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1. INTRODUCTION

Let T be a torus of dimension » and M a closed smooth T-manifold.
The equivariant cohomology of M, denoted H}(M), contains a lot of ge-
ometrial information on M. Moreover it is often easier to compute H7.(M)
than H*(M) by virtue of the Localization Theorem which implies that the
restriction map

(L1 ' Hy (M) - Hy(M")

to the T-fixed point set M7 is often injective, in fact, this is the case when
H%(M) = 0. When M is isolated, Hr.(M") = ®,esrH;(p) and hence
H; (M) is a direct sum of copies of a polynomial ring in » variables because
H;(p) = H'(BT).

Therefore we are in a nice situation when H°%(M) = 0 and M7 is iso-
lated. Goresky-Kottwitz-MacPherson [2] (see also [3, Chapter 11]) found
that under the further condition that the weights at a tangential 7-module
are pairwise linearly independent at each p € M", the image of ¢* in (1.1)
above is determined by the fixed point sets of codimension one subtori of T
when Q is tensored in cohomology. Their result motivated Guillemin-Zara
[4] to associate a labeled graph G, with M and define the “cohomology”
ring H*(G ) of Gur, which is a subring of @,¢ 7 H*(BT). Then the result of
Goresky-Kottwitz-MacPherson can be stated that H7.(M) ® Q is isomorphic
to H*(Gum) ® Q as graded rings when M satisfies the conditions mentioned
above. :

The result of Goresky-Kottwitz-MacPherson can be applied to many im-
portant T-manifolds M such as flag manifolds and compact smooth toric
varieties etc. When M is such a nice manifold, H7(M) is often known to
be isomorphic to H*(Gy) without tensoring with Q (see [1], [5], [6] for
example). We determine the ring structure of H*(Gy) or H*(Gu) ® Z[%]
when M is a flag manifold of classical type directly without using the fact
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that H7(M) is 1somorphic to H*(G ) ([7]). In my talk, I introduced the re-
sult when M is a flag manifold of type A. This is a joint work with Hiroaki
Ishida and Mikiya Masuda and the details can be found in [7].

2. LABELED GRAPH AND ITS COHOMOLOGY FOR TYPE 4,_;

Let {#;)7_, be a basis of H*(BT), so that H*(BT) can be identified with a
polynomial ring Z[t), 1, . .., t,]. We take an inner product on H*(BT) such
that the basis {#;} is orthonormal. Then
(21) (I)(An_.]) = {i(t,- - j) ' 1<i< ] < I’I}
1s a root system of type 4,,_;.

Definition. The labeled graph associated with ®(4,-,), denoted A,, 1s a
graph with labeling € defined as follows.

e The vertex set of A, is the permutation group S, on {1,2,... n}.

e Two vertices w, w’ in A, are connected by an edge e, if and only
if there is a transposition (i, j) € S, such that w' = w(i, j), in other
words,

w (i) = w(j), w(j)=w@) and W(r)=w() for r i, j.

o The edge e, 1s labeled by £(e,w) = twi) — tw()-

Definition. The cohomology ring of A,, denoted H*(A,), is defined to
be the subring of Map(V(A,), H*(BT)) = Dy, ' (BT), where V(A,)

denotes the set of vertices of A, i.e. V(A,) = S, satisfying the following
condition:

f € Map(V(A,), H*(BT)) is an element of H*(A,) if and
- only if f(v) — f(v') is divisible by £(e) in H*(BT) whenever
the vertices v and v’ are connected by an edge e in A,.

For each i = 1,...,n, we define elements 7;, t; of Map(V(A,), H*(BT))
by

(2.2) Ti(W) 1= by, L(w):=1 forwesS,.
In fact, both 7; and #; are elements of H2(A,).

Example. The case n = 3. The root system ®(4,) is {£(; — )|l < i< j <
3}. The labeled graph A; and 7; for i = 1,2, 3 are as follows.

123 -5 132 f 1] 10y f 3 1

. 2
1-13 / ; ; \ / ; ; \
213 312 b T n

231 321 t ) ) ty 1 n

The labeled graph Aj Ty T2 73



Theorem 2.1. Let A, be the labeled graph associated with the root system
®O(A,-1) of type Ap-y in (2.1). Then

H*(An) = Z[11,,Tns 1,5 1) (€7) — €(®) | i = 1, -, n),

where e;(7) (vesp. e;(t)) is the i'* elementary symmetric polynomial int,, -, 1,
(resp. ty, -, 1,).

To prove this theorem, we need the following two lemmas.
Lemma 2.2. H*(A,) is generated by 1y, -, Ty, 1, 1, S a ring.

Proof. We shall prove the lemma by induction on n. When n = 1, H*(A,)
is generated by #; since A, is a point; so the lemma holds.

Suppose that the lemma holds for » — 1. Then it suffices to show that any
homogenous element f of H*(A,), say of degree 2k, can be expressed as a
polynomial in 7;’s and #;’s. Foreachi =1,...,n, we set

Vii={weS,|w()=n)

and consider the labeled full subgraph .£; of A, with V; as the vertex set.
Note that .£; can naturally be identified with A,_, for any i.
Let

(2.3) 1 <g <min{k+1,n)
and assume that
2.9 f(v) =0 foranyv e V; wheneveri < gq.

A vertex win ¥, is connected by an edge in A, to a vertex vin V; if and only
if v = w(i, g). In this case f(w) — f(v) is divisible by t,4) — twg) = twe) —
and f(v) = 0 whenever i < g by (2.4), so f(w) is divisible by . — ¢, for
i < g. Thus, for each w € V,, there is an element g7(w) € Z[#, -, #,] such
that

(2.5) JW) = (tway — ta)(twy = t) - - - (bwgg-1) — 1) (W)

where g7(w) is homogeneous and of degree 2(k + 1 — g) because f(w) is
homogenous and of degree 2k.
One expresses

k+1-g
(2.6) giw)= ). gwy,
r=0
with homogenous polynomials g?(w) of degree 2(k+1—g—r) inZ[t,, -, t,-1].
Then there is a polynomial G in 7;’s (except 7,) and #;’s (except ¢,) such that

Gi(w) = g}(w) for any w € V,, because g} restricted to L, is an element of
H(L,) = H (Arr).
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Since 7;(w) = t,(; and w(i) = n for w € V;, we have
g-1
(2.7) ]_[(T,- ~1,)(w) =0 for any w € V; wheneveri < g.
i=1
Therefore, it follows from (2.5), (2.6), the Claim above and (2.7) that putting
GI = 71 Gt we have
g-1

q-1
(f =& [ [ = ))w) =1 w) = ") | [Ctueo — 2)
i=1

i=1

=0 for any w € V; whenever i < g.

Therefore, subtracting the polynomial GY H?;ll (t; = t,) from f, we may
assume that

f(») =0 foranyve V;wheneveri< g+ 1.

The above argument implies that f finally takes zero on all vertices of A,
(which means f = 0) by subtracting a polynomial in 7;’s and #;’s, and this
completes the induction step. O

We abbreviate the polynomial ring Z[7y, -, Ty, 11, 1,] as Z[7,t]. The
canonical map Z[r,{] — H*(A,) is a grade preserving homomorphism
which is surjective by Lemma 2.2. Let e,(7) (resp. e;()) denote the i
elementary symmetric polynomial in 7y, -, 7, (resp. #,-,1,). It easily fol-
lows from (2.2) that e;(t) = e;(?) for i = 1,..,n. Therefore the canonical
map above induces a grade preserving epimorphism

(2.8) Z[T,1])/(e1(r) — e1(2), - ,en(r) —en(t)) = H'(A,).

Remember that the Hilbert series of a graded ring 4* = &34/, where 4/

1s the degree j part of 4* and of finite rank over Z, is a formal power series
defined by

F4*,s) = Z(rankz A)s’.
j=0

In order to prove that the epimorphism in (2.8) is an isomorphism, it suffices
to verify the following lemma because the modules in (2.8) are both torsion
free.

Lemma 2.3. The Hilbert series of the both sides at (2.8) coincide, in fact,
they are given by (T—;_Z)T 1,1 = s2).

Proof. (1) Calculation of LHS at (2.8). Let e; := e/(1) — e;(¢). It follows
from the exact sequence

0— (eI’ "ty en) - Z[T’ t] - Z[T’ t]/(ela "ty en) —0
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that we have

(29) F(Z[T’ t]/(el 5"y erl): S) = F(Z[T7 t]’ S) - F((el 3"y en), S)'

Here, since deg 7; = degt; = 2, we have
1

(210) F(Z[T, t], S) = (1_——327;

as easily checked; so it suffices to calculate F((ey, -, e,), 5).

For I C [n] we set e; := [];; €. Then it follows from the Inclusion-
Exclusion principle that

(2.11) F((er, e s) = ), (~D"'F((er),s)
' 0¢Ic[n}

and since F((e;), s) = s8¢ /(1 — s?)*" and dege; = Y¢; 21, it follows from
(2.11) that

(212) F((el’ sen) S) = Z ( )Vl" SZIEI

a_ 2yn
p+Ic(n) (1 - 57

Therefore it follows from (2.9), (2. 10) and (2.12) that

Zier 21
F(Zr,1/(e1, - en),5) = 32)2” Z( l)m_ - S2)2n

p=lc[n]

(2.13) 52)2" D (s

Ic[n)

1 .
= e o=

(2) Calculation of RHS at (2.8). Let d, (k) := rankz H*(A,). Then
(2.14) F(H (A, 8) = ) du(k)s™,
k=0

Recall the argument in the proof of Lemma 2.2. Since g7 in (2.6) belongs
to HAk+1-4-1( £,) = H***1=97)(A,_,) as shown in the Claim there, the rank
of the module consisting of those g7 in (2.5) and (2.6) is given by

k+1-g k+1—g
Z da(k+1=g=7)= > dus(.
r=0 r=0
Therefore, noting (2.3), we see that the argument in the proof of Lemma 2.2
implies
minfk+1,n) k+1—g

dl)= Y. D, dal),

g=1 r=0
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in other words, if we set d,_1(j) = 0 for j < 0, then
(2.15)

" id,q(k+1-1) ifk<n-1,
Lyid(k+ 1= +naXHl d_(k+1-0)  ifk=n

We shall abbreviate F(H*(A,), s) as F,(s). Then, plugging (2.15) in (2.14),
we obtain

d(k) =

Fo(s) = Z (s (6 + 2d,y(k = 1) + - + ndy (ke + 1 = m))s
k=0

>3]

+n Z (e (= 1) + -+ Ay (1) + ey (0)) %

k=n
=F,_1(s) + 28*F,_1(s) + - + ns*"2F,_(s)

1
+ n(d-1(0)s™ + dyg (D52 —— + )

1 - s? 1 — 52
2n
=F,,_1(s)(l +28% + o nsz"‘z) + nT o Fo-1(5)
1 _ S2n
=“1—:—E;Fn-1(5)-

On the other hand, F(s) = 1/(1 — s?) since H*(A,;) = Z[1,]. It follows that

1 - 2i
Fu(s) = a=sp I;[(l - 57).
This together with (2.13) proves the lemma. O
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