essentially self-adjoint, the operator family {7;} defined by Ty = u(?) is uniquely
extended to a group of unitary operators from LZ(RVY ;C) to L*(RV;R).
Let N = a fixed closed subset of RN of measure 0.
Let D = {D} be the maximum family such that each element D C D C RM\\V is a finite union
of connected bounded open sets. The family D = {D} satisfies DUDD = RY\W. We denote the
€

restriction of f to D by f|p. We use the following notation
(4.3) L (RV\N,R) = { f | fER, xeRY, flpe L°(D)VD e D}.
Let U € L2(RY\N,R). We assume for any neighbourhood of any point of A/, U is not es-

loc
sentially bounded. By this assumption, U uniquely determines N in the following sense :

N=, {M Ue L;jfc(RN\./\/,,,R)}.
Let B, = {x € RNI -n<Ux)< n},n € N. Then we have B,, D B, for m > n and
(4.9 YDeD, 3B,: DCDCB,.

(Strictly speaking, D\B, is not necessarily empty, but a null set.) We denote
Un(x) = min {n,max{—n,U(x)}}.

Thus U, in L°(RV;R).

For U in ﬁ(RN \WV,R) we consider the approximative equation

4.5) Ed;u,,(t) = Aqun(t), where A, = i(A —Up).

In this case the operator —iA, is essentially self-adjoint. We obtain that the semigroup {7;"}
generated by —iA, is the family of solutions to (4.5) and is a group of unitary operators :
Il = llell, —oco0 <1< oo, Vg € LARY;C).

Theorem 4.1. For any U in fo‘;(RN \N;R), there exists a closed extension of the operator
(N —-iU )ICSO(RN\ ) in L*(RV;C) — L>(RN;C) which generates a contraction Cy-semigroup
{T; I t > 0} such that Typ = w-JLngo T g, Vo € L*(RY;C), where T/'¢ is the solution to (4.5)
and w-lim means the weak convergence.
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For the proof of existence of {7;}, we use Theorem 2.23. For details, see Kémura [13].

§5. Feynman Path Integral of Riemann Type

Now we shall define a kind of operator-valued integration and define the Feynman path in-
tegrals of Riemann integral type. It seems that it is one of the best possible conditions of the
existence of the path integrals of Riemann integral type for Schrodinger equation with singular
potentials. Our class of potentials is wide enough:the real measurable potential U should be
continuous except a closed set of measure zero.

Heuristic Feynman path integrals have played a remarkable role in various aspects of quantum
physics. But rigorous mathematical treatment of this integral is not enough. It is well known
that Feynman path integrals for Schrodinger equations are not represented by scalar-valued
measure(see E.Nelson [16]).

In this paper, we discuss a kind of operator-valued integration and define the path integral of
Riemann type, analogically to Riemann integration of scalar functions. So our integration is
different from the one of Nelson (see T. Ichinose [9], E. Nelson [16] and F. Takeo [17]). We
shall show that the solution to the Schrodinger equation in RV(N > 2)

d
(5.1) 540 X) = iDu(t,x) = U@ u(t, ), u0,x)=¢x), ¢€LXRY0)
is written as the path integral

(52) utn)= [ HBUTOM GO, p € RO
Q0,9
of Riemann type. Here we denote by y a path on RV, thatis, y € Qg = [] RY RY =
a€f0,t]
a copy of RY): v = (x € R)aepo,4) (0r ¥(@) = xq).

We study the conditions to define the path integrals of Riemann integral type for Schrodinger
equation with singular potentials. The paper of Nelson [16] is concerned with the Schrodinger
operator i[(1/2m)A — V(x)], except for a set N of m with measure O and he assume that V is
continuous on the complement of a closed set F of capacity 0 . In this paper Nelson mentions
that “The restoriction to almost every real value of the mass parameter is an unsatisfactory
Seature of the theory” ([16, p. 335]). As G. W. Johnson and M. L. Lapidus point out that it is a

serious weakness ([11, p. 295]). Notice that we have no restriction of this type.

§ 6. Abstract Evolution Equation

Definition 6.1. The space of functions f in L*°(R";C) such that f is uniformly continu-
ous on RY will be denoted Coo (R ;C) where L°(RV;C) consisting of all essentially bounded
functions on RV.
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The equation (5.1) is written as an evolution equation
(6.1) %u(t) =(A+VO)u(r), u@)=e¢,
where A =i/ and V(£) = —iU(t,-) is an Coo(RY; C)-valued function. The associate semigroup
with V = 0 is written as {S;,}. More precisely, {S;| — oo < t < 00} C L(L*(RV;C), L*(RV;C)) is
a group of unitary operators, where L(L>(RV;C), L>(R";C)) is the space of all bounded linear
operators from L3RV ;C) to L2(RV;C).
Let m be a natural number and 8 =t/m, so =0, sj3.) =s;+ 0, s =tfor j=0,--- ,m—1.The
subject of this section is that the solution u(z) to the equation (6.1) is approximated as

m
62) utt,x) ~ ([ Soe" @) plx), sj1 STj<55 j=Loum.
j=1
We wish to provide some back ground in abstract evolution equation theory.
Let H = (H,]| - ||) be a Hilbert space. Here ||- || is a norm of H. We consider the following

abstract evolution equation in H.

d
(6.3) E;u(t) =(A+BO)u(), w0 =¢€cH,
where A is the generator of a semigroup of unitary operators and B(?) is a bounded linear oper-
ator for any ¢ > 0.

Definition 6.2. A function u which is differentiable almost everywhere on [0,T] such that
du
?
zu(t) = (A + B(t))u(t) a.e.on [0, T].

Lemma 6.3. The strong solution to

€ L1(0,T;H) is called a strong solution of the initial value problem (6.3) if #(0) = ¢ and

d
(6.4) Eu(t) =(A+ B@®)u(r), u(0)=¢ € D(A),
is given by
t
(6.5) u(®) = eu(0) + / ' IAB(s)u(s)ds,
0

if B(t) is an L(D(A), D(A))-valued continuous function. Here D(A) is the domain of A equipped
with the graph norm || f||py = (1711 + |A£1I1)'/.

Definition 6.4. The solution to the integral equation (6.5) is called the mild solution to the
evolution equation (6.4), if it uniquely exists.

Lemma 6.5. The mild solution to (6.4) uniquely exists if B(t) is an L(H, H)-valued continuous
function.

From equation (6.5) we have
6
(6.6) u(t + 6) = Pu(r) + / eO=9AB(t + syu(t + s)ds.
0

In general eA+8 £ ¢AeB. This is becouse A and B need not commute.
Therefore we shall approximate u(t + 6) by e?e?2Wu(r) :
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Lemma 6.6. Let T > 0 and B(t) a L(H, H)-valued continuous function. Then we have for
each € > 0, there exists 6y > 0 such that
e®e®BOut) —ut + 0)|| < e for 0<6<6,0<t<T.

We turn now to the solution u(#) to equation (6.1)

Lemma 6.7. Let u(t) be the solution to the equation (6.1). If V(t) is an
L(L*(RY;C), L3RV ;C)) -valued continuous Junction, then it holds that

m
6.7) u(t, ) = lim (HSgeev(Tj))gp(x) for sio1<T;<s).
j=1

§ 7. Path Integral of Riemann Type

§7.1. Operator-Valued Integral of Riemann Type

In this subsection we express the operator Sie¥ : ¢ — S;(e" ¢) as the integral of "¢ by dS,.
We denote by Z the set of integers. We consider a division of R :
U R =R, I} = ki, by + h) x - x [Bky, by + b), k= (ky, -+ kn), k; € Z.
kezZN
A function e¥ in L>°(R";C) is considered as an operator in L(L*(R";C), L*(R";C)):
eV X(RY;C) > p— evcp e LXRY;0).
For simplicity we denote L> = L°(L*(RV;C), L2(RV;C)).
The characteristic function )((I,f) of I,’(' is in the same time an operator in

p(x) forxe I,

LULARY;C), LARY;0): (x(IF) - )(x) = x(I1)(x) - (x) =
0 forxgll

Note that p(x) = Y. x(U)(x)¢(x). We denote
kezZN

(7.1) AkS, = Sy € LUARY;C), L2 RY;C)) : ¢ — Si(x(IP)¢).

Lemma 7.1. Ife" inCoo(RY;C) then the sum S;e¥ = Y AZSteV is unconditionally strongly
kezN
convergent. That is, for any ¢ in L*(RV;C), » A;:S,evcp strongly converges independent of
kezZN
the order of the sum.

Proof. The lemma follows from the unconditional strong convergence of ¢ = ) X(I,i’)(p

kezZVN
ore¥o= 3 x(IF)(e¥p). In fact we get that if x(If)p L x(If,)p for k # K, then Sy (IP)p L
kezZN
Syl for k # k', since S; is unitary. Therefore if Z; C Z C ZV, then ISie¥ — 3 AkseV| >
keZy
SV — 5= Alse’|. ]

keZ,



92

FURUYA, KIYOKO

Definition 7.2. For 4 > 0 and % € ZV, let an element x} € I be fixed. EA;:S,eV(*J(h) is
k

called the Riemann sum. ’l‘in‘(l) > AZS,eV("kh) is called the Riemann integral of ¢"® by dS,(x) and
—0%
denoted by
(72) R- / dSi(x)e"™® = / S(dx)eV™ = lim Z Als, e’ e LILXRY;C), L2(RY;C)).
RN

keZN
dS; is finitely additive and may be called an operator-valued “Riemann measure”.

§7.2. Iterated Integral and Multiple Integral

From the definition of Riemann integral, we obtain that

m
[ 86c® @ = R- / dSe(x)e® m?) ... R- / dSg(x)e® Ty,
Jj=1 R RV

This is the iterated integral. We shall express this by the multiple integral.

We denote by C([O, 1], Coo(RY;C)) the space of continuous functions on [0,7] with values in
Coo(RY;C).

Lemma 7.3. Let V in C([0,t],Coo(RV:C)). Then we have

m

(7.3) Hsge""(’r = lim HSGZX(I,f)(-)e”VW-*"hhp for el

Denote k = (k(1),- - - ,k(m)) € Z¥N*™ where k(j) = (k1(j),-- - ,kn(j)) € ZN.

)
Note that A}, Sp and VT4 commute since each eV is a constant function. Thus we
have
m
k)
[Is S xabev e = 5 T] (st esi) = 3 H (A Soe™ i)
Jj=1 kEZN KEZNX'" j=1 KEZNX’" Jj=1
m

7.4 = Z H (A;:(J,)Se) ez;n=1 9V(Tl,x:(l))

xeZNxm j=1
since the sum ) X(I,’(')egv(ff""kh) is unconditionally convergent. The multiple integral is defined

kezZN
by as follows:

Definition 7.4. The multiple integral of exp ( e 6V (T, y(‘rl))) is defined by

(7.5 R- / - / dSa(y(r1)) - dSg(y(Tm))eizt &/ D)

m

=tim 3 T (Slgse)e=mes

KEZN"' J_
Let A — 0in (7.4) and we get the following lemma by (7.2) and (7.3),
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Lemma 7.5. Let V € C([0,t],Coo(RV;C)). Then we have

m
H Sge? Ti¥) = R- / / dSe(y(11)) - - - dSe(¥(Tim)) et VYT,
Jj=1

where (7 ) runs over RN for each j and

/dse(,y(Tj))eGV(T{)’(Tj)) means / a’Sg(x)eev(Tl"").
RN

Roughly speaking,

m m
H Ak ySe~ [ [ dSety(x ), fory € Qua, () €Iy ash—0.
Jj=1 j=1

§7.3. Path Integral of Riemann Type

Now we define the path integral of Riemann type.
Definition 7.6. The Riemann type path integral of F(V;t,y) = Jo VM1 i defined by

m
L9)]
R_/Q eféV(f,V(T))dfgad#Q(.},): lim lim § I IAZ(j)SeeZW(Tj’x"J)%
[0.]

m—oo 0
o0 h— KGZNM j=1

(7.6) = lim lim 3 AhsgeZ A,

m-—-o00 h—0
KeZNm

m
where ASg = ] AZ( S6-
j=1

Thus from Definition 7.4, Lemma 7.5 and Definition 7.6 we obtain that
R’/ efoV eV ol (y) = lim R- / N / dSp(y(T1)) - dSs(y(Tm))eimt & 17Dy
Qo -

m-—00

m
= lim (H See? TN ),
j=1

Remark. In general we have not defined the function F(V;t,y) = eJoVEradt por the (gen-
eralized) measure u€. Since fot V(7,%(1))dr might not exist for a path y. Nevertheless the path

integral (7.6) is defined for some V.

A suﬁicient (but not necessary) condition for a function F(V;z,7y) to be u2-integrable is given
in our next theorem.

Theorem 7.7. LetV € C([0,t],Coo(RY:C)). Then the function eJo V&4 s 4O integrable.
That is,

m
(7.7) R- / e fo' V(ry(1))dr ¢(7(0)) d,uQ(’y) — ]imoo(]:[ Se e()V(‘r !'""))(,0( x)
Q'[O,I] , m— o

j=1
exists.
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A direct consequence of Theorem 7.7 is the following theorem.

Theorem 7.8.  Let a real function U in C([0,t],Coo(RY;C)). Then the mild solution to the
Schridinger equation (5.1) is expressed as the Riemann type integral

(7.8) u(t, x) = R- / e~ Jo VrrOMT o (0))dp(y).
Q0.

§8. Integrable Functions

In this section we study Schrodinger equations with singular potentials.

§8.1. Integration on a Bounded Domain

Let subset D of RY be a bounded open domain with smooth boundary and V be a continuous

function on D. Denote Qo (D)= ]| D, where D, = a copy of D = {y|y(s) € D,Vs € [0,1]}.
ac[0,]
We consider the integration on Qg (D).

The family of solutions to the Schrodinger equation in D with Dirichlet boundary condition
0 :
(8.1) U0 = ibu(t,x),  u(t,9)|xeop =0, u(0,x) = @(x)|sep
is written as u(f) = Syp by a group {S;| — 00 < t < 0o} of unitary operators.
Let | I,i’(D) =D, I,i'(D) = Dﬂ([hkl,hkl + h) X -+ X [hkn, hky + h)),

keZN
k=(ky,---,kn), kj € Z.

Definition 8.1. If the Riemann sum y(l,f(D))(-)eV(“J‘h) converges as h — 0 independently
keZN
of the choice of {I*(D)} and {x{}, the function ¢"™ is said to be Riemann integrable, where

p(I}(D)) is the volume of I(D).

If the function G(x) = e~UW, U(x) € R, is Riemann integrable in a bounded domain D,

the operator-valued integral R- [, dSi(x)e’® = ,llirrb 3 AZS,eV(*jfv) also exists. Moreover the
—YkezN
multiple integral exists.

As is well known, a bounded function on a bounded domain is Riemann integrable if and
only if the set of discontinuous points is of measure zero. In our case,

Lemma 8.2. A function G(x) = e~V®, U(x) € R for a bounded function U, is Riemann
integrable in a bounded domain D if and only if the set of discontinuous points of U is of
measure zero.

Let Vy(y(D)={x€D | V(2) is not continuous at x} and NVy(D) = Uretom MNy(»(D) Our next
theorem is analogous to Theorem 7.7.
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Theorem 8.3. If a function V in C([0.T];L>°(R";C)) and for any t in [0,T] V(2) is Riemann
integrable on D and Ny(D) is a closed set of measure zero, then the function eJo V(e 4
uL-integrable on Q(0,1(D). That is,

m
R- / eJo VT 5000 duf(y) = lim HSgeW(T!"x)qo(x), x€a.eD
0,1(D) "=
exists.

§8.2. Strong Integrability for Non-negative Potentials with Singularity

For simplicity we shall discuss the time-independent case. We use the following notations

(8.2) N = a fixed closed subset of RY of measure 0,

(8.3) CRM\WN,R) = {U € CRY\W,R) | U(x) >0, forall x e R"}.

In this section we consider the integrability of the function e~ JoU(9ds gor 4 function

U e CRM\N,RY). Let D, = {x € RN| n>U(x)} for n € N. {D,}3, is an increasing
sequence such that D, C Dy and |J Dy = RN \N. Here D, is a finite sum of E} for k€ N

n=1

and each E}} is a bounded open connected set with smooth boundary. For U € C RM\WN,RY)
we define a sequence of functions U, such that
U,(x) = min{n,U(x)} for neN.
Lemma 8.4. Let U in C(RVN\N,R*). Then e~ Jo UnVs)Mds i Riemann integrable.

We denote that

Qo,11(Dn)

When a function U is not bounded the Riemann integral of e~ JoUtsNds g not exist for U in
C(RM\WN,RT). Therefore we introduce the definition of improper Riemann integration with
respect to u€ .

Definition 8.5. For a function U € C(R"\N,R™"), the function ¢~ fo
improper Riemann integrable by u@ if

llm R-/ e—ifol Un(')’(S))dJ‘¢d/JQ
Q0,)(Dn)

n— 00

Utris)ds ig said to be

exists for any ¢ € L2(R";C) independently of the choice of {D,}.
The main results of this section is the following theorem:

Theorem 8.6. Let U in C(RN\N,R*). Then the function F(—iU;t,y) = e~ foUtrNds g
improper Riemann integrable by u@.

For the proof of this theorem we shall use the subdifferential of convex functionals.
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Denote H = H'(RV;R) and H2 = H*(RV;R), where H'(R";R) is the first Sovolev space
on the RN and H3 = H2(R";R) is the second Sovolev space on the R¥ The subdifferential of a

lower semicontinuous convex functional ¥ : L,% — (—00,00] is defined as
O¥: ¢ — {p € L*RY;R) | ¥(¢) > ¥(¥) + (¢.0—y) for all p € LARY;R)}.

For the basic property of lower semicontinuous convex functionals and their subdifferentials,
we refer to the book [2] by Brézis.

For U € C(RM\W/,R), the functional ||v/U¢||? is lower semicontinuous and convex.
H?(Q) denote the Sobolev space defined as the closure of the space of test functions on the
open set Q@ C R¥ with respect to the Hilbert norm (|| - |3 + ||V - [|}3)"/2.

Lemma 8.7. Let 1 and ¢, be properly lower semicontinuous and convex such that D(g;) N
D(p2) # 0 where D(¢1) and D(¢3) are effective domain. Then | + ¢ is properly lower semi-
continuous and convex and 0| + 0z C 3(¢; + ¢2). Moreover 3y + 8¢ is maximal monotone

i fand only if 0p\ + 3pr = O(p1 + ¢2).
Lemma 8.8. Each functional
)= 5 I? + IVTID) or ¥6) = S(l-L)H ol + VTP,
is lower semicontinuous and convex. Its effective domain is D(¥,) = {f € L*(RV:R) | Y,(f) <
oo} = H} or D(¥) = D((— 2)2)(\ D(VD).
Roughly speaking, ¥(¢) is a closed extension of (—A¢ + Ug, ).

Lemma 8.9. The resolvent ¢, = (I + 8¥,)~ ' pg of the subdifferential 8¥,, is given by the pro-
Jection of go to B, where B, = {¢ € L*(R";R) | ¥n(#) < ¥u(¢n)}: Projg o = (I + 3%¥») " 'go.

Lemma 8.10. The resolvent (I + 0%,)! strongly converges to the resolvent (I + 0%)~! :
(I +0¥) o = lim,_,oo(I + 0¥,) ‘90, forany ¢ye€ L2(RV;R).

Proposition 8.11.  —3¥ generates a Co-semigroup, hence it is a linear operator and R(I +
%) = L>(RV;R).

Proposition 8.12. Ler S(t) and S,(t) be the semigroups generated by infinitesimal generator
—0d¥ and —0'Y, respectively. Then we obtain the following equation

(8.4) lim S,(t)p =S¢ forall ¢ L*RY;R).
n—o0
Proof. We obtain (8.4) by using (8.10) and Trotter-Kato Theorem.
Let 6%, 0%, : L2(RV;C) — L*(RY;C) be the complex extension of 4%, d¥,: L2(RY;R) —

L*(R¥;R) respectively. From Proposition 1, R(I + 8¥) = L*(RV;R). Hence we obtain R( +
d%) = L*(R;C). |

Lemma 8.13. The operator 8% is a self-adjoint positive operator.
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Proof. If a symmetric operator T satisfies R(I + T') = L*(RY;C), then it is self-adjoint. The
positivity of 3% is evident, since (3¥(¢),¢) > 0 for all ¢ € LA(RV;R).

Theorem 8.14 (Stone). A is the infinitesimal generator of a Co group of unitary operator on
a Hilbert space H if and only if iA is self-adjoint.

Theorem 8.15. If a function U in CRN\N,R*) then the Schrodinger equation
d <
Eu(t) = —i0¥Yu(t)) = i(A - U)u(t)
has a unique solution. Moreover the semigroup {T (1)} of solution family is unitary.

Proof. Since 8¥ = —(A —U) is self-adjoint, —i60'¥ = i(A — U) generates a semigroup of
unitary operators by virtue of Stone’s Theorem. O

Definition 8.16. Let A be the linear operator in complex Hilbert space H = (H, || - |}).

(a) The operator A is called monotone if and only if Re(x,Ax) > O for all x € D(A).

(b) The operator A is called maximal monotone if and only if any monotone extension of A
coincides with A.

Lemma 8.17. Let —A be a maximal monotone operator. Then ||A(I — A)~!|| < 1.

Lemma 8.18. Let —A and —A, be maximal monotone operators. Then (I — (1 + @)A) ! and
(I—(1 + a)A,)~! are bounded operators for |a| < 1. Moreover if lim J—=Ap)"lo=U—-A)"lp
n—oo

for all ¢ € H, then we have lim (I —(1 + A o=~ + @)A) "L forallp € H.
n—o0

Lemma 8.19. Let —A and —A,, be self-adjoint positive operators.
If(I1— €Ay~ and (I — €A,)~! are bounded operators for 0 < 8 < /2 and

lim(I—A) 'o=(I—-A)", forall p€H,
n—oo

then we obtain tnat lim (I —iA,) " ‘o= (I —iA)" ¢ forallp € H.
n—00
Remark. (—i + c)A and (—i + c)iA, are not maximal monotone operators for any ¢ > 0.

Proposition 8.20. Let T(¢) and T,(t) be the semigroups generated by infinitesimal generator
—i0'¥Y and —id¥,, respectively. Then it follows that

lim (¢ =T()¢ forall ¢¢€ L*(R";C).

Proof of Theorem 8.6. From Proposition 8.20, it follows that
lim R- / e~ RNy = lim Ty(1)g
Q[O,[} n—oo

n—o0

uniquely exists. Therefore we obtain that e~ JoUr()ds js Riemann integrable by ,uQ. O

Corollary 8.21. Let a function U € C(RVM\N,R) and there exist m € R such that U(x) >
. rt
m for any x € RVN\N. Then the function F(—iU;t,y) = e~ o Us s imbroper Riemann
integrable by u®.
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For a time dependent case we give the following theorem

Theorem 8.22. Let U(t,-) be a C(RY;R) NL®(RY;R) -valued function and be continuous
in t on every compact set € R. Then the function F(—iU;t,y) = e~ foUGs¥()ds s Riemann
integrable by u@.

§8.3. Weak Integrability for Real Potentials with Singularity
In this section we study about more general potentials. We consider the following equation :
(8.5) g—tu(t, x) = iAu(t, x) — iU©u(t,x), u(0,x) = (x), p € HHRN;C),
where HO(RV;C) = {¢ € L*>(RV;C) l d%¢p € L*(RN;C)}. Recall that we set N = a fixed

closed subset of RV of measure 0. Let D = {D} be the maximum family such that each element
D c D c RM\W is a finite union of connected bounded open sets. The family D = {D} satisfies

U D =RNM\W. We denote the restriction of f to D by f|p, or simply, by fp. We use the
DeD
following notation

(8.6) LR RM\N,R) = {f | f(x) €R, flp € L(D;R)),VD € D}.
Let U in m(RN \W,R). We assume for any neighbourhood of any point of N, U is not

essentially bounded.
Definition 8.23. For a function U in C(R"\A/;R), the function e~ JoUNds s said to be
weakly Riemann integrable by u€ if

w— lim R- / ¢~ Jo Umn(v(s)ds ddu®
Q(0,1(Dm,n)

m,n—o0
exists for any ¢ in LX(RY;C) independently of the choice of {Dp,»}.
Now we return to (8.5). Let U in C(RV \W,R). In order to use the previous theorem we
define a sequence of functions Uy, and D, such that Uy, ,(x) = min{m, max{—n,U(x)}},
Dpp = {x € R¥|m > U(x) > —n},m,n = 1,2,3,--- . By virtue of Corollary 8.21 the solution

Um n to the Schrodinger equation in RV

0
{ = (1,%) = 15U 3) = Um0 )

8.7)
Umn(0,x) = p(x), ¢ € L*(RV;C)
exists.

Theorem 8.24. For any U in L2 (RV\N;R), there exists a closed extension of the operator

A-U )lcgo(RN\ Ay in L3(RV;C) — L*(RN;C) which generates a contraction Cy-semigroup
{T@ [ t > 0} such that
(8.8) T(Op=w- lim Tua(p, Vo€ LXRY;0),

n—00

where Ty, n(t)y is the solution to

d .
(8.9) —Ump(l) = Am,num,n(t), where Ann= i(A— Unn)
dt
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and w-lim means the weak convergence.

Proof. Let U,f{’ #(X) = max{0, Unn(x)} and U,, ,(x) = max{0, —Upmn(x)}. Then
Um,n(x) = U,;:’I(X) - Un?n(x)'

Note that: let m,n € N,
(A) In the case that there exists M > 0 such that U,j,:,,(x) < M for x € D,,, and there exists
ng € N such that D,,, , C B(n) for any n > ny > M.
(B) In the case that there exists M > 0 such that U, ,(x) < M for x € Dy, , and there exists
mp € N such that D,,,, C B(m) for any m > my > M.
(C) Other case we obtain that max{B(n),B(m)} D Dy, , D min{B(n), B(m)}.

o0

Note that D= |J Dpy,. Therefore from the result of Theorem 4.1 we obtain the consequence.
nm=1

Note that {7;} is independent of the choice of {Dy,,}- O
We conclude this section with a condition for F(—iU;t,7y) to be weakly Riemann integrable.

Theorem 8.25. Let the associated scalar function G(x) = e~"V™ is Riemann integrable on
any bounded domain in RN. Then the function F(—iU;t,y) = e~  JUMs g weakly Riemann
integrable.

Corollary 8.26. Let U be continuous and real valued function on the complement of N'. Then
the function F(—iU;t,y) = e~ JoUtras weakly Riemann integrable.
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