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ON THE CONNES-CONSANI-SOULE TYPE
ZETA FUNCTION FOR F;-SCHEMES

NORIHIKO MINAMI
NAGOYA INSTITUTE OF TECHNOLOGY

PART 1
§1, Background....
Manin (Denninger, Kurokawa, Kapranov-Smironov...) sug-

gested 3 a curve C = SpecZ “defined over” F, whose “zeta
function”(c(s) is the complete Riemann zeta function (g(s):

o(s) =730 (2) ¢(s) = Gals)

=Y —== [] ==  @)>1

1-p—s

p: primes

I'(s) := Aw z* e %dx (R(s) > 0)

Furthermore, they suggested the Riemann hypothesis may be
solved in a fashion similar to the Weil conjecture for smooth
schemes defined over a finite field F, (g —1) .

Kato, Kurokawa-Ochiai-Wakayama, Deitmar, Toen-Vaquie,
Haran, Durov, Soulé, Connes-Conani... proposed some simi-
lar notions of F;-schemes.

(commutative rings — commutative monoid with 0)

Deitmar-Kurokawa-Koyama, Kurokawa-Ochiai, Soule, Connes-
Consani proposed different kinds of zeta functions of F;-schemes.
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X () | = |Y (Z/n) |
|(Spec R) (Fgn) |= | Homyings (R, Fgn) |
|(Spec A) (Z/n) | = | Homgroups (A, Z/n) |

§2, The plan of the paper

PART I: (Soule, Connes-Consani) Rough idea of the F;-
schem and the zeta function for some class of F;-scheme.

PART II: (Connes-Consani) A similarity between “the
counting functions” of the “hypothetical C = SpecZ ”
, and an irreducible smooth projective algebraic curve
defined over a finite field.

PART III: (Connes-Consani, Deitmar-Kurokawa-Koyama,
M) F;-zeta functions of Deitmar-Kurokawa-Koyama and
Kurokawa-Ochiai, some invariants for finite abelian groups,
and an expression of the Soule-Connes-Consani zeta
function for general, not necessarily torsion free, Noe-
therian F;-schemes.

§3, A rough idea of the F;-scheme
There is a very general theory of F;-scheme, e.g.

[CC] Alain Connes and Caterina Consani,
“Schemes over F; and zeta functions”, ArXiv0903.2024

which employs the functor-of-points philosophy for the cate-
gory Ring Uagjoint PMonoidy - '

Monoidy = Ring
Hommz-ng (Z[M], R) = Homgmmm-do (M, R)
M- Z[M] (OM — OZ[M])
R <R
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Ob (Ring Undjoint Monoido) = Ob (Ring) | [ Ob (Monoidy)

(Homgpin, (X,Y) if X,Y € Ring
HOlnDﬁonm'do (X, Y) if X,Y € 9Monoid
HomingUagjoimeMonoids (X, Y) = ¢ 0 if X € Ring,Y € Monoidy

Homg;ng(Z[X],Y) if X € Monoidy,Y € Ring
‘:—\i" Homfmonoido (X) Y)

A F;-functor is by definition a functor

Ring Uagjoint Monoidy —+ Get,

which is equivalent to the following data:

e X : Monoidy — Set

o Xz :Ring — Get

e e: X — Xzof3, where 8 : Monoidy — Ring, M — Z|M] (0p — OZ[M])
(<= e:Xop*— Xz, where *: Ring — Monoidy, R+— R)

Connes-Consani defined a F;-scheme X to be a F;-functor
Ring Uaajoint Monoidy — Get s.t.

e Xz, its restriction to Ring, is a Z-scheme.
e X, its restriction to Monoidy, is a MNy-scheme .

e the natural transformation e : X o * — X3, associated
to a field, is a bijection of sets. In particular,

Xz(Fq) < (X 08*) (Fg) X(Fq) X (F1[Z/(g - 1)) =————= X (Fy(¢-»))

Homgz_sch (SpecFq, Xz) Homgy, —sch (SpecF, (g-1),X)

Here, (lim,1 Fyn ~) Fin :=F[Z/nZ] := Z/nZ U {0}

For Noetherian Fi-scheme X (both Xz and X admit a fi-
nite open cover by Noetherian affine representables in each
category),

(1) there are just finitely many “points” in X.

(2) at each such a point z € X, the “residue field”x(z) =
I, [0X] is a finitely generated abelian group O = Z™® x
I1;Z/m;(z)Z



(3) X(Fyn) = Hompyy—scn (SpecFin, X) = Hze& Homgy, (O}, Z/nZ),
where

((]il_l;ri Fqn 2) ]Fln = ]Fl [Z/nZ] = Z/TLZ U {0}

In general, a Mj-scheme X is caleed torsion free , if O is
a torsion free abelian group for any z € X.

§4, The zeta function for some class of F;-scheme by Soule,
Connes-Consani

(Deitmar, Cones-Consani) For a Noetherian F;-scheme X with
X torsion free, IN(u+1) € Zx[u] s.t

| X (F1n)| = N(n+1), VneN

In particular,

IXZ (F,) | = IX (Fi-1) | = N(g), Vg, a prime power
)X (Frr) | = | Homey(0, Z/nZ)| = _ | Homey (2", Z/nZ)| = Y n®
zeX zeX zeX
So, set N(u+1):=3 u™® € Zs[u). O

So, we are naively lead to define the zeta faunction of X as
the Hasse zeta function of Xz, as our first attempt:

C(s,Xz) = [] ¢(s,X2/Fy),
p:prime

where ( (s, Xz/F,) is the congruence zeta function

¢ (S, XZ/IFP) = exp (Z I_)_(_;Z_(T;Mp—ms)

Bad News. (Soule, Deitmar, Kurokawa) When N(v) = N(u+1) =
Zmex u‘n(z) = Zme}( 'n(:z:) = Zze_)g(v - l)n(m) = Zi:o a‘kvk7 (ak S Z);

d d

C(s,X2) = [[¢ls = R™, Cls, Xe/Fp) =[] (1-p)7™

k=0 k=0

(Too complicated and redundanct for such simple (comparing with C = SpecZ)
X!
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Good News. (Soule, predicted by Manin, corected by Kurokawa) For a
NoetherianF,-scheme X with X torsion free (so, AN (v) = Zi___o ayv® €
Z[v] s.t. | X (Fin)|=N(n+1), ¥neN),

d

Cx(s) :=lim ( (s, Xz /Fp) (p = )™ = [ J (s = k)™
k=0

(Kurokawa) In an ideal case, for the l-th Betti number by of Xz/F,,

(-

d - N il cong e b
[T (1-pp) " = s, Xe/m) " T T] (2 - crsp™)
k=0 1=0 \j=1
(|“?l,j, = Pl/2)
i —(-1)by a l: even
— /2,8 . J /2
g (1 PP ) = b {o l: odd

Thus: N<U) = ZZ:O ak € ZZO[UL N(l) = EZ:O Ak = Zﬁo(_l)lbla
the Euler characterisitc of Xz /F,.

Example (Toric variety)

fan picture: lattice N:: a group N = Z" for some n € N.
convex cone o in Np:: a convex subset ¢ C Ng := N ®z R
with Ryg0 = 0. '
A convex cone ¢ is called:
polyhedral:: if it is finitely generated,
rational:: if the generators lie in the lattice N,
proper:: if it does not contain a non-zero sub vector
space of Ng.
fan A in N:: a finite collection A of proper convex ratio-
nal polyhedral cones o in the real vector space N =
N ®zR s.t.
e every face of a cone in A is in A,
o the intersection of two cones in A is a face of each.
(Here zero is considered a face of every cone.)
monoid picture: dual lattice M:: M := Hom(N,Z)
dual cone & in Mg := Hom(N,R):: ¢ := {a € Mg | a(o) 2 0}
monoid A,:: A, := & N M; face inclusion 7 S ¢ =
Ar 2 A,
affine open U,:: U, := Spec (C[4,]) = Spec (C[g N M])
toriv variety Xa:: X, is obtained by glueing U, = Spec (C[A4,])
along U, — U, for each face inclusion 7 & o
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This construction allows us to define a F;-scheme X,.
(Deitmar) Glvenafan A & N 2 2Z", for j =0,1,2,...,n,
let
f; be the number of cones in A of dimsension j, and set

& = Yy faci(~1)" (¥) Then,

n

Cxals) =[] (s = 5)™

§=0

n

IN@+1) =) w® —kau" k }:fn wuk

z€X A =0

= ankv—l mej() ~)H

7=

—ZﬂZh() o

j=0 k=j

Question Can we define (x(s) for more general F,;-scheme
X?

Good News. Connes-Consani proposed two solutions.

Solution 1: This proceeds as follows:

e Extend “canonically” N(n+1):= |X (Fi»)|, (n€N) to
N:Rso— R, st.3C>0,3keN, st. |[Nu)| < Cut

e As far as zero points and poles concerns, can charac-
terize (y(s) (which is supposed to be (x(s)) by

% CN / N(u d*u = du/u
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— (l}l_I)Iia Z N(qr) (q_

r21

ﬂ
~=
~— e N——

= lim N(q)( T) log (¢7")

g—1
r21

= —m;f\/’(q )g") ™" logg

= ~lm > N(g")(g")™* (log (¢") ~ log ("))

r21

—/1 N(u)u™*dlogu = — /100 N (u)u™*du/u

Solution 2: Rather than extending to N : Ry, — R, consider
(s¢(s), whose zero points and poles are characterized by

dlSC

CdlSC Z N(n)n_s !

n21

Good News. (Connes-Consani) For any Noetherian F;-scheme X,

3h(z), an entire function, s.t.

N°(s) = Cu(s) exp (h(2))

Therefore, (#°(s) and (n(s) have the same zero points and poles in-
cluding multiplicities.

4sc(s) may be defined for more general, not necesarily Noetherian,

IFi-schemes...
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PART 11

§5, Hypothetical computation of N(n +1) = | (SpecZ) (Fin) |
(Connes-Consani)

Using results of Ingham, Connes-Consani observed:

e Regard w(u) = Y, order(p)S as a distribution on

p+1
[1, 00).
e Then,
d d ek

1) Nw):=u—— -

(1) (u) :==u duw(u) +1=u o (p}e; order(p)p n 1) +1,
where the derivative is in the sense of distributions,
enjoys

e The evaluatlon w(l) =7 hms_)lw(s) = > ez order(p) sy =
+3+ lﬁ;—" EéT)’ plays an essential role in establishing
(2).

Connes-Consani further pointed out the following analogue:

e X, an irreducible, smooth projective algebraic curve
over [,
e If X comes from [, by “scalar extension” ,

Q) =|X(F)|=g-) o +1, g=7p,

where o’s are the complex roots of the characteristic
polynomial of the Frobenius on HL(X ® F,, Q) (£ # p)

e Expressing these roots in the form a = p?, for p € Z/,
the set of zeros of the Hasse-Weil zeta function of X,

(3) N(g) =|X(Fy)| =q- Z order(p) ¢° + 1.
peEZ!
e Now, compare (3) with the formal differantiation of (1):

N(u) ~u— Z order(p)u” + 1

pEZ



PART ITI

§6, Invariants p,(A) for an abelian group A

For a finite abelian group A, define the
r-th p-invariant u,.(A) (r € N) by

141
1

r(A) 1= 3 'Hom%(A,Z/(klkz---k,)Z)l.
ki,...,kr=1

pr(A) is essentially the average of the random variable
X (A):Q:=N >N
(s, ko, k) > | Homay (4,2 (ks - K, )2) I

when the infinite set { = N’ is given the homogeneous mea-
sure.

= wA)=E[X@A)], B[X@AP]=mA") @eN)

The invariants p,.(A) were first considered by Deitmar-Kurokawa-
Koyama and Kurokawa-Ochiai, throuth their study of, what
they call, multiplicative Igusa-type zeta functions of Fi-scheme,
which we review by comparing with the Connes-Consani mod-
ified zeta function.

(i) The modified zeta function ($°(s) for a Noetherian
Fi-scheme X', defined and studied by Connes-Consani
[CC] is characterized by the following property:

)

Gl D oseX 2om>1 ’Hommb((’);,Z/mZ)l(m—i—l)’s_l (mod. constant IN(1))
Cx(s) = A ¢dise(s)  (Cx(s) : Soulé zeta function, h(z) : entire)

(1i) The multivariable (r variable) Igusa type zeta function

Zigus“(sl, ...,8) for a Noetherian F;-scheme X
([DKK] for » = 1 and [KO] for general r € N) is given
by

ZEon, o s) =3 D, [Homay(O5, Z/ma - m Z)|mi® - my*

z€X My, ,me21
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[DKK] Anton Deitmar, Shin-ya Koyama and Nobushige Kurokawa,
“Absolute zeta functions.” Proc. Japan Acad. Ser.
A Math. Sci. 84 (2008), no. 8, 138—-142

[KO] Nobushige Kurokawa and Hiroyuki Ochiai,
“A multivariable Euler product of Iqusa type and its ap-
plications,” Journal of Number Theory, 12 pages,
Available online 10 March 2009.

Analyzing analytic properties of

o0
e TS B 'Hommb(A, Zfma -y L) mse - e

T
my,- ymf‘_>.1

some very mysterious looking idnetity of elementary number
theory , which expresses u.(A) in two different ways, was
obtained in the following two cases:

[DKK] r =1 and arbitrary finite abelian group A.
[KO] Cyclic groups A = Z/nZ and arbitray r € N.

I reported a purely elementary proof of some slight gener-
alization of these identities at the Vanderbilt conference in
May, 2009:

[M1] Norihiko Minami,
“On the random variable N™ > (ki, ko, ..., k) = ged(n, ki1ka...k,) €
N, 7arXiv:0907.0916.

[M2] Norihiko Minami, “On the random variable N 3 | —
ged(l, ny) ged(l, n2)... ged(l, ng) € N,”arXiv:0907.0918.
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Theorem of [DKK] type. For aﬁmte abelian group A = H 1(Z/n;Z),

k
p1(A4) = m (H (Z/an))
j=1

_ 1
lem(ny, o, ...,

— H [p‘/p,0+"‘+up,k—1

) Y. ecd(l,m)ged(l,ng) - - ged(l, )

1 k-1 Vp,j+1—1
(1= 1) S "

j=0 l=vp;

Here, for each prime p | n,

{vp1,¥p2, -y Vp k1, Vp i } = {ordp(n1), ordp(na), - - ., ordy(ng—1), ordy(nk)}

Vpo = 0< vp1 < Vp,2 <...< Vp k-1 < Vpk

Set ,H, := ,,.,_1C,. Then, we have:

Theorem of [KO] type. Forn,re N, weC,

n

1
s Z ged(n, ky -+ - kp)®

k1

p
Hp[n
Hp[n
\
(
Hp|n

len

\

veokr=1

(£555) + 9780 T3 o { (1 =97 = (£55) -}

_ (if w#1)

2 i=0 ordy(m)Hi (1 B %)l}

- (fw=1)

(355 + 71— p ) T B { (1 -7 = (=) ]
(if w # 1)

{Z?:o ordy(n) Ml (1 - %)l}
(fw=1)

Corollary [KO]. Forn,r € N,

ue(Z/nZ) =[] [i ordp(n) Hi <1 - %)l}

pln
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§7 Motivation of the rest of talk

When we play with pu,(A), the following questions seem to be
very natural:

e Is there any more conceptual interpretation or descrip-
tion of u,(A)?

e Is ;1,(A), whose origin is the Igusa-type zeta functions
for F;-schemes of Kurokawa and his collaboratiors, use-
ful to study F,-scheme?

o Is there any relationship between the zeta functions of
Soullé, Connes-Consani, and the Igusa-type zeta func-
tions, which was the orgin of u,.(A4)?

§8 u1(A)and the zeta functions of Soullé, Connes-Consani.

The logarithmic derivative of the deformed modified zeta func-
tion of Soulé type ($5¢(s;w):

a Cdlsc

m’ ZZ’HOIDM (0;,Z/mZ) (m+1)'s“1 (mod. constant)

zeX m2>1

is a meromorphic function of s with all of its poles simple.

This gives us the following expression of the deformed mod-
ified zeta function of Soulé type:

[M3] Norihiko Minami,
“Meromorphicity of some deformed multivariable zeta
functions for Fy-schemes, ” arXiv:0910.3879




#<(s,)

4= | Homgy (Az,2/k2)
i(z)

n(z)w '
— eh(s;w) H H (S _ j)(_('ﬂ(:;)’w)(_l)n(m)w—g)
j=0

zeX

where, for each z € X, O; = Z*® x [, Z/m;(z)Z =: Z™®) x A,,
l(z) = lem{m;(z)}, amd h(s;w) is some entire function of s de-
pending upon w € N.

Restricting to the case w = 1 further, we obtain the follow-
ing:

\
For a Noetherian Fi-scheme X, there are some entire func-

tions hy(s), he(s) s.t.
Ca(s) = eMO¢gee(s)

M1 (A::)

n(zx) .
= IT | | [](s — 550 07) ,
zeX \ \j=0

where, for each z € X, O; = 2" x [, Z/m;(z)Z =: Z"® x A,,

\ J

Message:

e 41 measures “local contribution of ramification”!.
¢ locally, torsion does not creat any new singularity.
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An outline of the proof of the ($¢(s;w) formula.

-2 i | Homgy, (O, Z/mZ) ‘w(m +1)7e

z€X m=1
n(z)w
Z Z ( ) n(m)w—jl(m)—(s+1—.’i)
zeX j=0
Iz w k 1
x Yy l Homgy, (Ag, Z/kZ) | ¢ <s+ 1—3j, -l—%) ,

k=1
where the Hurwitz zeta function
C(5,9) =Y (n+9)~° (R(s) > 1,R(q) > 0)
n>0

only has a pole of residue 1 at s = 1 Thus, the singularities of (4) are
poles at s = j € Ugex {0, -+ ,n(x)} with residue

U(z)

_ Z i)w ( ) 1)M@w=ip ()~ Z ‘ Homg (Az, Z/kZ) ’

zeX j=0 k=1

(= @) | Homay (Ag, Z/KZ) |w
_ x)w n(z)w—
_;(Z( ("5 )i i) )

3=0

‘zeX ;=0 <— (n(?)w>(—1)n(P)W—j> sz(:)l Hom?zx()flx,Z/kZ) ’w
n(z)w

-3 ( (") cvre ) mga

Now the claim follows immediately. O

Jj=

§9. The conceptual interpratation of u;(A).

For any finite abelian group A,
|A|

1
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If we interpret that ﬁ “=¢«L1 «= <« for an element a

of infinite order, we may generalize the definition of y,(A) to
finitely generalized abelian groups, as well as to finite (not
necessary commutative) groups.

Proof of u (A)=3",ca ;’,lﬂ

|A| 14|

i Z’Homm (A, Z/1Z) | o Z’Hom% /12, A)}

1Al 1Al

|A|Z ) lEplle (z/1z, C)l ﬁ > Z‘Epi%(Z/lZ,C)

i=1 cyclic CCA cyclic CCA I=1
|A]

1 A
= > Z.Monom C, Z/zZ)[ ] | > || :¢(|C|)
cyclic CCA =1 cyclic CcA
- 3 ¢(IC1) _ T Z
cyclic CCA IOI heHom(Z,A) ‘ a€A |al
O
§10, u.(A) for general r € N.
~
For any abelian group A and r € N, we have
l
120 ordp(lapH1 (1 -2 }
KOr—l(Ia') Hp']a[ [leo ordp(lal)£41 ( p)
o(a)= 3o KOl _ 5
a€A lal a€A la’
!
r—1 1
=iDy KOr-1(lal) s 2= ordy(la) H (1 — 5)
acA lal a€A Ia‘
14 264 lla \ €40
where KO stands for Kurokawa-Ochiai [KO]
1 (r=0)
KO,.(n) = . !
( ) /JT(Z/nZ) = Hp]n [Zl:O ordp(n)Hl (1 - %) :I (T 2 1)

\_ . J




§11, Connes-Consani modified Soulé type zeta function,
again

To recap, let us combine the two theorem:

For a Noetherian Fj-scheme X, there are some entire func-\
tions hy(s), ha(s) s.t.

CX(S) — eh] (S)CgiSC(s)

n(zx) . ZaeA: ].1,_|
=20 T [ | [1(s - - 00me)
zeX 3=0

where, for each z € X, O = Z"® xI1; Z/m;j(z)Z =: ZM®) x A,

N )

Once again, the above result is in the following:

[M3] Norihiko Minami,
“Meromorphicity of some deformed multivariable zeta
functions for Fy-schemes, ?arXiv:0910.3879

I would like to end this paper with the following question
to transformation group theorists:

Is there any application of the invariants 1. (A)
to the transformation group theory?
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