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The key word of this study is normal sequence of finite open covers. In general topol-
ogy, the notion of normal sequence of open covers is one of the most useful tools for the
study. In fact, the notion is the essence of metrizability of spaces. We obtain directly the
numerical properties of normal sequences of finite open covers on a given separable metric
space X and we give another proof of Pontrjagin-Schnirelmann theorem. Furtheremore,
by use of normal sequences we can construct desired metrics d which control the values of
log N(¢,d)/|loge|. We investigate strong relations between topological dimension dim X,
metrics d and lower and upper box-counting dimensions dimg(X, d), dimg(X, d) of sepa-
rable metric spaces X from a point of view of general topology. In particular, we construct
chaotic metrics with respect to the determination of the upper and lower box-counting
dimensions.

For a totally bounded metric d on X and € > 0, let

N(e,d) = min{|U| | U is a finite open cover of X with meshy(U) < €},

where |A| denotes the cardinality of a set A. Then the lower and upper box-counting
dimensions of (X, d) are given by

. . . JlogN(e,d) —— ) log N (e, d)
dimg(X,d) = llxeri)lglf——l—lo—é?-)-, dimg(X,d) = llx?jglp ———m.
If dimg (X, d) = dimp(X, d), we define dimg(X, d) = dimp(X, d).
Suppose that U is an open cover of X and A C X. Let

stAU) = {U eU| Un A # ¢}

U= {St(U,U) |U e} and U* = {St(z,U) | z € X}
U =u, ur® =u
U™ = U = {StW,U”) | W e U}
U = UA)A = {St(z, U™ | z € X}

An open cover V of X is a star-refinement of an open cover U of X if V* is a refinement of
U. Anopen cover V of X is a delta-refinement of an open cover I of X if V2 is a refinement
of . Let U; (i = 1,2,...) be open covers of X. Then the sequence {U;}32, is called a
normal star-sequence if U, is a star-refinement of U; (3 = 1,2,...). Also, the sequence
{U;}2, is called a normal delta-sequence if Uiy is a delta-refinement of U; (i = 1,2,...).
The sequence {U;}3°, is called a development black of X if {St(z,U;)| i = 1,2,...} is
a neighborhood base for each point z of X. The following theorem is well known as
Alexandroff-Urysohn metrization theorem.



46

Theorem 0.1. (Alexandroff-Urysohn metrization theorem) A T;-space X is metrizable
if and only if there exists a sequence {U;}52, of open covers of X such that {U;}2, is a
normal sequence and a development of X .

For any normal space X (# ¢) and natural numbers & and p, we define the following
indices:
(1) The index *%(X) is defined as the least natural number m such that for every open
cover U of X with [U| = k, there is an open cover V of X such that [V| < m and V¥ < U.
(2) The index AL(X) is defined as the least natural number m such that for every open
cover U of X with |U| = k, there is an open cover V of X such that |[V| < m and V4" < U.

By Ck, we denote the set of all m-element subsets of the set {1,2,...,k} and by ( 71:1 )

k!

its cardinality, i.e., ( :7, = e

For natural numbers k,m and p with £ > m, we define the following indices;

e k J Jp—-
A(k;m;p) = Zm>ji>j2>... 2521 ( i ) (J; ) ( ’;-pl );

< k A Jp-1 Y\ .
*(k; i p) = Ly >a>... 221 ( i ) (jz ) ( 3’,, Jp-

The following result follows from Bruijning-Nagata [4], Hashimoto-Hattori [8], Bogatyi-
Karpov [2] and Koto-Matsumoto [10].

Theorem 0.2. Let X be an infinite normal space with dim X = m < oo and let k and p
be natural numbers. Then

2(x) = { Xk (1/2)(3 - 1)) = k[(1/2)(3” ~1) + DI (k<m+1)
kAT *x(k;m+1;(1/2)(3 = 1)) (k > m + 1),
piyy | Ak k;2P71) = (2771 4 1)k — (2P1)F (k< m+ 1)
AuX) = { A(k;m +1;2°7Y) (k> m+1). "

Lemma 0.3. (Koto-Matsumoto [10]) Let X be an infinite separable metric space with
dim X =m > 0. Then the followings hold.

1. If {U;}2, is a normal star-sequence of finite open covers of X and a development
of X, then there s some iy such that

2] 2 F(m + 1;m + 15(1/2) (3% — 1))
for i > ig. In particular, iminf;_, 1°—53;1L—(-‘l >m.

2. If {U;}2, is a normal delta-sequence of finite open covers of X and a development
of X, then there is some iy such that

U] > A(m + 1;m + 1; 20750

for i > i9. In particular, iminf;_,. 1—0531-1—1’—”-1 > m.
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Theorem 0.4. (Kato-Matsumoto [10], Kato [11]) Let X be a nonempty separable metric
space. Then

oy e . o logs U ,
dim X = min{lim inf —é}—ILl | {Us}2, is a normal star-sequence of
1-=00 7

finite open covers of X and a development of X}

= mln{hm inf —=—— g2 4] | {Ui}2, is a normal delta-sequence of

finite open covers of X and a development of X}.

Moreover, there exists a normal star (resp. delta)-sequence {U;}2, of finite open covers
of X which s a development of X such that

1 )2 [U
dim X = lim og3| il (resp.dim X = lim g2.llx{|

).
Consider the following indices:
#(X,U) = min{|V| | V is a finite open covering of X such that V¥ < U},
AP(X,U) = min{|V| | V is a finite open covering of X such that V2" < U}.
Theorem 0.5. (Kato-Matsumoto [10]) Let X be a normal space. Then

logs +°(X,U)
p

dim X = sup{lim sup | U is a finite open covering of X}

p—0o0

and
log, AP (X U)
D

dim X = sup{lim sup | U is a finite open covering of X}.

pP—00

The next proposition implies that for any separable metric space X there is a natural

bijection from the set of all totally bounded metrics on X to the set of Alexandroff-Urysohn

metrics on X induced by normal sequences of finite open covers which are developments
of X, up to Lipschitz equivalence.

Proposition 0.6. (Koto-Matsumoto [10]) Let X be a separable metric space and let p
be a totally bounded metric on X. Then there is a normal star (resp. delta)-sequence
{U;32, of finite open covers of X such that {U}$2, s a development of X and p is
Lipschitz equivalent to d, where d is the Alezandroff-Urysohn metric induced by {U;}32,

For separable metric spaces, we need the Alexandroff-Urysohn metrics induced by
normal sequences of finite open covers. Define the functions D, : X x X — [0,9] and
Dp: X x X — [0,4] as follows:

(x) Let {U4}$2, be a normal star-sequence of finite open covers of X and a development
of X. For any pair of points x,y of X, we define the function D, : X x X — [0, 9] by

1. Dy(z,y) =9if {z,y} is not contained in any element of U,
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2. D,(z,y) = 1/30-2) if {z,y} is contained in an element of ; and {z,y} is not
contained in any element of U; for j > 4,

3. Di(z,y) = 0if {z,y} is contained in an element of U; for each i.

(A) Let {U4}52, be a normal delta-sequence of finite open covers of X and a development
of X. For any pair of points ,y of X, we define the function Da : X x X — [0,4] by

1. Da(x,y) =4 if {2,y} is not contained in any element of i;,

2. Da(z,y) = 1/20-2 if {z,y} is contained in an element of ; and {z,y} is not
-contained in any element of U; for j > i,

3. Da(z,y) =0 if {x,y} is contained in an element of ¥; for each i.
Proposition 0.7. (see Nagami’s book [14] for (2)) Let X be a T;-space.

1 If {U;}2, is a normal star-sequence of finite open covers of X and a development
of X, then {U}2, induces a totally bounded metric d, on X such that for any
T,y € X,

do(z,y) < Di(z,y) < 6d,(z,y).

2. If {U;}2, is a normal delta-sequence of finite open covers of X and a development
of X, then {U}32, induces a totally bounded metric dn on X such that for any
z,y€ X,

dA(‘T’Yy) < DA(Z',y) < 4dA(‘r)y)

By use of the above results, we obtain an another proof of the following well-known
theorem.

Corollary 0.8. (Pontrjagin-Schnirelmann [19], Bruijning theorem [3] and Kato [11]) Let
X be a separable metric space. Then

dim X = min{dimg(X, p)| p is a totally bounded metric for X}.
Moreover,
dim X = min{dimg(X, p)| p is a totally bounded metric for X}.

Lemma 0.9. (Kato [11]) Let X be an infinite separable metric space and let {U;}2, be
a normal star-sequence of finite open covers and a development of X such that

lim 10&"2—'”' = dim X.

Then for any «, 8 with dim X < a < B < 0o, there is a subsequence {U;;}52, of {Ui}2,
such that

log3 luink I

[e, B8] = {ligninf | {n}?, is an increasing subsequence
—00

of natural numbers}.
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Theorem 0.10. (Kato-Matsumoto [10], Kato [11]) Let X be an infinite separable metric
space. For any o, € [dimX, oo] with a < 3, there is a totally bounded metric d = dug
on X such that

log N (e, d)

[, ] = {lim inf | log €|

| {€x}rey 28 a decreasing sequence

of positive numbers with klim e = 0}.
—00

In particular, dimg(X,d) = o and dimp(X,d) = 8.

Corollary 0.11. (Keesling [12], Kato-Matsumoto [10], Kato [11]) Let X be a separable
metric space with dim X > 1. For any «, B € [dimX, oco] with a < B, there is a totally
bounded metric d = dyg on X such that

log N (e, d)

A (ming
S ey

| {ex}32, is a decreasing sequence

of positive numbers with klim ex = 0}.
oo

In particular, dimg (X, d) = dimgz(X,d) = a and dimp(X,d) = B, where dimy (X, d) is
the Hausdorff dimension of (X, d).

Finally, we have the following problems.

Problem 0.12. (1) Give an another proof of the following theorem of E. Marczewsks
(=Szpilragn) by use of normal sequence of open covers: For a separable metric space X,
dim X = min{dimg(X,d) | d is a metric on X}.

(2) Let X be a separable metric space with dim X > 1. For any «, 8,7 € [dimX, oo] with
a < 3 < v, does there esist a totally bounded metric d on X such that dimg(X,d) = o<
dimp(X, d) = 8 < dimp(X,d) =77

(8) What kinds of metrics can be embedded into Euclidean spaces, up to Lipschitz equiva-
lence? If dimp(X,d) < n € N, is it true that d can be embedded into (2n +1)-dimensional
Euclidean space, up to Lipschitz equivalence? Note that if dim X = n, there is a met-
ric d on X such that d can be embedded into (2n + 1)-dimensional Euclidean space with
dimp(X,d) = n.
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