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On the spaces of equivariant maps
between real algebraic varieties

BESEEARE ILOMT (Kohhei Yamaguchi)*

B E
Recently the author notices that the stability dimension ob-
tained in [1] and {12] can be improved by using the truncated

simplicial resolutions invented by J. Mostovoy [15]. The purpose
of this note is to announce these improvements.

1 Introduction.

We consider the homotopy types of spaces of algebraic (rational) maps
from real projective space RP™ into the complex projective space CP™
for 2 < m < 2n. It is known in [1] that the inclusion of the space of ratio-
nal (or re_gular) maps into the space of all continuous maps is a homotopy
equivalence. These results combined with those of [1] can be formulated as
a single statement about Z/2-equivariant homotopy equivalence between
these spaces, where the Z/2-action is induced by the complex conjuga-
tion. This is also one of the generalizations of a theorem of [9], and it is
already published in [12]. Recently the author notices that the stability
dimensions given in [1] and [12] can be improved by using the truncated
simplicial resolutions invented by J. Mostovoy [15]. In this note we shall
announce about these improvements (cf. [2]).
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1.1 Definitions and notations.

Let K denote one of the fields R or C of real or complex numbers
and let d(K) = dimgK = 1if K =R and 2if K = C. Let m and n
be positive integers such that 1 < m < d(K) - (n+ 1) — 1. We choose
eX =[1:0:...:0] € KP™ as the base point of KP". For d(K) < m <
d(K) - (n + 1) — 1, we denote by Map*(RP™,KP") the space consisting
of all based maps f : (RP™,eR) — (KP", eX), and by Map?(RP™, KP™),
where € € Z/2 = {0,1} = mo(Map*(RP™, KP™)), the corresponding path
component of Map*(RP™,KP"). Similarly, let Map(RP™,KP") denote
the space of all free maps f : RP™ — KP" and Map (RP™,KP") the
corresponding path component of Map(RP™, KP").

We shall use the symbols z; when we refer to complex valued coordi-
nates or variables or when we refer to complex and real valued ones at
the same time while the notation z; will be restricted to the purely real
case.

A map f: RP™ — KP" is called a algebraic map of the degree d if it

can be represented as a rational map of the form f = [fy : e fn) such
that fo, -, fa € K[zo, -+ , 2] are homogeneous polynomials of the same
degree d with no common real roots except Oy 1 = (0,---,0) € R™*L,

We denote by Alg,(RP™, KP") (resp. Alg;(RP™,KP")) the space con-
sisting of all (resp. based) algebraic maps f : RP™ — KP" of de-
gree d. It is easy to see that there are inclusions Alg,(RP™, KP") C
Mapyg, (RP™,KP") and Algi(RP™,KP") C Mapjy, (RP™, KP"), where
[d]2 € Z/2 = {0, 1} denotes the integer d mod 2. Let A4(m,n)(K) denote
the space consisting of all (n + 1)-tuples (fo, - , fn) € K20, , 2m]™!
of homogeneous polynomials of degree d with coeflicients in K and with-
out non-trivial common real roots (but possibly with non-trivial common
complez ones).

Let A¥(m,n) C A4(m,n)(K) be the subspace consisting of (n + 1)-
tuples (fo, -, fu) € Ag(m,n)(K) such that the coefficient of z¢ in fo
is 1 and 0 in the other fi’s (k # 0). Then there is a natural surjective
projection map

UX . AK(m,n) — Algi(RP™, KP"™).

For m > 2 and g € Alg;(RP™ !, KP") a fixed algebraic map, we denote
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by Algk(m,n;g) and F(m,n;g) the spaces defined by

Algi(m,n;g) = {f € Algy(RP™,KP") : f|[RP™" = g},

F¥(m,n;g9) = {f € Mapjy,(RP™,KP"): fIRP™ ! = g}.
Note that there is a homotopy equivalence FX(m,n;g) ~ Q™KP". Let
AK(m,n; g) ¢ A¥(m,n) denote the subspace given by

A% (m, n; g) = (TF) 7 (Algg (m, n; g)).

Observe that if an algebraic map f € Alg;(RP™,KP") can be represented
as f = [fo:---: fn] for some (fo," - , fn) € A% (m,n) then the same map

can also be represented as f = [Gmfo : -+ : Gmfal, Where Gm = Y jep 25
So there is an inclusion

Alg}(RP™ KP™) C Algl;,,(RP™, KP")

and we can define the stabilization map s4 : A% (m,n) — A% ,(m,n) by

Sd(f07"' ,fn)-:‘ (gmfm agmfn)°

It is easy to see that there is a commutative diagram
A]}z((m, n) — A]}i;+2(ma n)
o | v, |
Alg}(RP™ KP") —— Alg} ,(RP™ KP")

A map f € Alg(RP™,KP") is called an algebraic map of minimal degree
d if f € Algj(RP™ KP") \ Alg; ,(RP™,KP"). It is easy to see that if
g € Algh(RP™ !, KP™) is an algebraic map of minimal degree d, then the
restriction

TX| A (m,n; ) - A¥(m,n; g) > Algh(m,n; 9)
is a homeomorphism. Let
{z’d,K : Algy(RP™, KP") S Map?y, (RP™, KP")
GgK : Alg],lf(m, n; g) S F(m,n;g) ~ Q"KP"
denote the inclusions and let
X = igx o UK : Af(m,n) — Mapjy, (RP™,KP").

be the natural projection.



1.2 The case m = 1.

First, recall the following old result for the case m = 1.
Theorem 1.1 ([10], [20] (cf. [13])). Letn > 2 and d > 1 be integers.

(i) IfK=R andm =1, the map i} : A®(1,n) — Map’["d]z(RPl,RP") ~
QS™ is a homotopy equivalence up to dimension D:(d,n), where
Di(d,n) denotes the integer given by Dy(d,n) = (d+1)(n—1) —1.

Moreover, if n > 3 orn = 2 with d = 1 (mod 2), there is a ho-
motopy equivalence AR ~ J;(QS™), where J;(QS™) denotes the d-th
stage James filtration of QS™ given by

Jo(Q8™) = S U XD y Sy ...y ednD) c Qgm,

(ii) IfK=C andm = 1, the map1§ : A(1,n) — QS?*! is a homotopy
equivalence up to dimension Dyi(d,2n+1) = 2n(d+1) —1 and there
is a homotopy equivalence AS(1,n) =~ J3(QS*"*1).

Remark. (i) A map f: X — Y is called a homotopy (resp. a homol-
ogy) equivalence up to dimension D if f, : m(X) — (YY) (resp.fs :
Hy(X,Z) — Hy(Y,Z)) is an isomorphism for any k < D and an epi-
morphism for ¥ = D. Similarly, it is called a homotopy (resp. a ho-
mology) equivalence through dimension D if f, : me(X) — m(Y) (resp.
fo: H(X,Z) — Hy(Y,Z)) is an isomorphism for any k& < D.

(ii) Let G be a finite group and let f : X — Y be a G-equivariant
map. Then a map f : X — Y is called a G-equivariant homotopy
(resp. homology) equivalence up to dimension D if for each subgroup
H C G the induced homomorphism fZ : m(X#) — m(Y¥) (resp.
fH: Hy(XH",Z) — Hy(Y¥,Z)) is an isomorphism for any k¥ < D and an
epimorphism for k£ = D.

Similarly, it is called a G-equivariant homotopy (resp. homology) equiv-
alence through dimension D if for each subgroup H C G the induced
homomorphism fH : mp(X#) S mp(YH) (resp. fH : Hy(XH,Z) S
Hy(Y¥H,Z)) is an isomorphism for any k < D.
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The complex conjugation on C naturally induces the Z/2-action on
AS§(m,n) and S**1, where we identify S***! with the space

S = {(wo, -+ ,wn) € C Y |wy? =1}
k=0

It is easy to see that AG(m,n)%/? = AR(m,n) and (:9)%/? = i¥. Hence,
we also have:

Corollary 1.2 ([10]). If n > 2 and d > 1 are integers, the map 15 :
AS(1,n) — QS+ is a Z/2-equivariant homotopy equivalence up to di-
mension Di(d,n).

2 The case m > 2.

2.1 The improvements of the Stability dimensions.

For a space X, let F(X,r) denote the configuration space of distinct r
points in X given by F(X,r) = {(z1, - ,%,) € X" : z; # z; if i # j}.
The symmetric group S, of r letters acts on F(X,r) freely by permuting
coordinates. Let C.(X) be the configuration space of unordered r-distinct
points in X given by the orbit space Cr(X) = F(X,r)/S,.

It is known ([8], [18]) that there are the stable homotopy equivalence
and the isomorphism of abelian groups

Qm oMt~ \/ D,(R™; S*) (stable homotopy equivalence)
r=1

Hy(D.(R™, "), Z) & Hx_n(Cr-(R™), (£Z)®") (k,1 > 1),

where we set A" X = X A--- A X (r times), Xy = X U {x} (* is the
disjoint base point), and D,(R™, S") = F(R™,r)4 As, (A" ).
Let Gn"f’ ni and Dg(d;m,n) be the abelian group and the positive in-



teger defined by

(
me*‘@Hk (N—myr (Cr(R™), (iz)éb(N—m))’
; (n—m)(|%2] +1) 1 if K =R, d
Da(dim,n) = < (n—m)d —2 ifK=R, d>
@rn-m+1)([#[+1) -1 fK=C, d<
\ | (2n—m+1)d—2 ifK=C, d>4,

where |z] denotes the integer part of a real number z. Note that there
is an isomorphism Hy(Q™S™, Z) = G2 ., for any k > 1.

Then we have the following results. \

Theorem 2.1 (cf. [1]). Let 2 < m < n and let g € Alg}(RP™ ! RP")
be an algebraic map of minimal degree d.

(i) The inclusion ix : Algg(m,n;g) — FR(m,n;g) ~ Q™S" is a ho-
motopy equivalence through dimension Dg(d; m,n) if m+2 < n and
a homology equivalence through dimension Dg(d;m,n) if m+1 = n.

(ii) For any k > 1, Hy(Algk(m,n;g),Z) contains the subgroup an’n,k
as a direct summand. Moreover, the induced homomorphism iyg, :
H(Algh(m,n;9),Z) — Hiy(Q™S™,Z) is an epimorphism for any
kE<(n—-m)(d+1)-1.

Theorem 2.2 (cf. [1]). If 2 < m < n are positive integers,
i% . A®(m,n) — Mapjy, (RP™, RP")

is a homotopy equivalence through dimension Dgr(d;m,n) if m+2 < n
and a homology equivalence through dimension Dg(d;m,n) if m+1 = n.

Theorem 2.3 (cf. [12]). Let 2 < m < 2n, and let g € Alg,(RP™ !, CP")
be an algebraic map of minimal degree d.

(i) The inclusion iy e : Alg§(m,n;g) — FC(m,n;g) ~ QS+l s g
homotopy equivalence through dimension D¢c(d; m,n) if m < 2n and
a homology equivalence through dimension Dc(d;m,n) if m = 2n.
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(ii) Foranyk > 1, Hy(AlgS(m,n; g),Z) contains the subgroup an,zn 1k
as a direct summand. Moreover, the induced homomorphism i ¢, :
Hi(AlgS(m,n; ), Z) — Hp(Q™S*+,Z) is an epimorphism for any
k<(@2n-m+1)(d+1)-1.

Theorem 2.4 (cf. [12]). If2 < m < 2n are positive integers,
i$ : AS(m,n) — Mapjy, (RP™, CP")

is a homotopy equivalence through dimension D¢(d;m,n) if m < 2n and
a homology equivalence through dimension Dc(d;m,n) if m = 2n.

Note that the complex conjugation on C naturally induces Z/2-actions
on the spaces AlgY(m,n;g) and A§(m,n) as before. In the same way it
also induces a Z/2-action on CP™ and this action extends to actions on
the spaces Map*(RP™, $2**1) and Map}(RP™,CP"), where we identify
S2+ = f(wy, -+ ,wy) € C*FL: 300 o |we? = 1} and regard RP™ as a
7Z./2-space with the trivial Z/2-action.

Corollary 2.5 (cf. [12]). Let 2 < m < 2n, d > 1 be positive integers and
g € Alg§(RP™,CP") be a fized algebraic map of the minimal degree d.

(i) If m < 2n, the inclusion map iy¢ : AlgS(m,n;g) — FC(m,n;g) ~
QS+l is g Z/2-equivariant homotopy equivalence through dimen-
sion Dg(d;m,n).

(i) If m = 2n, the above inclusion map iyc 1s and a Z/2-equivariant
homology equivalence through dimension Dg(d;m, n).

(iii) The map 3§ : A§(m,n) — Mapjy, (RP™,CP") is @ Z/2-equivariant
homotopy equivalence through dimension Dg(d; m,n) if m < 2n and

a 7./ 2-equivariant homology equivalence through the same dimension
Dgr(d;m,n) if m = 2n.

2.2 Conjectures.

Finally we report several related questions.

Conjecture 2.6. Is the projection VX : AX(m,n) — Alg;(RP™,KP") a
homotopy equivalence?
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Let bK(d; m,n) denote the integer given by

Dr(d:m. ) (n—m)(d+1)—1 if K=R,
K\&, I1e, =
2n-m+1)(d+1)—1 ifK=C.

Conjecture 2.7. Is the map i5 : Af(m,n) — Mapjy,(RP™,KP") q
homotopy (or homology) equivalence up to dimension Dg(d;m,n)?

Remark. The above conjectures are correct if m = 1.
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