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Squeezing on a Certain L-space
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1. INTRODUCTION

In a joint 2006 paper [2], E. Pedersen and I proved a certain stability result for
controlled L-groups. The proof depended on a construction called the Alexander trick.
In this note I describe a modified Alexander trick which can be used to give a built-
in squeezing mechanism of a certain LL-space. This should replace the “barycentric

subdivision argument” used in [4].

2. ITERATED MaPPING CYLINDERS

Let X be a finite polyhedron, and M be a topological space. We are interested in
amap p: M — X which has an iterated mapping cylinder decomposition in the sense
of Hatcher [1]: there is a partial order on the set of the vertices of X such that, for
each simplex A of X,

(1) the partial order restricts to a total order of the vertices of A
Vo<V << VUp,
(2) p~(A) is the iterated mapping cylinder of a sequence of maps
Fop — Fy, — ... —F, ,

(3) the restriction p|p~!(A) is the natural map induced from the iterated mapping
cylinder structure of p~!(A) above and the iterated mapping cylinder structure
of A coming from the sequence

{vo} — {n} — ... — {v.}.

To simplify the situation we assume that X is an n-simplex A with vertices vy, v1,
..., Un. The edge |vo,v:| is the mapping cylinder vy x {0 < t; < 1}/(vo,1) ~ vy, the
face |vg, vy, v2| is the mapping cylinder |vg,v1] x {0 < to < 1}/(2,1) ~ v, ..., and
A = |vg,...,v,| is the mapping cylinder |vg,...,vn1| X {0 < ¢, < 1}/(z,1) ~ vn.
Thus we can assign a point in A to each (1,...,%,) € [0,1]" (t1,...,t) is pseudo-
coordinates of the point in the sense that the coordinates are not uniquely determined

1This work was supported by KAKENHI 20540100.
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by the point. If (Xg,...,\,;) are the barycentric coordinates of a point z € A, i.e.
z =Y Av; (Ao +---+ A = 1), then ¢; is equal to X;/(Ao + - -+ + A;), when defined,
and is indeterminate when A = --- = \; = 0.
For each vertex v of A, define a simplicial map s* : A — A by:
v for a vertex u with u < v ,
s'(u) =

u for a vertex u with u > v .
For example, s* is the identity map, and s*" is the constant map which sends every
point of A to v,. A strong deformation retraction s} : A — A is defined by s¥(z) =
(1 —t)z + ts"(z), where z € A and t € [0,1]. Note that this strong deformation
retraction s} is covered by a deformation 3} on M, since M has an iterated mapping
cylinder structure. Also note that s;’ (¢ > 0) changes the t; pseudo-coordinate but
fixes the other pseudo-cordinates t; (i # j)-

3. ALEXANDER TRICKS

Let M be an iterated mapping cylinder of maps
Fo —F,, — ... —F, ,

and p: M — A = |up, ..., vs| be the projection from M to the ordered n-simplex A as
in the previous section. Suppose c is a quadratic Poincaré (n +2)-ad on p : M — A,
such that ;¢ is a quadratic Poincaré (n + 1)-ad on plp~1(8;A), 1 = 0,...,7n ([4] [5])
Such an (n + 2)-ad c is said to be proper on A or simply proper.

We will describe a version of Alexander trick for such a proper (n + 2)-ad c¢. First
fix a positive integer N (“height’) and pick up a vertex v = v; of A toward which
we try to squeeze the objects. Triangulate the closed interval Iy = [0, N] using unit
intervals and represent each simplex by its barycenter. Use these points to construct
the symmetric Poincaré triad e of (Iy;0,/N). Take the tensor product of ¢ and e and
denote it by ¢ x Iy. This is a geometric object on M x In which gives a cobordism
between ¢ x 0 and the (n + 2)-ad ¢’ defined by:

d =c¢x NUO;cx Iy,

0;c X NUaj_la,'C x Iy ifi1<jy,
8;c' = 4 9;c x 0 if i = j,
3,'CXNUaj8iCXIN ifi > 7.



So this construction does not change the j-th face 0jc = 0;¢ x 0. If i # j, then one
can perform the same construction to 9;c to get (d;c)’, which coincides with 9;c’.
Define maps S% : A x Iy — A x Iy and 8% : M x Iy — M x Iy by

Sk(@,t) = (shyn(2),) and Sy (w,t) = (& (w),?) -
Define an ordered (n + 1)-simplex A™! (C A x Iy) by
A = ((vg, ..., v;) X 0) * ((v;) X N) * ((vjs1,---,0n) X 0) .
Here x denotes the join of simplices. Note that

Sw(AxIny= | (syn((vo, -, 03) x t) % ((vjs1, .-, va) X B)

0<t<N
An+1 = U (S;)/N«’U(), . ,’Uj} X t) * ((’Uj-i-l; s 7U‘n-> x 0)
0<t<N

Therefore, the obvious vertical retraction
(Vi1 - -y V) X Iy — (Ujg1,. .., Un) X 0
induces a map RY, from the image S% (A x Iy) to A" Let
g=px 15| : Manss = (p x 17,) (A" — A"
denote the pull-back of p: M — A by the projection map
o AP+ inclusion A g projection . »

The map RY, is covered by a map K% : S%(M x Iy) — Man+.
Sy (A

Ry (s Af

o sns o ey
B e )

gt et el e

Sk(Ax[0,N])) \4 APt

Let us look at the relation between ¢ and ¢ (and its functorial image (R, 05%).(c))
more closely. As in the pictures above, define a subset A’ of (A x Iy) by

AN=AxNUJAXIy .
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The (n + 2)-ad ¢’ lies over A'. By glueing some of the faces, let us regard ¢ x Iy as an
(n + 3)-ad whose faces are

a()CXIN,...,aj_chIN, Cl,CXO, 3j+1c><IN,...,6nc><IN.

The functorial image of this (n + 3)-ad by the composition E}’v o §}{, defines a proper
quadratic Poincaré (n + 3)-ad C%(c) on g : Man+1 — A"

The face (R%05%),(c’) is a proper quadratic Poincaré (n+2)-ad on g|g~* (RY% (S (A")),
and is denoted A% (c). Its functorial image m,(A%(c)) will be denoted a%(c). It is a
proper on A. The functorial image .(C¥(c)) can be regarded as a Poincaré cobor-
dism between ¢ and a%(c). The operation described above is called the Alezander
trick (of height N) at the vertez v = v;. Note that a(c) has a fine control in the ¢
pseudo-coordinate. Also note that d;aly(c) = a%(9;c) = 0;¢, where v = v;.

If we successively apply the Alexander tricks at vy, ..., v1, vo to the given proper
quadratic Poincaré (n+2)-ad ¢, then we get finely controlled object which is cobordant
to ¢. This process is called “squeezing” of “shrinking”. When we use the same height
N at every vertex, then the squeezed object obtained from ¢ will be denoted Sy/(c):

Sw(e) = a2(ali (... @ () .-.) -

The cobordism between ¢ and Sy (c) constructed above is called the standard cobordism.

The squeezing operation Sy preserves the face relation:

Proposition 3.1. 9;Sn(c) is equal to Sy(0;c) . Furthermore, the standard cobordism

between 9;c and 8;Sn(c) is equal to the standard cobordism between 0;c and Sy(0;c).

4. L-SPACES

The squeezing operation seems to justify the following simple definition of the co-
efficient L-space L,(p : M — X) for the generalized homology H.(X;L(p)), where
p: M — X is a map from a space to a finite polyhedron which has an iterated
mapping cylinder decomposition and n is an integer. It is a A-set; a k-simplex is an
(n + k)-dimensional proper quadratic Poincaré (k + 2)-ad (c; Oqc, . . ., Okc) on the pull-
back m*M — (A; 804, ...,0:A), where A is a k-simplex and m : A — Al is an affine
surjection from A to an I-dimensional simplex A! of X (I < k) induced by an order(<)
preserving map between the vertices.

Two such simplices (¢, 7 : A = A!) and (¢/, 7' : A’ — Al) are identified when there
is an affine homeomorphism ¢ : A — A’ of ordered simplices such that 7 = 7’ o ¢ and

de(c) =C.



Note that the squeezing operation Sy defines a simplicial homotopy of the identity
map of Ln,(p : M — X)) to a simplicial map whose image is contained in a subset made
up of simplices of ‘small radius’ measured on X, if IV is large. Thus this space has a

built-in ‘squeezing’ mechanism.
AR (Ay (c))
CN (AN ()

AN (9)

Cr (9

Let us consider the special case when X is a single point. There is a similar A-set
L;, (M) whose k-simplex is an (n+ k)-dimensional quadratic Poincaré (k+2)-ad c on M
that is special, i.e. 0y0; ...0c is 0. mwo(Li,(p : M — x)) is isomorphic to L(Zm, (M)).

There is a map L, (M — «) — L/, (M) that sends a k-simplex (c, 7) to its functorial
image 7.(c). A map in the reverse direction can be constructed as follows. Let c
be a k-simplex of L; (M). It is made up of three type of things: (1) ‘points’ in M
(generators of free modules), (2) paths with coefficients connecting the generators, and
(3) homotopies of certain paths. Since c is special, one can make a 1-1 correspondence
between its faces (including c itself) and the faces of a standard k-simplex A (including
A itself), and can make copies of the faces of ¢ on the sets {barycenters} x M C Ax M
and realizing the morphisms between adjacent pieces by using the original paths in ¢ in
the M-direction and the path connecting two adjacent barycenters in the A-direction
as components. Similarly for homotopies of paths. These are homotopy inverses of
each other.
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Therefore, L,(p : M — X) defined above may give a convenient description of
L-homology groups.
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