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Abstract

In this paper, we study randomness notions between Martin-L\"of randomness and
2-randomness. A best-known example of such notions is weak 2-randomness: a set
is weakly 2-random if it is not in any $\Pi_{2}^{0}$ null class. We propose a new notion of
randomness, called L-randomness, that is Martin-L\"of randomness relative to any low
set.

1 Introduction
To the definition of an algorithmically random sequences, measure-theoretic approach is
one of the most popular approach. According to this approach, a random sequence should
have certain stochastic properties. This approach can be traced at least back to Von Mises’
work [18]. When computability theory emerged two decades later, Church [2] made the
connection with the theory of computability by suggesting that one should take all com-
putable stochastic properties. Later, this approach developed by Martin-L\"of, which makes
the notion of randomness clear.

The present paper is concerned with the notion of randomness as originally by P. Martin-
L\"of [11] in 1966, that is nowadays regarded as central. The relativized randomness was first
studied by Gaifman and Snir [7]. We say that a set is n-random if it is ML-random relative
to $\emptyset(n-1)$ . So it is l-random if it is ML-random. 2-random if it is ML-random relative to $\emptyset’$ . $2-$

randomness was first studied by Kurtz [8], and more recently in [13], where a characterization
was given using the plain Kolmogorov complexity of the initial segments. He also considered
weak 2-randomness, an interesting notion lying strictly between Martin-L\"of randomness and
2-randomness. Other randomness notion between Martin-L\"of randomness and 2-randomness
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is Demuth randomness. This notion introduced and studied by Demuth [4] [5], and about
30 years later, it getting interesting among logicians. Since Demuth random set can be $\Delta_{2}^{0}$ ,
and all Demuth random sets are in $GL_{1}$ , this implies that Demuth randomness and weak
2-randomness are incomparable.

As we know now, there are several notions of randomness lying between Martin-L\"of ran-
domness and 2-randomness have been discovered. The two of them were weak 2-randomness
and Demuth randomness discussed above. The others are weak Demuth randomness, Bal-
anced randomness, Difference randomness and $\emptyset^{J}$-Schnorr randomness, which introduced
recently.

In [9], Ku\v{c}era and Nies defined weak Demuth randomness, they show that weak Demuth
randomness is stronger than ML-randomness. Demuth tests generalize Martin-L\"of tests
$(G_{m})_{m\in N}$ so that one can exchange the m-th component (a $\Sigma_{1}^{0}$ set in Cantor space of measure
at most $2^{-m}$ ) for a computably bounded number of times. A set $Z$ fails a Demuth test if $Z$

is in infinitely many of the $G_{m}$ . The weak Demuth random tests only allow Demuth tests
such that $G_{m}\supseteq G_{m+1}$ for each $m$ . It is not hard to see that every Demuth random set is
weak Demuth random, and that every weak Demuth random set is ML-random. They also
show that a weakly Demuth random set can be high and $\Delta_{2}^{0}$ , yet not superhigh. Another
randomness notion weaker than weak Demuth is Balanced randomness, which introduced
in [6], interpolates between weak Demuth and ML-randomness.

Difference randomness [15], lies in middle of Martin-L\"of randomness and 2-randomness,
and stronger than Demuth randomness and weak 2-randomness. This notion of randomness
based on the difference hierarchy. See [15] for more on difference randomness.

In [1], Barmpalias, Miller and Nies have been studied Martin-L\"of randomness, Schnorr
randomness relative to $\emptyset^{J}$ , weak randomness relative to $\emptyset’$ . They show that within the
Martin-L\"of randomness sets, weak randomness relative to any oracle can be separated from
weak 2-randomness. Also, they prove the following implications hold:

$ML[\emptyset’]\Rightarrow SR[\emptyset’]\Rightarrow W2R\Rightarrow Kurtz[\emptyset^{J}]\cap ML\Rightarrow ML$ .

None of the implications can be reversed.
For more background on algorithmic randomness and unexplained notions we refer to

[3] and [12].
The notions between ML-randomness and 2-randomness has been extensively investi-

gated in the literature by many researchers. But the notion of randomness is far from being
fully understood. There are many open problems in this area. We believe there must still
exist other randomness notions lying between Martin-L\"of randomness and 2-randomness.

2 Preliminaries
The collection of binary strings is denoted by $2^{<N}$ , i.e. the set of all functions from $\{0, \ldots, n\}$

to $\{0,1\}$ for some $n\in$ N. We use $\sigma,$ $\tau,$ $\cdots$ to denote the elements of $2^{<N}$ . Let $2^{N}$ denote the
set of infinite binary sequences. Subsets of $N$ can be identified with element of $2^{N}$ . These
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are also called reals. For sets $A,$ $B$ , Let $A\oplus B=\{2x:x\in A\}\cup\{2x+1 : x\in B\}$ , namely
the set which is $A$ on the even bit positions and $B$ on the odd positions.

For $\sigma\in 2^{<N}$ , we write $|\sigma|$ for the length of $\sigma$ . Equivalently, $|\sigma|=\#dom(\sigma)$ . Here the
cardinality of a set $A$ is denoted by $\# A$ . The empty string is denoted by $\lambda$ . For strings $\sigma$

and $\tau$ , let $\sigma\preceq\tau$ denotes that $\sigma$ is a prefix of $\tau$ , i.e., dom $(\sigma)\subseteq$ dom $(\tau)$ and $\sigma(m)=\tau(m)$

holds for each $m\in$ dom$(\sigma)$ . The concatenation of two strings $\sigma$ and $\tau$ is denoted by $\sigma\tau$ .
For a set $A,$ $A$ $rn$ is the prefix of $A$ of length $n$ . A topology of $2^{N}$ is induced by basic open
sets $[\sigma]=\{X\in 2^{N} : X\succeq\sigma\}$ for all strings $\sigma\in 2^{<N}$ . So each open set of $2^{N}$ is generated by
a subset of $2^{<N}$ , that is $[S]^{\prec}=\{X\in 2^{N} : \exists\sigma\in S\sigma\preceq X\}$ . With this topology, $2^{N}$ is called
the Cantor space.

The Lebesgue measure on $2^{N}$ is induced by giving each basic open set $[\sigma]$ measure
$\mu([\sigma])$ $:=2^{-|\sigma|}$ . for each string $\sigma$ . If a class $G\subseteq 2^{N}$ is open then $\mu(G)=\sum_{\sigma\in B}2^{-|\sigma|}$

where $B$ is a prefix-free set of strings such that $G= \bigcup_{\sigma\in B}[\sigma]$ . A class $C\subseteq 2^{N}$ is called null
if $\mu(C)=0$ . If $2^{N}-C$ is null we say that $C$ is conull.

ML-randomness is a central notion of algorithmic randomness for subsets of $\mathbb{N}$ , which
defined in the following way.

Definition 1 (Martin-L\"of [11]). (i) A Martin-Lof test, or ML-test for short, is a uni-
formly c.e. sequence $(G_{m})_{m\in N}$ of open sets such that $\forall m\in \mathbb{N}\mu(G_{m})\leq 2^{-m}$ .

(ii) A set $Z\subseteq \mathbb{N}$ fails the test if $Z \in\bigcap_{m}G_{m}$ , otherwise $Z$ passes the test.

(iii) $Z$ is ML-mndom if $Z$ passes each ML-test. Let $MLR$ denote the class of ML-random
sets. Let non-MLR denote its complement in $2^{N}$ .

In this way, we are presenting the ML-random sets as the sets that pass all reasonable
statistical tests in the form of effectively presented null sets. The randomness notions
which stronger than ML-randomness have been studied. To get such a notion, we place
weaker effective conditions on the presentation of the test. Weak 2-randomness, like ML-
randomness, is defined in terms of tests.

Definition 2 (Kurtz [8]). (i) A genemlized ML-test is a uniformly c.e. sequence $(G_{m})_{m\in N}$

of open sets such that $\mu(\bigcap_{m}G_{m})=0$ .

(ii) $Z$ is weakly 2-random if it passes every generalized ML-test.

Fact 1. (i) 2-randomness $\Rightarrow$ weak $2-randomness\Rightarrow$ ML-randomness.

(ii) The reverse implications fail (Kurtz, Kautz).

3 Definition of L-randomness
In this section, we propose a new notion of randomness: L-randomness, that is, Martin-L\"of
randomness in any low set. We will study some properties of this notion along this work.

Recall that A set $A$ is low if $A‘\leq\tau\emptyset^{f}$ .
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Definition 3. A set $Z$ is $\Gamma$ -random if $Z$ is ML-random relative to $A$ for all $A\in\Gamma$ . In
particular, $\Gamma$-randomness is called L-mndomness if $\Gamma$ is the set of low sets.

Since a Martin-Lof test is a uniformly c.e. sequence $(G_{m})_{m\in N}$ of open sets such that
$\forall m\in N\mu G_{m}\leq 2^{-m}$ . Thus, we can define an Ltest to be a sequence $(G_{m})_{m\in N}$ of open sets,
which is uniformly c.e in some low set, such that $\forall m\in N\mu G_{m}\leq 2^{-m}$ .

In fact, $\mathbb{L}-$-randomness lying strictly between Martin-L\"of randomness and 2-randomness.
By Schnorr’ theorem, it is easy to see there is a characterization of Lrandomness via a

growth condition on the initial segment complexity.

Theorem 1. $Z\in 2^{N}$ is Lrandom if

$(\forall n)(K^{A}(Zrn)>n-O(1))$

for any set $A$ such that $A’\equiv\tau\emptyset’$ .

Here, $K$ denote the prefix-free Kolmogorov complexity which defined by $K( \sigma)=\min\{|\tau$ I :
$U(\tau)=\sigma\}$ , where $U$ is a universal prefix-free machine. We refer to [3], [10] and [12] for
more details.

3.1 Some facts on L-randomness
Obviously, any Lrandom set is ML-random. For any set $Z,$ $Z$ is not l-random in $Z$ . Thus,
each low set is not Lrandom. Hence, L-randomness is strictly stronger than ML-randomness
because there is a low ML-random.

If the randomness notions stronger than ML-randomness, then the notions are usually
closed downwards under Thring reducibility within the random sets. We show that $\mathbb{L}-$

randomness also have this property.

Proposition 1. Let $X,$ $Y$ be ML-mndom sets. If $X\leq\tau^{Y}$ and $Y$ is L-mndom, then $X$ is
L-mndom.

It is not hard to prove the following result, then we show there is no universal Ltest.

Theorem 2. For any low set $A$ , there exists a low set $B$ and a set $X$ such that $X$ is
A-mndom and $X$ is not B-mndom.

Corollary 1. There is no universal L-test.

Van Lambalgen $s$ Theorem is one of the fundamental and important results in algorithmic
randomness.

Theorem 3 (van Lambalgen [17]). Let $A,$ $B\subseteq \mathbb{N}$ . Then $A\oplus B$ is $ML-mndom\Leftrightarrow B$ is
ML-mndom and $A$ is ML-mndom relative to $B$ .

Proof. See Theorem 3.4.6 of [12] $\square$
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The above theorem have many corollaries. For instance, $A$ and $B$ are Turing incompara-
ble if $A\oplus B$ is ML-random. Since we know the importance of van Lambalgen $s$ Theorem, it is
natural to ask whether it holds for other notions of algorithmic randomness besides Martin-
L\"of randomness and its higher level versions. By relativization, we get van Lambalgen $s$

Theorem for Lrandomness.

Theorem 4. Let $A,$ $B\subseteq \mathbb{N}$ . Then $A\oplus B$ is $L-mndom\Leftrightarrow B$ is L-mndom and $A$ is L-mndom
relative to $B$ .

The following results hold. For the proves, see my master thesis [16].

Proposition 2. There is no L-mndom which is Turing compamble with $\emptyset^{J}$ .

Theorem 5. Weak 2-randomness does not imply L-mndomness.
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