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On the complexity of the binary expansions of
algebraic numbers

FERZEHZHZR & 7t (Kaneko Hajime)
Department of Mathematics, Kyoto University

1 Known results on the binary expansions of
algebraic numbers

The binary expansions of rational numbers are ultimately periodic. How-
ever, we know only little about the binary expansions of algebraic irrational
numbers. Let ¢ be a positive real number. We write the n-th digit in the
binary expansion of £ as

s(§n)=[£-27"] —2¢-27"7"] € {0,1},

where || denotes the integral part of a real number z. Moreover, let R(¢)
be the largest integer such that S(&; R(£)) # 0. Then the binary expansion
of £ is denoted by

R(¢)

£= ) 2"-s(&n).

n=—oo

It is widely believed that each algebraic irrational number ¢ is normal in base
2 (for instance, see [2]). Namely, let w be any finite word on the alphabet
{0,1} and |w]| its length. Then it is conjectured that w occurs in the binary
expansion of £ with average frequency tending to 2=/, In particular, it is
believed that the word 11 appears in the binary expansion of ¢ with average
frequency tending to 1/4. However, it is still unknown whether 11 appears
infinitely many times in the binary expansions of £ or not. There is no
algebraic irrational number whose normality has been proven.
In this paper we study the complexity of the sequence
(s(&5m)nsd

n=—oo



where £ is an algebraic irrational number. Let N be a positive integer. First
we consider the number 5(§; N) of distinct blocks of N digits in the binary
expansion of . Namely,

B(& N) = Card{s(§1)s(&;i—1)...s(&i— N +1) | i < R(€)},

where Card denotes the cardinality. If £ is a normal number in base 2, then we
have 3(&; N) = 2" for any positive integer N. Let § be a positive number less
than 1/11. Then Bugeaud and Evertse [4] showed for all algebraic irrational
numbers £ that

B N)

lim sup ~ 1)
Neoo N(log N)?

However, it is still unknown whether there exists an algebraic irrational num-
ber ¢ with 3(2;&) = 3.

Next, let w be any finite word on the alphabet {0,1}. For any integer N,
put

f§w;N) =
Card{R(§) — |w|+12>n> =N |s(§n+|w| —1)---s(&n) = w}.

The main purpose of this paper is to estimate lower bounds of f(£,w; N) in
the case of |w| < 2. In this paper, O denotes the Landau symbol and <, >
mean the Vinogradov symbols. Namely f = O(g), f < g and g > f imply
that

Ifl < Cg

for some constant C'. Moreover, [ ~ g means that the ratio of f and g tends
to 1. Suppose again that £ is a positive algebraic irrational number. By the
definition of normal number, £ is normal in base 2 if and only if, for any word
w7

N

as N tends to infinity. Bailey, Borwein, Crandall, and Pomerance [1] gave
lower bounds of f(£,w;N) in the case of w = 1 as follows: Let D(> 2) be
the degree of £&. Then

f(&,1;N) > NYP. (1.1)
Take a positive integer M such that 2™ > £. Then, using (1.1), we get
fE,0;N) = f(2M —£,1; M) + O(1) > NY/P
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for all sufficiently large N. Now we consider the case of |w| = 2. Let y(§, N)
be the number of digit changes in the binary expansions of £, that is,

v(§; N)=Card{n € Z|n > —N,s(&n) # s(&n+ 1)}
Then we havev
(6,015 N) = 21(& N) +O(1) (1.2
and
F(6,10; N) = 54(6 N) +0(1) (13)

Thus, using (1.2), (1.3), and lower bounds by Bugeaud and Evertse [4], we
deduce the following: There exist an effectively computable positive absolute
constant C; and effectively computable positive constant Cy(£) depending
only on £ such that

. (log N)3/2
f(&,0L,N) > Cl(1og(6[)))1/2(loglogN)l/?’ (1.4)
fE10,N) > C (log V)% (1.5)

(log(6D))/2(log log N)'/2

for all N > C5(€), where D is the degree of £. In Section 2 we improve (1.4)
and (1.5) for certain classes of algebraic irrational numbers £&. Moreover, we
give lower bounds of the function

f(&00; N) + f(§, 115 N).

In Sections 3 and 4, we give proofs of the main results.

2 Main results

In this section we give lower bounds of the function f(£,w;N) in the case
of lw| = 2. First, we consider the SSB expansions of real numbers which
was introduced by Dajani, Kraaikamp, and Liardet [5]. They proved the
following: Let & be a real number. Then there exist an integer R and a
sequence (z;)R ___ with z; € {—1,0,1} such that, for any i < R,

i=—00

Tili-1 = 0



and that

R
£= Z 2;2° = TRTR—1...20.Lo1L—g. ... (2.1)

1=—00

We call (2.1) the SSB expansion of £. In a sequence of signed bits, we write
-1 by 1. For instance,

15 = 10001.000. . ..

The SSB expansion of a real number is not always unique. In fact, we have

1 —
5 = 0.(01) = 0.1(01),

where V* denotes the right-infinite word VV'V ... for each nonempty finite
word V. Note that the SSB expansion of a rational number £ is ultimately
periodic. Moreover, let r be the period of the ordinary binary expansion of
§, then r is also the period of £ (see Lemma 2.2 of [6]). Combining (1.2) and
(1.3), we obtain the following:

THEOREM 2.1. Let £ be a positive algebraic irrational number with min-
imal polynomial ApXP + Ap_1XP~1 + ... + Ay € Z[X], where Ap > 0.
Assume that there exists a prime number p which divides all coefficients
Ap,Ap-1,..., Ay, but not the integer 2Ay. Let o be the number of nonzero
digits in the period of the SSB expansion of Ag/p. Let € be an arbitrary
positive number less than 1 and r the minimal positive integer such that p
divides (2" —1). Then there exists an effectively computable positive constant
C3(&,¢) depending only on & and € such that

f(§,01;,N) > 1—¢ ( Ip )1/ N1/D (2.2)
> ) ) — 2 !
and that
’ ’ - 2 ’IAD ’

where N s any integer with N > C3(&, €).

We consider the case where w is 00 or 11. However, it is difficult to
give lower bounds of f(£,00; N) and f(£,11; N). In fact, we can not prove
that the functions f(&,00; N) and f(&,11; N) are unbounded. We give lower
bounds of f(£,00; N) + f(£,11; N) for certain classes of algebraic irrational
numbers £.
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THEOREM 2.2. Let £ be a positive algebraic irrational number with min-
imal polynomial ApXP + Ap_1XP~' + .- + Ay € Z[X], where Ap > 0.
Assume that there erists a prime number p which divides all coefficients
Ap,Ap_1,..., Ay, but not the integer 6Aq. Let ¢’ be the number of nonzero
digits in the period of the SSB expansion of (3P Ag)/p. Let € be an arbitrary
positive number less than 1 and r the minimal positive integer such that p
divides (2" — 1). Then there exists an effectively computable positive constant
Cy(&,€) depending only on & and € such that

_ , \1/D
S+ S M2 55 (ZE) N g
D

for any integer N with N > Cy(&,¢).

Note that the assumptions about £ in Theorem 2.2 is stronger than the
ones in Theorem 2.1. We give numerical examples. We consider the case of
¢ = 1/+/5. The minimal polynomial of £ is

A X?+ A1 X + Ag =5X" - 1.
Thus, £ satisfies the assumptions in Theorems 2.1 and 2.2. We have p = 5
and r = 4. Since the SSB expansion of Ay/p is written as
Ag 1 -
— = —— =0.(0101)*
2= = =0.0l0n),

we get 0 = 2. Let € be an arbitrary positive number less than 1. Then, by
Theorem 2.1, we obtain

1 l—¢
/ (%’Ol’N) Z oA VN,

() = S

for all sufficiently large N. Similarly, using

3PA 9 _ -
¢ = 2 =10.(0101),
D )

we get 0’ = 2. Hence, Theorem 2.2 implies that

1 . L _ 1—¢
f(—\/—g,OO,N) +f(\/5,11,N> > VN

for any sufficiently large N.
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3 Hamming weights of the SSB expansions of
integers

In the previous section we introduced the SSB expansions of real numbers.
Let n be an integer. Then the SSB expansion of n is finite, that is,

N = IRTR-1...To.0%, (3.1)
where xr # 0 if n # 0. For simplicity, we denote the SSB expansion (3.1) by
nN=TRTYR—1...-Xp-

Reitwiesner [7] proved that the representation (3.1) is unique. Let us define
the Hamming weight of the SSB expansion of n by

v(n) = le‘i!-
i=0

In this section we introduce lemmas about the Hamming weights of integers in
[6]. It is known for each integer n that v(n) is the minimal Hamming weight
among the signed binary expansions of n (for instance, see [3]). Namely,
assume that

M
n = E 0,7;2@,
1=0

where M and ag,as,...,ay are integers. Then

M
v(n) <) lail.
=0

In particular, since

n=1+---+lorn=-1—-.--—-1
N — |
we get
v(n) < |n|. (3.2)

The function v satisfies the convexity relations which are analogues of The-
orem 4.2 in [1].
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LEMMA 3.1. Let m and n be integers. Then we have
vim+n) < y(m)+v(n)
and

v(mn) < v(m)v(n).

Combining (3.2) and Lemma 3.1, we obtain
lv(m + n) — v(m)| < nl. (3.3)

Finally, we introduce lower bounds of Hamming weight denoted in Remark
3.1 in [6]

LEMMA 3.2. Let b be an integer and p a prime number. Assume that p
does not divide 2b. Let r be the minimal positive integer such that p divides
(2" — 1). Moreover, let o be the nonzero digits in the period of the SSB
expansion of b/p. Then we have

u({—f—%NJ) >IN_2,—2.
p T

4 Proof of Theorem 2.2

We use the same notation as in Section 1. Put

F(&N) = f(£00;N)+ f(£,11; N)
= Card{R(§)—12n>~N|s(En+1)=s(En)}.

We give lower bounds of F(¢; N) by the Hamming weight of the SSB expan-
sions of integers.

LEMMA 4.1. Let h be a positive integer and N a nonnegative integer. Then

v(|3"*2N¢eM]) < (6F(&; N) +2)" + 6" max{1,£"}.
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Proof. We show for any nonnegative integer N that
v(3[27¢]) <6/(&N) +2. (4.1)

We write the fractional part of a real number z by {z}. Let v be a word of
length L on the alphabet {0,1}. For nonnegative real number z, put

v =v... 00,

|z}
where v’ is the prefix of v with length | L{z}|. For instance, if v = 101, then
v? = 101101, v*? = 10110110.
The ordinary binary expansion of [£2V] is written as
€27 ] = vl ot (4.2

or

€27 | = P w o wd? .. ) el o ) (4.3)
where v; € {01,10},w; € {0,1}, and 2z;,y; € Z for each 7. Note that

F(§§N) :Zyi-

12>1

First we assume that |£2V] is written as (4.2). Then, for any ¢, the ordinary
binary expansion of 3v{* is denoted as

vj*=11...1or 11...10,
and so,
v(3v;t) < 2.
Thus, using Lemma 3.1 and

v(3w!) < v(3)v(wi*) < 4,

we obtain
} -1
v(3lE2V]) < D v+ ) v(3uw!)
=1 =1
< 2A+4(1—-1)=6(1-1)+2



114

Next, we consider the case where [£2" | is written as (4.3). By Lemma 3.1

l l

v3le2N]) < ) w3+ ) v(3ul)

i=1 i=1
l
< 61<6) yi=6F(&N).
1=1

Therefore, we proved (4.1).
Recall that the ordinary binary expansion of £ is

o

€= ) s(em2"
Put
o0 -N-1
&= Y s(En)2, &= ) s(&n)2"
n=—N n=-—00

Then we have

g2t = 3h2V(6 + &)
h
h —iet
- 3"2NE{‘+3"2N;(Z.)E{‘ 3
and so

h
132V — [3"2Vel]| < 1+ [3’*2%? 32y (1) fs{‘-%;J .

=1

Hence, using (3.3) and Lemma 3.1, we obtain

v (L3h2N€hJ)
h
<wv([3"2Vg]) +1+ [3"2%{‘ +3"2V ) (’2’) d“’f%J

i=1

h
<v([3"2V¢r])+143") (}f) max{1, "}
i=0 N
<v(|3"2"¢]) +1 + 6" max{1,¢"}. (4.4)
Note that
v(3"2Mel) <w(3-2V6)h = v(3[2V¢))"
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Write the SSB expansion of 372*V¢h by
t .
3PN = " gy2"

i=0

Then we have

Z 03] < w(3[2V¢))". (4.5)

Let

(h—1)N-1

Z Uz2z (h—- l)N . Z O.Qz (h-1)N

t=(h—1)N
Since 6, € Z, |05] < 1, and since

01 + 6, = 3"2V¢],

we get
|13"2V¢r] - 6:] <1
By (4.5)
v([3"2Ner) < wv(d) +1
= 1+ Et: loal <1+ v(3]2Ve)m (4.6)
i=(h—1)N

Consequently, combining (4.1), (4.4), and (4.6), we conclude that

v (132N ) v ([3"27V¢r|) + 1 + 6" max{1,£"}
v(3|12VE)" + 2 + 6" max{1,£"}

(6£(€; N) + 2)" + 6" max{1, £"}.

IANIN A

We now prove Theorem 2.2. By

D
Z Ahgh = 07
h=0
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we get

D D-h
_3 A02N Z 3 Ah3h2N€
P he1 P

Lemma 3.2 implies that

oD /
u(l—s AOz”J) >IN -2 -2
p r

Using (3.3)and Lemmas 3.1, 4.1, we obtain

IR ()

D op-h D—h
SV(Z————3 pA" |3h2Neh >+Z3 |4

h=1
D 3D-—h‘Ahl

h=1

<) -?ff—_%fl—"—' (1+(6f(&N) +2)" + 6" max{1,£"}) .

(1 +v([3"2Ve)))

Therefore, there exists a polynomial P(X) € R[X] with leading term

6D7‘AD
o'p

XD
such that, for any nonnegative integer /V,
N < P(F(g; N)).
Consequently, for any positive real number € less than 1, there exists a posi-

tive computable constant Cy(&,¢) depending only on € and ¢ such that, for
each integer N with N > C4(§,¢),

1—6 Ulp l/D l/D
. > - .
Flem 2 5= (ZE) N

Finally, we showed Theorem 2.2.
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