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1. ¢

Chain recurrent points have been introduce by C. Conley [7]. They
play an important role in the theory of attractors and in several other
aspects of topological dynamics of a continuous map f on a compact
metric space X. The key theorem here is Conley’s Decomposition
Theorem which says that the space X decomposes into the chain re-
current set CR(f) (see §2 for definition) and the rest, where the ac-
tion is gradient-like (see [7] for definition). Note that the chain recur-
rent set contains all nonwandering points in that including the “gen-
uine”recurrent points x (i.e., such that x belongs to the closure of its
forward orbit), minimal subsets and periodic orbits.

Another motivation for studying chain recurrent sets in this par-
ticular context (of n-dimensional locally (n — 1)-connected spaces) is
provided by two other results: The first one is Pugh’s Closing Lemma,
which allows to replace chain recurrent points by periodic ones (by
slightly perturbing the map):

Theorem ([13] for manifolds). Let (X, d) be an n-dimensional locally
(n — 1)-connected compact metric space, where n > 0 (for n =0, skip
the local connectedness assumption), and f : X — X be a map. If
x € CR(f), then for every ¢ > 0, there exists a map g : X — X such
that the uniform distance d(f,g) < ¢ and x is a periodic point of g.

Sketch of proof. We give here an outline in the case when X is n-
dimensional locally (n — 1)-connected, n € N. Let x € CR(f), and
any € > 0 is given. We may assume x & Per(f).

Since X is locally (n — 1)-connected, we have a & such that 0 < £ <
£/2 and
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(1) for every map ¢ : A — X from a closed set A of a compact
metric space Z with dim Z < n and diam[Im ¢] < &, there exists
an extension ¢ : Z — X of ¢ satisfying diam[Im @] < ¢/2.

Using uniform continuity of f, we also take a § > 0 such that

(2) if A C X with diam[A] < 4, then diam[f(A)] < /2.

Then take a £/2-chain {xo = z,z1,...,2x = x} of least possible
length k; hence, k > 1 and z; # z; for 0 <¢ < j <k —1. We have an
open neighborhood U; of z; in X, 0 < ¢ < k—1, such that diam[C1U;] <
dfor0<i<k—-1,and ClU;NCLU; =P for 0 < i< j <k —1. For
each i € {0,...,k — 1}, we define the map ¢; : BdU; U {z;} — X by
@; = f on BdU; and ¢;(z;) = zi41. Since diam[Im ;] < € by (2), we
have an extension ; : C1U; — X of ¢; with diam[Im ;] < /2 by (1).

Now we define themap g : X — X by g = f on X \ Uf;ol U; and
g=¢;on ClU; for 0 <i < j <k —1. Then it is easy to see that
d(f,g) < € and = € Per(g). O

The second is the result by Block and Franke [4, Theorem H], which
characterizes the case where all chain recurrent points are nonwander-
ing, in terms of stability of the nonwandering set under perturbations:

Theorem ([4] for manifolds). Let (X,d) be an n-dimensional locally
(n — 1)-connected compact metric space, where n > 0 (for n = 0, skip
the local connectedness assumption), and f : X — X be a map. Then
Q(f) = CR(f) if and only if f does not permit Q-explosions; that is,
for every ¢ > 0 there erists a 6 > 0 such that if g : X — X with
d(f,g) < 0, then each point of Q(g) belongs to the e-neighborhood of
Q(f), where Q(h) means the nonwandering set of a map h.

It is hence quite important to know how large the set CR(f) is. In
many systems the chain recurrent set indeed turns out to be small, for
example, Franzova [9] proved that if X denotes the interval then for
a generic (in the uniform metric) continuous maps the chain recurrent
set has Lebesgue measure zero.

2. BENREA DB

We now give the terminology and notation needed in what follows.
A map on X is a continuous function f : X — X from a space X to
itself: fO is the identity map, and for every n > 0, f**! = f" o f. The
dimension dim X of a space X means the covering dimension (see [8]
and [12]). By a graph, we mean a connected one-dimensional compact
polyhedron. We let f : X — X be a map from a compact metric
space (X, d) to itself. Let x, y € X. An e-chain from z to y is a finite
sequence of points {xg, r1,...,x,} of X such that xy =z, z,, = y and
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dA(f(xi—1),z) <efori=1,...,n. We say x can be chained to y if for
every € > 0 there exists an e-chain from x to y, and we say x is chain
recurrent if it can be chained to itself. The set of all chain recurrent
points is called the chain recurrent set of f and denoted by CR(f). The
chain recurrent set is non-empty, closed in X and f-strongly invariant,
and the set depends only on the topology. A point x € X is said to be
wandering if for some neighborhood V of z, f(V)NV = @ for all n > 0.
The set of points which are not wandering is called the nonwandering
set and denoted by Q(f).

We state fundamental facts from geometric topology. A space X
is said to be locally (n — 1)-connected if for every z € X and every
neighborhood U of x in X, there exists a neighborhood V' C U of x in
X such that every map f: S*¥ — V extends to a map f: B¥! — U
for every 0 < k < n — 1, where S* and B**! stand for the unit k-
dimensional sphere and the unit (k+ 1)-dimensional ball of the (k+1)-
dimensional Euclidean space, respectively.

Here is our main result.

Theorem 2.1 ([15]). Let (X,d) be an n-dimensional locally (n — 1)-
connected compact metric space, where n > 0 (forn = 0 we simply skip
the local connectedness assumption), and i be a finite Borel measure
on X without atoms at the isolated points of X. Then the set of maps
on X with the chain recurrent set of p-measure zero is residual in the
space of all maps on X.

Remark 1. (1) The interval case modulo Lebesgue measure of the
theorem above was proved by Franzové [9].

(2) Analogous results to Theorem 2.1, Corollary 2.2 and Theo-
rem 3.1 (below) hold for the nonwandering set of a map.

(3) The main theorem is false if 4 has an atom at the isolated points
of X.

(4) 1t is well known that any f-invariant finite measure p is sup-
ported by the set of recurrent points ([14]). In particular
#(CR(f)) > 0. This implies that with all the assumptions of
Theorem 2.1, a generic map f does not preserve a given finite
measure (.

We note that a manifold and a polyhedron are locally contractible.
The n-dimensional universal Menger compactum M2t is obtained by
a process of successively deleting cubes from the (2n + 1)-cube (see [8,
p. 96], [2], [11]). When n = 0, we obtain the Cantor set, and when
n = 1, the Menger curve (which is referred to as the Menger sponge
in the fractal literature). A compact n-dimensional Menger manifold
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is a compact metric space locally homeomorphic to the n-dimensional
universal Menger compactum M2t A topological characterization
of a compact n-dimensional Menger manifold obtained by Bestvina
[2] (cf. Anderson [1] for n = 1) is: a compact metric space X is
an n-dimensional Menger manifold if and only if it is n-dimensional,
locally (n — 1)-connected, and satisfies the disjoint n-cells property.
Kato, Kawamura, Tuncali and Tymchatyn [11] studied measure theo-
retic properties of the dynamics of Menger manifolds.

Corollary 2.2 ([15]). Let X be a compact and n-dimensional either
manifold, Menger manifold or polyhedron with no isolated points, where
n € N, and p be a finite Borel measure on X. Then the set of maps
on X with the chain recurrent set of u-measure zero is residual in the
space of all maps on X.

3. BB GBS

We give an application of the main theorem to dynamical systems
of graph maps.

Theorem 3.1 ([15]). Let G be a graph. Then the set of maps on G
with the chain recurrent set being totally disconnected is residual in the
space of all maps on G.

Motivated by the result above, we discuss the relation between the
chain recurrent set and its connectivity. We need some definitions. A
map [ : X — X is said to be chain transitive if for every z,y € X, z
can be chained to y.

The next is a slight extension of Theorem 2.8 in [6] to the case of
the chain recurrent sets of arbitrary surjective maps.

Proposition 3.2 ([15]). Let f : X — X be a surjective map on a
compact metric space (X,d). If the restriction f|cr(y : CR(f) —
CR(f) is chain transitive, then CR(f) = X.

Proposition 3.3 ([15]). Let f : X — X be a surjective map on a
compact metric space (X, d). If the chain recurrent set CR(f) of f is
connected, then CR(f) = X.

Remark 2. If f : X — X is surjective and CR(f) # X, then CR(Jf)
must be disconnected by Proposition 3.3. Using a similar argument to
that in the proof (without measurable argument) of Theorem 2.1, the
property CR(f) # X is generic if X is an n-dimensional locally (n—1)-
connected compact metric space, where n > 0 (for n = 0, skip the local
connected condition, but on further condition “with an accumulation
point”).
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Question. Is a totally disconnected property of the chain recurrent set
generic?
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