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Examples of Topological lnvariants

You all know Euler’s formula relating the number of faces, edges and

vertices of a polyhedron:

$n_{f}-n_{e}+n_{\psi}=2$

The number 2 is actually a topological invariant of the 2-sphere $S^{2}$ .

It is called the Euler characteristic $\chi(S^{2})$ .

A polyhedron represents a decomposition of $S^{2}$ into cells. A space

composed of such cells is called a cell complex $\chi$ does not depend on the
decomposition that is chosen.
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Homology of Finite Celi Complexes

Given a celi complex, we can consider formal linear combinations of k-cells,

forming so-called chain groups $C_{k}$ under addition. In the polyhedron case,

we have $C_{2}=\mathbb{Z}^{\cap r},$ $C_{1}=\mathbb{Z}^{n_{\epsilon}},$ $C_{0}=\mathbb{Z}^{n_{v}}$ .
There are natural boundary maps $\partial_{k}:C_{k}arrow C_{k-1}$ . The boundary of a
k-cell is the sum of the cells in its boundary. This gives a sequence of

groups and maps
$0arrow\ C_{2}arrow\partial_{2}C_{1}arrow\partial_{1}C_{0}arrow 0\partial_{0}$

The quotients $H_{k}=ker(\partial_{k})/im(\partial_{k+1})$ are called homology groups, and are
topological invariants of the cell complex. Their ranks $b_{k}=rk(H_{k})$ are
called Betty numbers, and $\chi=\sum_{k}(-1)^{k}b_{k}$ .

Cohomology of Finite Cell Complexes

For finite cell complexes, cohomology is almost the same as homology.

We consider formal linear combinations of k-cells, forming this time

so-called co-chain groups $C^{k}$ under addition. In the polyhedron case, we
again have $C^{2}=\mathbb{Z}^{nr_{\dagger}}C^{1}=\mathbb{Z}^{n_{\epsilon}},$ $C^{0}=\mathbb{Z}^{n_{v}}$ .
The natural maps between co-chain groups are the co-boundary maps
$\delta_{k}:C^{k-1}arrow C^{k}$ . $\delta_{k}$ is simply the transpose of $\partial_{k}$ .
We now have a sequence of groups and maps

$0arrow\delta_{3}C_{2}arrow\delta_{2}C_{1}arrow\delta_{1}C_{0}arrow\delta_{0}0$

The quotients $H^{k}=ker(\delta_{k+1})/im(\delta_{k})$ are called co-homology groups, and

are topological invariants of the cell complex.
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Klein’s Bottle and Torsion

For this cell complex, we have $\partial_{2}c=2e_{1}$ ,

and $\partial_{1}\equiv 0$ . Thus, we get

$H_{1}=ker(\partial_{1})/$im$(\partial_{2})=\mathbb{Z}^{2}/2\mathbb{Z}$

$=\mathbb{Z}\oplus(Z/2\mathbb{Z})=\mathbb{Z}\oplus \mathbb{Z}_{2}$

$H_{1}$ contains torsion elements-elements of finite order.

In cohomology, the torsion appears in a different dimension:

$H^{2}=\mathbb{Z}_{2}$ , $H^{1}=H^{0}=\mathbb{Z}$

Properties of Tilings

$\succ$ finite number of local patterns

(finite locai complexity)

$\succ$ repetitivity

$\nu$ well-defined patch frequencies

$\nu$ translation module

$\nu$ local isomorphism

(Ll classes)

$\sim$ mutual local derivability
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The $Hull$ of a Tiling

Let $\mathcal{T}$ be a tiling of $\mathbb{R}^{d}$ , of finite local complexity.

We introduce a metric on the set of translates of $\mathcal{T}$ :

Two tilings have distance $<\epsilon$ , if they agree in a ball of radius $1/\epsilon$ around

the origin, $\cup p$ to a translation $<\epsilon$ .

The hull $\Omega_{\mathcal{T}}$ is then the closure of $\{\mathcal{T}-x|x\in \mathbb{R}^{d}\}$ .
$\Omega_{\mathcal{T}}$ is a compact metric space, on which $\mathbb{R}^{d}$ acts by transiation.

lf $\mathcal{T}$ is repetitive, every orbit is dense in $\Omega_{\mathcal{T}}$ .
$\Omega_{\mathcal{T}}$ then consists of the Ll class of $\mathcal{T}$ .

Approximating the Huli by Cell Complexes

We define a sequence of cellular (CW-)spaces $\Omega_{n}$ approximating $\Omega$ .
The d-cells of $\Omega_{0}$ are the interiors of the tiles; two tile boundaries are
identified if they are shared somewhere in the tiling.
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The Cells of the Octagonal Tiling

Approximating the $Hull$ by Cell Complexes

We define a sequence of cellular (CW-)spaces $\Omega_{n}$ approximating $\Omega$ .
The d-cells of $\Omega_{0}$ are the interiors of the tiles; two tile boundaries are
identified if they are shared somewhere in the tiling.

For $\Omega_{n}$ we proceed as for $\Omega_{0}|$ except that we first label the tiles according

to their $n^{th}$ corona (collared tiles).

There are natural $\dagger$ continuous cellular mappings $h:\Omega_{n}arrow\Omega_{n-1}$ , and
induced homomorphisms $h_{*}:H^{*}(\Omega_{n-1})arrow H^{*}(\Omega_{n})$ .
$\Omega$ then is the inverse limit $arrow|im\Omega_{n}$ , consisting of all sequences $\{x_{k}\}_{k=0}^{\infty}$ ,

with $\chi_{k}\in\Omega_{k}$ and $h(xk)=x_{k-1}$ .
The cohomology of $\Omega$ is the direct limit $H^{*}(\Omega)\cong|iarrow mH^{*}(\Omega_{n})$
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Cohomology of Substitution Tilings

The appromimants $\Omega_{n}$ of the hull were introduced by Anderson and

Putnam (AP), Ergod. Th. &Dynam. Sys. 18, 509 (1998).

They used a single CW-space $\Omega’$ and the mapping $\Omega’arrow\Omega’$ induced by

substitution, and take the inverse limit of the iterated mapping. This is
equivalent to iterated refinements according to the $n^{th}$ corona, for some $n$ .

This inverse limit using a single $\Omega_{n}$ is easier to controi, but is limited to

substitution tilings.

Using a sequence of $\Omega_{n}$ is more general, but the limit is hard to control.
However, the approach may be of conceptual interest.

Quasiperiodic Projection Tilings

lrrational sections through a
periodic klotz tiling.

We assume polyhedral
acceptance domains with
rationally oriented faces.

Such tilings are called canonical projection tilings.

Forrest-Hunton-Kellendonk computed their cohomology for low

co-dimensions in terms of acceptance domains.

Here, we shall use a different approach.
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Kalugin’s Approach

lrrational sections through a
periodic klotz tiling.

Disregarding singular cut
positions, points in unit cell
parametrize tilings.

For proper parametrisation, torus has to be cut up.

This is done is steps $arrow$ inverse limit construction!
Cohomology of n-torus cut up along set $A_{r}$ satisfies

$arrow H^{k}(\Omega_{r})arrow kl_{n-k-1}(A_{r})arrow ti_{n-k-1}(T^{n})arrow H^{k+1}(\Omega_{r})arrow$

P. Kalugin, J. Phys. $A$ : Math. Gen. 38, 3115 (2005).

Simplifying the Set of Cuts

$H_{*}(A_{r})$ and thus $H^{*}(\Omega_{r})$ depends only on homotopy type of $A_{r}$ .

We assume polyhedral acceptance domains with rationally oriented faces

$arrow$ with increasing $r$ , pieces of $A_{r}$ grow together.

For $r$ sufficiently large, $A_{r}$ is a union of thickened affine tori.

Homotopy type of $A_{r}$ stabilizes at finite $r_{0}!$

Often, we can replace $A_{r}$ by equivalent arrangement $\tilde{A}$ of thin tori,

For computing $H_{*}(\tilde{A})$ : replace $\tilde{A}$ by its simplicial resolution, $A$ .

For icosahedral tilings, $\tilde{A}$ consists of 4-tori, intersecting in 2-tori and 0-tori.

For codimension-2 tilings, there are only 2-tori and 0-tori.
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Kalugins Exact Sequences $-2D$ Case

Kalugin‘s long exact sequence can be split; for tilings of dimension 2 and

co-dimension 2, it reads:

$0arrow S_{k}arrow H^{k}(\Omega)_{\sim}arrow H_{4-k-1}(A)arrow\alpha^{k+1}H_{4-k-1}(T^{6})arrow S_{k+1}arrow 0$

$0$ $arrow$ $H_{4}(T^{4})$ $arrow$ $H^{0}(\Omega)$ $arrow$ $0$ $arrow$ $H_{3}(T^{4})$ $arrow$ $S_{1}$ $arrow$ $0$

$0$ $arrow$ $H_{3}(T^{4})$ $arrow$ $H^{1}(\Omega)$ $arrow$ $H_{2}(A)$ $arrow$ $H_{2}(T^{4})$ $arrow$ $S_{2}$ $arrow$ $0$

$0$ $arrow$ & $arrow$ $H^{2}(\Omega)$ $arrow$ $H_{1}(A)$ $arrow$ $\mu_{1}(T^{4})$ $arrow$ $0$

$0$ $arrow$ $0$ $arrow$ $0$ $arrow$ $H_{0}(A)$ $arrow$ $\mu_{0}(T^{4})$ $arrow$ $0$

We need to determine $H_{*}(T^{4}),$ $H_{*}(A),$ $S_{k}=$ coker $\alpha^{k}$ , and derive $H^{*}(\Omega)$ from that.

Mayer-Vietoris Spectral Sequence

First page $\Xi_{k_{1}\ell}^{1}$ of Mayer-Vietoris double complex for $H_{*}(A)$ :

$\oplus_{\theta\in l_{1}}\bigwedge_{2}\ulcorner^{\theta}$

$\oplus_{\theta\in l_{1}}\bigwedge_{1}\ulcorner^{\theta}$

$Z^{t_{1}}\oplus Z^{L_{0}}$ $\oplus_{\theta\in l_{1}}\mathbb{Z}^{t_{0}}$

As $A$ is connected, the only differential left has rank $L_{1}+L_{0}-1$ , so that we get:

$H_{0}(A)=Z$

$H_{1}(A)= \oplus_{\theta\in l_{1}}\bigwedge_{1}\ulcorner^{\theta}\oplus Z’$

$H_{2}(A)= \oplus_{\theta\in l_{1}}\bigwedge_{2}\ulcorner^{\theta}$

where $;= \sum_{\theta\in l_{1}}L_{0}^{\theta}-L_{1}-L_{0}+1$ .
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Cohomology of the $Hull$

Kalugins exact sequences can now be solved:

$H^{0}(\Omega)=Z$

$H^{1}(\Omega)=$ A3 $\ulcorner\oplus ker\alpha^{2}$

$H^{2}( \Omega)=\bigwedge_{2}\ulcorner/\langle\bigwedge_{2}\ulcorner^{\theta}\rangle_{\theta\in l_{1}}\oplus ker\alpha^{3}$

The $ker\alpha^{k}$ are free groups
$\dagger$ whose ranks are computable.

Torsion can only occur in coker $\alpha^{2}=\bigwedge_{2}\ulcorner/\langle\bigwedge_{2}\ulcorner^{\theta}\rangle_{\theta\in l_{1}}$ .

Geometrically, $ker\alpha^{k}$ consists of closed k-chains which are non-trivial in
$H_{k}(A)$ , but are exact in the full torus. Thus, they are boundaries of
$(k+1)$-chains of $\mathbb{T}^{4}$ .

Examples

Cohomology of some $2D$ tilings from the literature:
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The $3D$ Case

Similar to the $2D$ case, except that Kalugin’s exact sequences are much

more difficult to solve.

In particular, this is so for the torsion part. Only some examples could be

solved; for the general case, some extra ideas are required.

$0arrow S_{k}arrow H^{k}(\Omega)arrow H_{6-k-1}(A)arrow\alpha^{k+1}H_{6-k-1}(T^{6})arrow S_{k+1}arrow 0$

In all icosahedral examples, we have torsion in $H_{2}(A)$ , and may have torsion

in $S_{3}$ . This leads to group extension problems.

F. Gahler, J. Hunton, J. Kellendonk, Z. Kristallogr. 223, 801-804 (2009).

lcosahed ral Exa $m$ ples

Cohomology of some icosahedral tilings from the literature:

$ki^{3}$ $h!^{2}$ $H^{1}$ $\mu$
$\chi$planes$\ulcorner$

$Z^{20}\oplus \mathbb{Z}_{2}$ $\mathbb{Z}^{16}$ $\mathbb{Z}^{7}$
$\mathbb{Z}$ $10$5-fold$F$Danzer

$Z^{181}\oplus \mathbb{Z}_{2}$ $z^{72}\oplus z_{2}$ $z^{12}$ $\mathbb{Z}$ $120$mirror$P$Ammann-Kramer
$\mathbb{Z}^{331}\oplus Z_{2}^{20}\oplus Z_{4}$ $Z^{102}\oplus Z_{2}^{4}\oplus Z_{4}$

$\mathbb{Z}^{12}$ $\mathbb{Z}$ $240$mirror$F$dual can. $D_{6}$

$Z^{205}\oplus \mathbb{Z}_{2}^{2}$ $z^{72}$ $\mathbb{Z}^{7}$ $Z$ $145$3,5-fold$F$canonical $D_{6}$

Even the simplest of all icosahedral tilings have torsion!

Formulae have to be evaluated by computer (GAP programs). Combinatorics of
intersection tori are determined with (descendants of) programs from the GAP
package Cryst (B. Eick, F. Gahler, W. Nickel, Acta Cryst. A53, 467-474 (1997)).
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Mutual Local Derivability

One tiling must be locally

constructible from the other, and

vice versa.

Tilings must have same
translation module.

Acceptance domains of one tiling

must be constructible by finite

unions and intersections of

acceptance domains of the other.

MLD induces a bijection between Ll classes.

MLD Classification

Both cohomology and MLD class are determined by the arrangement of singular
spaces $A$ , and how the lattice $\ulcorner$ acts on it.

To fix an MLD class, we fix a space group and orbit representatives of the singular
spaces.

To make MLD classification finite, we consider

$\nu$ singular spaces in special orientations

$\rangle$ restricted number of orbits

$b$ some non-genericity condition, like

$\nu$ closeness condition
$\rangle$ existence of non-generic intersections
$b$ singular spaces pass through special points
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MLD Relationships

We fix a space group, and compare different singular sets $A$ , generated from
$l$ ‘interesting“ orbit representatives. Different singular sets may define the same
MLD class!

Singular sets may be related by translation, or by inflation. These are local

transformations, and so they define same MLD class.

There are also non-local transformations normalizing the space group, like the
$*$-map. This leads to an MD relationship, but not to MLD!

The full translation symmetry $\ulcorner\sim$ of the singular set may be larger than the

translation symmtery $\ulcorner$ of the tiling.

MLD relationship may be symmetry-preserving (S-MLD) or not. MLD by

translation is symmetry-preserving only of translation normalizes the space group.

Cohomology of Octagonal MLD CIasses

1 $)$ MLD class splits in two S-MLD classes 2 $)$ nequivalent, different combinatorics
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Cohomology of Decagonal MLD Classes

1 $)$ swapped by $*$-map, which exchanges physical and internal space (non-local equivalence)

Cohomology of Dodecagonal MLD CIasses

$ti^{2}$ $\mu^{1}$
$’\sqrt{}$

$\chi$lines$|\ulcorner/\ulcorner|\sim$multccgenremarks
$z^{28}$ $z^{7}$ $z$ $22$ $6A$ $1$ $1$ $x$

$x$Socolar tiling
$z^{33}$ $z^{7}$ $z$ $27$ $6A$ $1$ $1$ $x$

$z^{42}$ $z^{7}$ $z$ $36$ $6A$ $1$ $2 ( \inf)$ $x$

$z^{100}$ $z^{13}$ $z$ $88$ $6A+6A$ $4$ $1$ $x$

$1 )$$Z^{112}$ $z^{13}$ $z$ $100$ $6A+6A$ $1$ $2 ( \inf)$ $x$

$2 )$$z^{120}$ $z^{13}$ $z$ $108$ $6A+6A$ $4$ $1$ $x$

$z^{129}$ $z^{13}$ $z$ $117$ $6A+6A$ $1$ $2 ( \inf)$ $x$

$z^{112}$ $z^{1}$ $z$ $100$ $12A$ $1$ $2 ( \inf)$

$x$

$1 )$

$Z^{120}$ $z^{13}$ $Z$ $108$ $12A$ $1$ $2 ( \inf)$ $2 )$

$Z^{144}$ $z^{13}$ $z$ $132$ $12A$ $1$ $6 ( \inf)$

$Z^{156}$ $z^{13}$ $Z$ $144$ $12A$ $1$ $\infty$

$Z^{9}$ $z^{12}$ $z$ $48$ $6A+6B$ $1$ $1$ $x$decorated Socolar tiling
$z^{68}$ $z^{12}$ $z$ $57$ $6A+6B$ $1$ $1$ $x$

$z^{69}$ $z^{12}$ $z$ $58$ $6A+6B$ $1$ $2 ( \inf)$ $x$

$Z^{87}$ $z^{12}$ $z$ $76$ $6A+6B$ $1$ $4 ( \inf)$ $x$

$Z^{92}$ $z^{12}$ $z$ $81$ $6A+6B$ $1$ $4 ( \inf)$ $x$

$Z^{95}$ $z^{12}$ $z$ $84$ $6A+6B$ $1$ $4 ( \inf)$ $x$

1 $)$ not equivalent 2) not equivalent
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