<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>測度の鎖回帰集合をもつ写像の通用性について 一般位相幾何学及び幾何学的トポロジーの最近の話題とその応用</td>
</tr>
<tr>
<td>作者</td>
<td>YOKOI, KATSUYA</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 2011年 1728号 79-83</td>
</tr>
<tr>
<td>発行日</td>
<td>2011-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/170526</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
Chain recurrent points have been introduce by C. Conley [7]. They play an important role in the theory of attractors and in several other aspects of topological dynamics of a continuous map f on a compact metric space X. The key theorem here is Conley's Decomposition Theorem which says that the space X decomposes into the chain recurrent set $\text{CR}(f)$ (see §2 for definition) and the rest, where the action is gradient-like (see [7] for definition). Note that the chain recurrent set contains all nonwandering points in that including the “genuine” recurrent points x (i.e., such that x belongs to the closure of its forward orbit), minimal subsets and periodic orbits.

Another motivation for studying chain recurrent sets in this particular context (of n-dimensional locally $(n-1)$-connected spaces) is provided by two other results: The first one is Pugh’s Closing Lemma, which allows to replace chain recurrent points by periodic ones (by slightly perturbing the map):

Theorem ([13] for manifolds). Let (X, d) be an n-dimensional locally $(n-1)$-connected compact metric space, where $n \geq 0$ (for $n = 0$, skip the local connectedness assumption), and $f : X \rightarrow X$ be a map. If $x \in \text{CR}(f)$, then for every $\varepsilon > 0$, there exists a map $g : X \rightarrow X$ such that the uniform distance $d(f, g) < \varepsilon$ and x is a periodic point of g.

Sketch of proof. We give here an outline in the case when X is n-dimensional locally $(n-1)$-connected, $n \in \mathbb{N}$. Let $x \in \text{CR}(f)$, and any $\varepsilon > 0$ is given. We may assume $x \not\in \text{Per}(f)$.

Since X is locally $(n-1)$-connected, we have a ξ such that $0 < \xi < \varepsilon/2$ and

The author was partially supported by the Grant-in-Aid for Scientific Research (C) (No. 22540098), JSPS and the Jikei University Research Fund.
(1) for every map \(\varphi : A \to X \) from a closed set \(A \) of a compact metric space \(Z \) with \(\dim Z \leq n \) and \(\text{diam} [\text{Im} \varphi] < \xi \), there exists an extension \(\tilde{\varphi} : Z \to X \) of \(\varphi \) satisfying \(\text{diam} [\text{Im} \tilde{\varphi}] < \varepsilon/2 \).

Using uniform continuity of \(f \), we also take a \(\delta > 0 \) such that

(2) if \(A \subseteq X \) with \(\text{diam} [A] < \delta \), then \(\text{diam} [f(A)] < \xi/2 \).

Then take a \(\xi/2 \)-chain \(\{x_0 = x, x_1, \ldots, x_k = x\} \) of least possible length \(k \); hence, \(k \geq 1 \) and \(x_i \neq x_j \) for \(0 \leq i < j \leq k - 1 \). We have an open neighborhood \(U_i \) of \(x_i \) in \(X \), \(0 \leq i \leq k - 1 \), such that \(\text{diam} [\text{Cl} U_i] < \delta \) for \(0 \leq i \leq k - 1 \), and \(\text{Cl} U_i \cap \text{Cl} U_j = \emptyset \) for \(0 \leq i < j \leq k - 1 \). For each \(i \in \{0, \ldots, k - 1\} \), we define the map \(\varphi_i : \text{Bd} U_i \cup \{x_i\} \to X \) by \(\varphi_i = f \) on \(\text{Bd} U_i \) and \(\varphi_i(x_i) = x_{i+1} \). Since \(\text{diam} [\text{Im} \varphi_i] < \xi \) by (2), we have an extension \(\tilde{\varphi}_i : \text{Cl} U_i \to X \) of \(\varphi_i \) with \(\text{diam} [\text{Im} \tilde{\varphi}_i] < \varepsilon/2 \) by (1).

Now we define the map \(g : X \to X \) by \(g = f \) on \(X \setminus \cup_{i=0}^{k-1} U_i \) and \(g = \tilde{\varphi}_i \) on \(\text{Cl} U_i \) for \(0 \leq i < j \leq k - 1 \). Then it is easy to see that \(d(f, g) < \varepsilon \) and \(x \in \text{Per}(g) \).

The second is the result by Block and Franke [4, Theorem H], which characterizes the case where all chain recurrent points are nonwandering, in terms of stability of the nonwandering set under perturbations:

Theorem ([4] for manifolds). Let \((X,d) \) be an \(n \)-dimensional locally \((n-1)\)-connected compact metric space, where \(n \geq 0 \) (for \(n = 0 \), skip the local connectedness assumption), and \(f : X \to X \) be a map. Then \(\Omega(f) = \text{CR}(f) \) if and only if \(f \) does not permit \(\Omega \)-explosions; that is, for every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that if \(g : X \to X \) with \(d(f, g) < \delta \), then each point of \(\Omega(g) \) belongs to the \(\varepsilon \)-neighborhood of \(\Omega(f) \), where \(\Omega(h) \) means the nonwandering set of a map \(h \).

It is hence quite important to know how large the set \(\text{CR}(f) \) is. In many systems the chain recurrent set indeed turns out to be small, for example, Franzová [9] proved that if \(X \) denotes the interval then for a generic (in the uniform metric) continuous maps the chain recurrent set has Lebesgue measure zero.

2. 鎖回帰集合の測度零性

We now give the terminology and notation needed in what follows. A map on \(X \) is a continuous function \(f : X \to X \) from a space \(X \) to itself; \(f^0 \) is the identity map, and for every \(n \geq 0 \), \(f^{n+1} = f^n \circ f \). The dimension \(\text{dim} X \) of a space \(X \) means the covering dimension (see [8] and [12]). By a graph, we mean a connected one-dimensional compact polyhedron. We let \(f : X \to X \) be a map from a compact metric space \((X,d)\) to itself. Let \(x, y \in X \). An \(\varepsilon \)-chain from \(x \) to \(y \) is a finite sequence of points \(\{x_0, x_1, \ldots, x_n\} \) of \(X \) such that \(x_0 = x, x_n = y \) and
$d(f(x_{i-1}), x_i) < \varepsilon$ for $i = 1, \ldots, n$. We say x can be chained to y if for every $\varepsilon > 0$ there exists an ε-chain from x to y, and we say x is chain recurrent if it can be chained to itself. The set of all chain recurrent points is called the chain recurrent set of f and denoted by $\text{CR}(f)$. The chain recurrent set is non-empty, closed in X and f-strongly invariant, and the set depends only on the topology. A point $x \in X$ is said to be wandering if for some neighborhood V of x, $f^n(V) \cap V = \emptyset$ for all $n > 0$. The set of points which are not wandering is called the nonwandering set and denoted by $\Omega(f)$.

We state fundamental facts from geometric topology. A space X is said to be locally $(n-1)$-connected if for every $x \in X$ and every neighborhood U of x in X, there exists a neighborhood $V \subseteq U$ of x in X such that every map $f : S^k \to V$ extends to a map $\tilde{f} : B^{k+1} \to U$ for every $0 \leq k \leq n-1$, where S^k and B^{k+1} stand for the unit k-dimensional sphere and the unit $(k+1)$-dimensional ball of the $(k+1)$-dimensional Euclidean space, respectively.

Here is our main result.

Theorem 2.1 ([15]). Let (X, d) be an n-dimensional locally $(n-1)$-connected compact metric space, where $n \geq 0$ (for $n = 0$ we simply skip the local connectedness assumption), and μ be a finite Borel measure on X without atoms at the isolated points of X. Then the set of maps on X with the chain recurrent set of μ-measure zero is residual in the space of all maps on X.

Remark 1.

1. The interval case modulo Lebesgue measure of the theorem above was proved by Franzová [9].
2. Analogous results to Theorem 2.1, Corollary 2.2 and Theorem 3.1 (below) hold for the nonwandering set of a map.
3. The main theorem is false if μ has an atom at the isolated points of X.
4. It is well known that any f-invariant finite measure μ is supported by the set of recurrent points ([14]). In particular $\mu(\text{CR}(f)) > 0$. This implies that with all the assumptions of Theorem 2.1, a generic map f does not preserve a given finite measure μ.

We note that a manifold and a polyhedron are locally contractible. The n-dimensional universal Menger compactum M^{2n+1}_n is obtained by a process of successively deleting cubes from the $(2n+1)$-cube (see [8, p. 96], [2], [11]). When $n = 0$, we obtain the Cantor set, and when $n = 1$, the Menger curve (which is referred to as the Menger sponge in the fractal literature). A compact n-dimensional Menger manifold
is a compact metric space locally homeomorphic to the n-dimensional universal Menger compactum M_n^{2n+1}. A topological characterization of a compact n-dimensional Menger manifold obtained by Bestvina [2] (cf. Anderson [1] for $n = 1$) is: a compact metric space X is an n-dimensional Menger manifold if and only if it is n-dimensional, locally $(n - 1)$-connected, and satisfies the disjoint n-cells property. Kato, Kawamura, Tuncali and Tymchatyn [11] studied measure theoretic properties of the dynamics of Menger manifolds.

Corollary 2.2 ([15]). Let X be a compact and n-dimensional either manifold, Menger manifold or polyhedron with no isolated points, where $n \in \mathbb{N}$, and μ be a finite Borel measure on X. Then the set of maps on X with the chain recurrent set of μ-measure zero is residual in the space of all maps on X.

3. 鎖回帰集合の連結性

We give an application of the main theorem to dynamical systems of graph maps.

Theorem 3.1 ([15]). Let G be a graph. Then the set of maps on G with the chain recurrent set being totally disconnected is residual in the space of all maps on G.

Motivated by the result above, we discuss the relation between the chain recurrent set and its connectivity. We need some definitions. A map $f : X \to X$ is said to be **chain transitive** if for every $x, y \in X$, x can be chained to y.

The next is a slight extension of Theorem 2.8 in [6] to the case of the chain recurrent sets of arbitrary surjective maps.

Proposition 3.2 ([15]). Let $f : X \to X$ be a surjective map on a compact metric space (X, d). If the restriction $f|_{\text{CR}(f)} : \text{CR}(f) \to \text{CR}(f)$ is chain transitive, then $\text{CR}(f) = X$.

Proposition 3.3 ([15]). Let $f : X \to X$ be a surjective map on a compact metric space (X, d). If the chain recurrent set $\text{CR}(f)$ of f is connected, then $\text{CR}(f) = X$.

Remark 2. If $f : X \to X$ is surjective and $\text{CR}(f) \neq X$, then $\text{CR}(f)$ must be disconnected by Proposition 3.3. Using a similar argument to that in the proof (without measurable argument) of Theorem 2.1, the property $\text{CR}(f) \neq X$ is generic if X is an n-dimensional locally $(n - 1)$-connected compact metric space, where $n \geq 0$ (for $n = 0$, skip the local connected condition, but on further condition “with an accumulation point”).
以上のことにより、連結性に関する次の問いは自然であるが、この話題についてはまた別の機会としたい。

Question. Is a totally disconnected property of the chain recurrent set generic?

References

Department of Mathematics, Jikei University School of Medicine, Chofu, Tokyo 182-8570, Japan

E-mail address: yokoi@jikei.ac.jp