goooboooobgon
0 17330 20110 11-30

FiRRzEa SRR TSR 42 v H— FRunge-Kutta AF—Ls
Staggered Runge-Kutta schemes for Semilinear Wave
Equations
WRH RN, VN B
VAt B, 2 LR
DDaisuke Murai, 2 Toshiyuki Koto
DNagoya University, ?Nanzan University
*Email: murai@math.cm.is.nagoya-u.ac.jp

Abstract

A staggered Runge-Kutta (staggered RK) scheme is the time integration
Runge-Kutta type scheme based on staggered grid, which was proposed by
Ghrist and Fornberg and Driscoll in 2000. Afterwords, Vewer presented ef-
ficiency of the scheme for linear and semilinear wave equations through nu-
merical experiments. We study stability and convergence properties of this
scheme for semilinear wave equations. In particular, we prove convergence of
a fully discrete scheme obtained by applying the staggered RK scheme to the
MOL approximation of the equation.
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1 Introduction

We consider initial-boundary value problems of the form

2
%t; =DAu+g(t,z,u), 0<t<T, zx€,
u(t,z) =p(t,z), 0<t<T, xeif,
u(0, ) = up(x), %—?—(O,x) = v(x), x €.

Here u(t,z) is an R-valued unknown function, € is a bounded domain in R*,i =
1,2,3 with the boundary 02, A is the Laplace operator, D is a positive constant,
and g(x,t, u) is an R-valued given function. Also, ug(x), vo(x), ¢(t,x) are given
functions.

Many important wave equations, such as the Klein-Gordon equation (see, e.g., [10],
[19]) and the nonlinear Klein-Gordon equation (see [17]), are represented in this
form.

To apply numerical schemes, we may use the form

%%.—:‘U, %%:DAu%—g(t,;r,u), 0<t<T, z€,
«LL(th) = gO(t,.’lf), O S t S T’ = aQ’ (1)

w(0,x) = wo(z), v(0,2)=vo(x), x €.
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A well-known approach in the numerical solution of wave problems in partial differ-
ential equations (PDEs) is the method of lines (MOL) (see [12]). In this approach,
PDEs are first discretized in space by finite difference or finite element techniques
to be converted into a system of ordinary differential equations (ODEs).

Let 4, be a grid with mesh width h > 0, and V}, be the vector space of all functions
from Q, to R. An MOL approximation of (1) is written in the form

d’U,h(t)
dt

dup(t)
dt

= Uh(t), = DLhuh(t) + QOh(t) + gn(t, uh(t)). (2)
Here uy,, vy, are approximation functions of w and v such that us(t), vn(t) € V;, for
t € [0,T), Ly, is a difference approximation of A, gj is a function from [0,7] X V;, to
V;, defined by gi(t, up)(z) = g(t, z,up(t)), T € Qu, for t € [0,T), up € Vi, and py(t)
is a function determined from the boundary condition.

For the time integration of (2), Ghrist et al. [5] have proposed a staggered Runge-
Kutta (staggered RK) scheme for semi-discrete wave equations which uses staggering
in time. Spatial grid staggering is well-known. For example, the FDTD scheme (see
[18]) in the electromagnetic field analysis and the SMAC scheme (see, e.g., [3, 9])
in the fluid calculation use space staggering. Ghrist et al, [5] have proposed and
analyzed a fourth-order time-staggered scheme (RKS4) which can be viewed as an
extension of an existing second-order time-staggered scheme along the idea of RK
methods. This scheme has further been examined by Verwer [15, 16].

As is well known, RK approximations for PDEs suffer from order reduction phenom-
ena. That is, the order of time-stepping in the fully discrete scheme is, in general,
less than that of the underlying RK scheme (see, e.g., [8], [11], [14] on order reduc-
tion phenomena of RK schemes in the PDE context). Verwer [15] has observed that
in the PDE context the order of RKS4 is equal to three. He also gives an analysis
of this phenomenon.

In this paper, we study stability and convergence of staggered RK schemes for (2).
Specifically, we introduce a new stability condition which guarantees the bounded-
ness of numerical solutions and prove convergence of the schemes.

The paper is organized as follows. In the next section (Section 2), we introduce some
notation, including the form of the staggered RK schemes. In Section 3, we prove
a theorem on the boundedness of the numerical solution. In Section 4, we prove a
theorem on convergence of the scheme applied to (2). In Section 5, we numerically
estimate the order of convergence through a numerical experiment.

2 Preliminaries

Let 7 > 0 be a step size. We define the step points t, = n7, thy12 = (n +1 /2)T for
integer n > 0.
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As described in [5], for positive integer s, a staggered RK scheme for ODEs of the

form

is given by
Un+1/2,1

Un i

’

Un+1/2,i

Up+1

/
Up 11

/
Un+t1/2,i

!
un+1,z’

Un+3/2

0<t<T, u,veR

{ wo= f(tv)

o= glto)

= Un+1/2,

i
=Up + T Z bi,jf(tn+l/2 + €T, Un+1/2,j)a t=1,-,8-1,
J=1
i—1
= Un+1/2 -+ T Z ai’jg(tn —+ CjT, ‘ll,n,j), 1= 2, cee
Jj=1

v

S
=Up+T Z dif (tns1/2 + €T, Uny1/2.),

i=1

= Up+1,

i
/ / !/ .
= Upy1/2+ T E bij9(tnir + €T up ), i=1,--- s —1,

j=1

i—1

_ 2 : ’ I -

=Uny1 + T az"jf(tn—l—l/Z + CjT> Un-{-l/Q,j)a 1= 2, S,
j=1

S
=Uny1/2+ T Z d;g(tn—i-l + 6;73 u;z+1,i)

i=1

with the abscissae

Here a; ;, b, ;, a;

1'7],

t=1,...,8 -1,

i i
/ /
¢ = E bi,j> ¢ = E bi,j7
i—1 i—1
_ ! / P 2
€; = ai,j) el"_ ai,ja 1= 42,...,8.
j=1 j=1

(3)

(6)

b iy &, diy, i, e, €] are coefficients, e; = €} = 0, Un;, Vpy1/04,

Upy14r Upyq /2 are intermediate variables, u, and v,;1/; are approximate values of
u(t,) and v(t,41/2), respectively.
We describe the algorithm of the staggered RK scheme. In the first step, we calculate
uy from ug and vy /2 by (4), where v; /2 is produced from given initial values ug(2) =
g, vo(T) = vy, T € 1), and using a traditional explicit Runge-Kutta scheme. During
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the next step, we calculate vs/s from v/, and u; by (5). So, generally, we calculate
Unt1 from w, and Uni1/2 by (4), and vni3/2 from v,119 and unqq by (5) and all
approximate values are calculated explicitly.

We introduce some notation. The m x m identity matrix will be denoted by I,,. We

use the standard symbol 1 = (1,---,1)T € R®. To analyze stability of the scheme,
we use the following linear test equation:
w'(t) = v(t)

{ V(t) = —wtult) >0 (7)

where u(t) is an R-valued function.
Applying (4)-(5) to (7), we get

Vo172 = Topy12 — Tw? AU,
Un = 1U,n + TBVn+1/27
Upt1 = Up T+ 7—an—H/%

8
U7’z—+—1 = lu,1 + TA,VZ-H/Z’ ( )
V1i+1/2 = 1Unt1/2 — Tw? B’ T/L+1’

; _ 21717/
Un43/2 = Ung1/72 — TW d n+l>

where
T
0 b1 d
az1 0 O b2,1 bg,g O d2
=1 . . . , B=1 " d=1 "1 .
as,l c as,s—l 0 bs,l bs,2 e bs,s ds
T
/ /
0 1,1 1
' ' / '
azy 0 0 o1 bhy O dy
I A I b ? —_
' ' / / ’ '
2% D Ug s 1 0 s,1 s2 7 bs,s ds
T /. ) . T
Vir1/2 = (Ung1/215 Unt1/2,2,° 5 Unt1/2,s) 5 Un = (Un1s Ungz, -+ s Uns)
! ! ! !/ T
Vn+1/2 = (vn+l/2,17 Unt1/2,20 """ s Un+l/2,.s) ?
! A o ! T
ntl = (un+1,1’ Upi12) 7" U‘n—t—l,s) .

Eliminating V,11/2, Un, U, and 7:+1/2’ we can rewrite (8) as

()= () mea (5 9) () 0
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For 6 > 0, R(6) is given by

N 1+ 7'1,1(9)1 7'172(9)1
R(6) = (412(9)1(“,1(9)1 1) 147 ,(0)Ira(6)1 + r;,1(0)1) (10)

with

r11(0) = —=0°d(L, + *AB) YA, r15(0) = 0d(I, + 6>AB) ",
ria(0) = —0*d (I, + PAB) A, 71 ,(8) = —0d/ (I, +92A’B’)

Noticing (0°AB)* = O and (§?A'B')* = O, we get

—_
—

(I, + 0?°AB)™ = N (=02AB),, (I, + PAB) ! = S (=624'B)’

1

Il
o
Il
o

i

with (=6°AB)% = (-¢*A'B’)° = I,. Then we rewrite the coefficients in (10) as

s—1
ra(0) =d Y (=07 THABY A, ria(6 dZ( ~6%)'6
=0

s—1 s—1 (11)
ra(0) = d' D () ABYA, 7,0 = —d' S (—62)i0(A'B).
1=0 =0

Let A+ = A.(0) be the eigenvalues of (10), which are the roots of

N = (24 r1(0)1 + 7] 1(0)1 + r12(0)1r] 5(0)1) A

/ (12)
+(1 + 7’1’1(9)1)(1 + 74171(9>1) :O
Under this notation, we define the stability interval of the scheme.

Definition 1. The stability interval S of a staggered RK scheme (4)-(5) is defined
by a connected closed interval of {0;|A.(0)| <1, 6 > 0}, which includes 0.

The simplest example of staggered RK schemes is the (staggered) leapfrog scheme
(see, e.g., [15])

Up41 = Up + Tf(tn+l/2: 'Un+1/2)a

Un+3/2 = Unt1/2 + Tg(tn+17 Un+1)~

(13)

"This scheme is of order 2 for ODEs. In this case, the scheme applied to (7) is reduced
to (9) with

7'171(0)1 = ]/1](9)1 = 0, 7'1?2(0)1 = 9, 'r'1,2(0)1 = ‘—0 (14)
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Substituting (14) into (12), we get A2 — (2 — #*)A + 1 = 0. Since the discriminant
of 2= (2—-0)A+1=01is D(0) = (2—60%)% —4, it is easy to see that [A,(0)] < 1
iff D(#) <0. S is estimated by using the smallest positive root of =2 = 2 — 62 i.e.
S =10,2].

RKS4 from [5] is another example of a staggered RK scheme. It is obtained by

taking
000
B=B={10 0 ,dzd’:(%, 511 2l> (15)
00 0 4

This scheme is of order 4 for ODEs. In this case, the scheme for (7) is reduced to
(9) with

0 0
A=A=1-10
0 1

o o O

/ 03 / l 93
7"1,1(0)1 = T1’1(0)1 = 0, T1’2(9)1 =0 — -2—21-, 7'1’2(9)1 = -0 + -2-2 (16)

Substituting (16) into (12), we get
2 -{2-(0-6"/24) "} r+1=0.

In [15], S is found to be defined by the smallest positive root of —2 = 2— (0—63/24)2,
ie. S'=[0,2(21/3 + 22/3)].

3 Stability of staggered RK schemes

We use (9) to estimate the stability of the staggered RK scheme. In order to prove
convergence of the staggered RK scheme in the next section, we have to evaluate
|R(0)"||2 of (10), where || - ||z is the Euclidean norm on R? and the corresponding
operator norm for 2 x 2 matrices. To accomplish this evaluation, we define another
stability interval.

Let o > 0 (70 € S) be the smallest positive root of

D(0) = 7'1,2(0)17"1’2(0)1{'/'1,2(9)17"1,2(0)1 +4} =0. (17)

By using this 7o, we define another stability interval 5" = [0,70). By Definition 1,
S’ is a subset in S. We prove the boundedness of ||R(#)"||> by using the following
hypotheses for the staggered RK scheme (4)-(5):

(H1) For 8 € S, 0 < —r}5(8)1 < 7112(0)1 < —07112(0)1.
(H2) For 0 € ', D(0) < 0.

(H3) The polynomials 1 1(6)1 and 17 ,(0)1 are zero.
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(H4) The following order condition holds: d1 = d'1 = 1.

The leapfrog scheme (13) and RKS4 (15) satisfy these hypotheses. Substituting (14)
into (17), we can take yo = 2 and S’ = [0,2) for the leapfrog scheme. By (14), the
leapfrog scheme satisfies (H1)-(H3). (H4) is checked by using (13). Similarly, we
can take v = 2v/6 and S’ = [O, 2\/6) for RKS4, by substituting (16) into (17). By
(16), RKS4 satisfies (H1)-(H3). By (15), (H4) holds.

Theorem 3.1. Letvy. > 0 be . < yy. Assume that the coefficients ij, U5 5, bij, b, ;.

Ci, G, di, d;, €;, €] in (4)-(5) satisfy (H1)-(H4). Then, there is a positive constant
C such that

1B(@)"l2 < C (18)
holds for any 0 < 0 <, and n € N. Here R(0) is the matriz of (10).

Proof. By (H3), we can rewrite

1 r.2(0)1
R”>:(mgwn 1+m2énm2wﬂ)' (19

It & = 0, R(0) is the identity matrix. Then (18) holds for (' = 1. Let § > 0. We can
diagonalize (19) as

ro) =0 (M7 ) e 20)

Here

Ae(0) = A = 2+ rl,z(e)lr’lé(e)l + \/D(())’

B | —A_+1 =X +1
QO = o (r’m(ﬁ)l ra,2<0)1> ’

.2
o1 (r’1’2(9)1 A+—1>
@) T A\ a1 A+ 1)

Since 6 € S, we have |[A.| < 1. By (H2), the adjoint matrices of Q(#) and Q(6)~!

are

(21)

L1 (A 7472(9)1)
QO = (—)\~+1 ra(0)1)

@y = =5 (301 T30,
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Putting a(f) = (A; — 1)(A- — 1) and b(#) = 1] ,(0)1{ A+ + A_ — 2}, we have

00 0(0) — — ( a(6) + (P01 (A =12+ (1} 2<e>>>,

= TR A=~ 12+ (a1 al6) + (74,01
e —1 (20,000 b(O)
Qo @ =5—=5 ("I o)

Then, the eigenvalues of Q(8)*Q(6) and (Q(0)~})*(Q(0)") are

24 \/7 —1)2 4 (r1(0)1)? HOA- =12+ (n (9)1)2}

(7"12(9)1)
ra(0)1)? £ /(a(6) — (1 2(6)1)2)? + b(6)?
A=A ’

respectively. Putting

a(0) = —r12(0) 177 5(0)1 + (r15(6)1)7,
B(0) = 7'/1,2(9)1()\+ — A1, (22)

these eigenvalues are rewritten as
o(6) £ /T FEE  (r2a(0)1)? {al6) £ /al0F — B }
(r2,1(0)1) ’ B(0)? ’

respectively. Then, by (20), we have

IR(6)"|]2 < [1Q@)]I2]||Q®) ||, =

a(8) + Va(6) - B(9)
B(9)

Substituting (21) into (22) and using (H1), we have

a(6) \ |7"12(9)1 — r12(0)1
V12012 (0)1(r12(0)1r 5(0)1 + 4)
(14 70)r1(6)1
ria(0)14/7112(0)1r15(0)1 + 4

for any 0 € [0,7]. By (H1) and (H2), we get —4 < r12(0)1r],(8)1 < 0. As
r1.2(0)17) 5(0)1 is a polynomial of 8, there exists a minimum value of 11 2(0)1r] ,(0)1+
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4in [0,7.]. Let v be the value of § that gives the minimum value of r12(0)1r ,(0)1+
4. We get

a(6) l < 1+
BO)| ~ Vra(n)lrg ()1 + 4

2(1+ )

Then, this, together with (23), gives (18) with ' =
VT2(m)1ra1(m)1 + 4

4 Convergence of fully discrete schemes
We assume the following hypotheses for Lj:
Ly is a negative definite symmetric matrix.

There exist hg > 0 and C'3 > 0 such that any eigenvalue of L, is less than -
for any h < hy.

By these hypotheses, there exists a pogltlve definite symmetric matrix W), satisfying
——DLh = W2, any eigenvalue of VV is less than 1/4/DC; for any h < hy. Then
Wh is bounded.

Using W), we can rewrite (2) as

dun(t dup, (t
h( ) = ’Uh(t), h( ) = —VV,fuh(t) + (Ph(t) + gh(t, 'th(t)). (24)
dt dt
In this paper, || - ||w, denotes a discrete energy norm (see, e.g., [1], [2]), given by
||(UhaUh)TH€Vh = HWhuhHQ + HUhH2 for any up, vy E‘Vh, (25)
where || - || denotes the discrete version of the Ly-norm in Vj, given by
lunll> =R Y {(un):}

€Ny

and the corresponding operator norm for m x m matrices with m = dimV,.
We define the spatial truncation error ay(t) (see, e.g., [6], 1.4) by

an(t) = v, (t) + Wiun(t) — on(t) — gn(t, un(?)), (26)

where u(t), v,(t) are Vj-valued functions obtained by restricting the variable x of
the exact solutions u, v onto €.



20

By applying (4)-(5) to (24), we obtain the following scheme for the problem (1):

Viiie = V412 + TA{-WZU, + @n(ta) + gn},
U,=1u,+ 1BV, ),
Uni1 = Uy + 7AV, 410,
U, =Vtn1 +7A n+1/2
n+1/2 =12 + TB'{-W;U, 1 + @n(tas1) + gni1}
Unyzjz = Uns1y2 + 7d {— hUr/H—l + @n(tnt1) + Gni1}-
Here 1’ denotes 1® I, for 1 = (1,--- , )T € R°,

A=A®Il, B=B®Il, d=d®1I,, AA=A®I, B =B®I,,

_ T T T T _ T T T \T
V;L+1/2 - (vn+l/2,17vn+l/2,2’ e >vn+1/2,s) ) U, = (un,1>un,27 T ?un,s) )
! _ /T 1T /T T
Vn+l/2 = (v n+1/2,0 Vnt1y22: 75U n+1/2,s) ’
! _ /T 1T /T T
n+l — ('U, n+1,1? u n+120 " "7 » U n+1,s) )

‘Ph(tn) = ((ph(tn,l)T) (Ph(tn,Q)T) Tt ﬂoh(tn,s)T)T, d, = d/ X Im,
gn = (gn(tn, un,l)Tagh(tn,%un,Z)Ta oo Gnltns, un,s)T)Ta W,=ILW,

with ® standing for the Kronecker product (see, e.g., [4]), Uni, Vnt1/2,i, Upy1,; and

vn+1/2 are intermediate variables, t,; := t, + ¢;T, tnt1,; = tny1 + &7, U, and
Vn11/2 are approximate values of un(t,) and v (t,+1/2), respectively.
For some s-dimensional vector @ = (ay,--- ,as)7, we define a* = (aj,--- ,al)T. In

addition to the (H1)-(H4), we assume the following hypothesis for the staggered RK
scheme (4)-(5):

(H5) The following order conditions hold:

(A1)2 + A1 = 2AB1, (B1)’> — B1 = 2BAl,
(A'1)2+ A1 =2A'B'1, (B'1)> - B'1=2B'A'1,
dA1 = d' A'1

The leapfrog scheme and RKS4 satisfy (H5), which is checked by (13) and (15).
We assume the following condition which gives the restriction for 7 and h.

(H6) Tp(Wy) € S'. Here p(W,) is the spectral radius of W),.

Moreover, we assume the following condition for the problem (1):

The exact solution u(t,2) is of class C'* with respect to t, g(t,z,u) is of class 3
with respect to ¢, u and (each component of) the derivative dg/0u is bounded for
(t,x,u) € [0,T] x 2 xR.

For simplicity, we consider a step size of the form 7 = T//N with positive integer N.
Then, we have the following theorem.
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Theorem 4.1. Assume that the coefficients Wi, Uy, big, Y5, ¢, di, d e, € in
(4)-(5) satisfy (H1)-(H5) and T satisfies (H6). Then, there is a positive constant

C such that

b S0 (7 i) 29

T
H(un - uh(tn)> Upt1/2 — vh(tn+1/2)) l

0<t<T
holds.
Proof. Put
Vh( n+1/2) = (vh(tn+1/2 1)T,vh(tn+1/2,2)T, ce avh(tn+1/2,s)T)T>
Un(tn) = (un(ta))" unltng)”, -+ unltns)")7,
Viltniiy2) = (Uh(tn+1/2,1)T7vh(t;+1/2,2)T> VRt ee) )T
gn(tn) = (9n(tn1, wn)™, gnltnz, wn)™, - ga(tns, un)T)T,
where t,11/2; = thy12 + €7, th/QJ = tpr12 + €7, J = 1,---,5. Replacing

U, U, .1, Vaiiyo, Vn+1/2a U, and v,11/2 in the scheme (27) with Uy(t,), Ux(t,s1),
Vi(tnt1/2), Vi( tnr1/2)s Un(tn) and vp(tn12), We obtain the recurrence relation

Vi(tnt1/2) = Von(tnsrye) + TA{=WiUn(tn) + @n(ta) + gr(tn)} + Toirye,
U ( n) 1 uh(t ) + TB‘/;L(tn+1/2> + Tn,

h
up(tnt1) = up(ty) + 7dVy(thi1/2) + pn,
Un(tnt1) = Yun(tas1) + TA'VA(, 1) j9) + oo,
Viltni12) = Vor(taray2) + 7B {=W2Us(tns1) + @nltas1) + Gn(tnsr)} + Trt1/2:
V(tnt3/2) = Vn(tniry2) + Td{=W2Us(tni1) + @n(tns1) + Gu(tni1)} + priis
(29)
with the residuals
Tn = ("'77;,17 "'g,za T >"'Z,S)T» 7';+1/2 = (7":“/2’1, "'Igﬂ/z,za T ,”',:H/z,s)T
pn and pni1/2. By (6), (26), (H4) and (H5), these residuals are expanded as
Tnyl/2 = T3CU;(13)(tn+1/2) + T Aap(t,) + O(1%),
T, = 73nu,(13)(tn) + O(h),
™1 .
=" (ﬁ ~d(A1? ) uf (1) +O(r).
(30)

Tptl = T3C up, (tn+1) + O(T4),
Thii2 = 7'317'1),(1 (tnt1/2) + TB ap(tas1) + O(7Y),
T

31
priip = 5 (Té - d’(A'l)Q) v, (tns1j2) + Ty (tnin) + O(7").
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Here

ah(tn) = (ah(tn,l)Taah(tn,Q)Ts e ,ah(tn,s)T)Ta
(=(®In, N=1®In, (=R, 0 =78 Iy,
¢ AAD? + (A2 + 3(A1) A(B1)?

24 2
_ 4(B1)®+6(B1)*+3(B1) B(A1)?
N 24 2
¢ = 4(A'1)° +6(41)% +3(41)  A'(B1)’
24 2
o = 4(B'1)3+6(B'1)2 +3(B'1) B'(A1)
24 2

and O(7*) denotes a term whose component for each x: € Qj, is of O(7*). Subtracting
(27) from (29), we obtain

Oni1/2 = Veni1yo — TA(W26, — gn(tn) + Gn) + Tns1/2:
8, =1¢e, + TBOpi1/2 + T,
En+1 = En + Tddpi1/2 + pn,
81 =1Ven1 +TAS, )9+ Thi,
012 = Vensiy2 = TB (W28, 1 — gh(tni1) + Gni1) + Ty
En+3/2 = Ent1/2 — Td/(W;fdgﬂ - gh(tn+l) + Gnt1) + Pr+1/2-

Here
6n+1/2 = ‘/;L(tn+1/2) - ‘/7'L+1/2> én = Uh(tn) - Un’
6:1+1 = Un(tn1) — 7’1+17 :z+1/2 = Vh(t;z+1/2) - 7:+1/2

and

(45

n = Up(tn) — Un, Ent1/2 = Vn(tnsr/2) — Unirj2

Let J, be J, = diag(Jn1, Jn2, -, Jns) and J,; be a function from 2 to R whose
value for @ € (), is

1
Jn,i(w) = 0 _g%(tn,i) £, (1 - O)un,i(ll'.) + euh(tn,ia l))d9

By the assumption that dg/0u is bounded, there is a constant 73 such that

|| Jniv]| < vsllvl| for any v € Vi, (31)



where the multiplication J, ;v is component-wise for x € €. Then we obtain
Oni1j2 = Vengryo — TAWE = J) 8, + Trya o,
0, = 1e, +T7B8, 112 + T,
Ent1 = &p + 7ddy11/2 + pn,
O 1=1e 1+ TA’(S;H/Q + Thgts
;7,+1/2 =1eni1/2 — TBI(WhQ - J.n+1)5;1+1 + T;+1/2,
Ent3/2 = Ens1jz — TA (W2 — Jni1)8, 1 + Prt1/2-

Eliminating 8,, 8,.1/2, 6/, and &/, we have

n+1/
(VVh‘En—H) - R, (Wh5n> M, (Whﬁn) _ (32)
E€n+3/2 Ent1/2 §n+1/2
Here
R, = ( Iy + Ry 11 Ry 51 ) M. - ( I, O>
'1,21'31,11' + R’wl’ L, + R’l’zl’RLzl’ + R’lyll’ o R’ul’ I,/)’
Rii=—71%d(I + T*A(W? - J,)B) 'A(W? — T,),
Rip = 7d(I + T*A(W}? — J,)B)"'W,,,
R’Ll = ~T2d’(W,f —Jni1)(I + TZA’B’(W,f ~J,1)) TA,
Riy=—7d (W} = Jo)(I + 2 A'B (WE = Jo) Wy,
Wién = R i Whr, + RiaTni2 + Wipn, (33)

Snt1/2 = RQ,QWthH + R’1,17';L+1/2 T Pn+1/2

with I = I, ® I,,,.
In order to prove the convergence, we introduce new variables following [6] and [15].
As in the proof of Lemma I1.2.3 in [6] and 5.3 in [15], we put

(Whun ) = (R(TWhy) — Iom) ™ M(TWh) (thn)

Vnt1/2 Yny1/2
_ (AT +PABW) W, /2>
[d(I + TP AWZB) 1] W, e W,

(Whén> _ (thn> N (Whun>
Ent1/2 En+1/2 Vny12)

Whén (Whgn> . <VVhVn) (th(yn—kl - Vn))
S =t MTWa) | £ - + 35
<§n+1/2> ! (T h) €n+1/2 k. Vny1/2 Vn43/2 — Vnt1/2 ( )

and rewrite (32) as
(Wh§n+1) _ Rn (VVhén> + (Whén) ' (36)
Eni3/2 Ent1/2 §nt1/2
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Here

I, O
M) = (o v 1)

Withn = r11(TWh) Wiy + 11 2(TWh)Tnga/2 + Whpn,
Vni1/2 = "',1,2(7'Wh)Wh"'n+1 + "'11,1(7'Wh)”';+1/2 + Pnt1/2s
Wién = RiiWrrn + RioTni1)2,
€n+1/2 = ll,zl,VVhén + R’1,2Wh7'n+1 + Rll,lr:l—i-l/Q'
R, is defined as TR, = R, — R(tW,), given by
Rn _ _R]‘,ll, _ _ B Rl’zll ~
o '1,21'R1’11’ + R’Lzll '1,21’R1121' + Ri,zllrl’z(TWh)l' + Rll,lll '
Since AW?B = W2AB, AB'W}?=W2A'B', Ry;, Ry, i =12 are written as

Ry, = —sz {("*W2AB - 1*AJ,B)' — (I"W?AB)'} AW}
s—1
+7d) _(r*A(J, — W})B)'AJ,,
l-—O
Ry = dz {(r"W2AB - 1*AJ,B)' — ("W}AB)'} W,,
B s—1
Rii=-1dW2Y (-1) {(PW;A'B - *A'B'J, )" — (""W;A'B')'} A’
1=0
s—1 ‘
+7dJni1 Y (TPA'B (Jny — W) A
=0
s—1
Ria=—-dW,) (1) {(""W;A'B' — 1?A'B'J,..)' — (I"W;/A'B)'}
=0

s—1
+dJn Y _(TPA'B (Jnpn — W)W,
i=0

By (31) and (H6), we can estimate Ry, R’m i=12as
Rl,i = O(7), 71,1 = 0(7), R’I,Z = O(1). (39)
Substituting (30) into (33) and (38), we get

[

<l r? 4
gt (T +Iigg;>§|lah(tn+z)ll) (40)



with a positive constant 7.

For § € 5, there exist some positive constants 74, v; such that, r12(0)1/6 = d(I, +
0?°AB)"'1 > 44 and —1{,(0)1/0 = d'(I, + 6>A’'B')"'1 > ~,. By (H6), any eigen-
value of [d(I + 7°W2AB)'1'] " and [d(I + T°W2AB) '1']"" are less than v, and
74, respectively. Substituting (30) into (37), W, 7 Wy, and W, Y1112 are
represented as

WhAIT“IWh'wn = 7'1,2(7'Wh)Aah(tn) + 0(7'2),

, 41
Wit 10 = (11 (TWh)B' + d')an(tes1) + O(77). (41)
Substituting (41) into (34), there is a positive constant C7' such that
|G, <0t (7 maxlenacl) (2
Wy 1=0,1

Since uf)(tnﬂ) — uff)(tn) = O(r) and U,(Lg)(tn+3/2) - v,(lS)(th/z) = O(1), we get

W W (Yng1 — ¥n) = Tr12(TWh) A {ah (tnr1) — an(tn)} + O(7),
W7 Wz = Ynisje) = (04, (FW) B+ ) {n{tasa) — nltasr)} +O().

Thus, by using (35), (40) and (42), there is a positive constant 'y such that
A T
H(&H €n+1/2)

Moreover, let w; be the eigenvalues of W),. Then, by taking the orthogonal matrix
P to be P7Y(7W),) P = diag(7w;), we have

=G (73 + Trﬁgﬁdlah(tnﬂ)ll) : (43)
Wh =1,

R(tW),) = PR(diag(tw,))P"!, where P = I, ® P.

Here R(diag(7w;)) is the same formula as (10), replacing 6 by diag(rw;). Let
A:(Tw;) = As; be the eigenvalues of R(diag(7w;)). A4; are the solutions of (12),
replacing ¢ by Tw;. By (H6), we have 0 < Tw; <y and |Myj| <1, j=1,--- ,m.
Then, by using Theorem 3.1, we obtain

|R(TWi)"[| = || R(diag(Tw;))"|] < K (44)

with K a constant independent of » € N, 7 and h, || - || denotes the operator norm
for 2m x 2m matrices.
By (39), we obtain

IR, < K (45)
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where K is a constant independent of 7, 7 and h.
From (44) and (45), we obtain

I1 R
=1

Hence, from (36), (43) and (46), we obtain

< ||R(TWu)"||(1 + 7K,)" < Ke"™ ' < K. (46)

>

) T . . AT ,
(2nyénsi12) ‘ w <K, H(€o,51/2) Hw + KonCo (TS + TOXB&XT“%U)H) \
h h >

which implies that

H(én)én+l/2)T| W <K, H(Vo,51/2 + V1/2)T‘

h

g 2
W, + AQTCZ (T -+ Ol'éltaéuah(t)”)

for 1 <n < N. Using H(Vo,El/Q + Vl/z)T‘

= (72 for a constant Cj > 0,
Wh

1}(en,en+1/2)T{ y

< H(én,én—l—lﬂ)T‘

Wh * H(V"’ V""Ll/z)T} W

h h

and rewriting the constants, we finally obtain (28). O

5 Numerical experiments

We examine the convergence of the leapfrog scheme (13) and RKS4 (15), by using
the following model problem

ou ov 6°

lu '
—— —_— = — €T < <T, X y
5% =V 5= +g(t,x,u), 0<t< r e

u(t,0) = Bo(t), u(t,1) =pf(t), 0<t<T, (47)
u(0, &) = up(x), ({;—1;(0,;1:) = vo(x), =€ Q.

Here T =1, Q = [0,1], g(t,x,u) = —sinu and Bo(t), Bi(t), uo(x) and vp(x) are
given by using the following exact solution ([13])

u(t,r) = 4tan”! {7 sinh (_11_:?> / cosh ( I’Yf 72)}

with 7 = 0.5. Let N be a positive integer, h = 1/, and 2, be a uniform grid with
ov  9u

nOdeS ‘T_]' — jh, J = 0’ ]_, PN ’1’\7. We diSCI‘etize E = a{z

+ ¢(t,r,u) in space with



the fourth-order implicit scheme

1 (dvi=L(2) dvi(t)  dvIti(t) 1, . : :
5 { pr 10 T } =73 {7H(t) — 207 (t) + ()}
1

-5 {sinw’ 7} (t) + 10sin v’ (¢) + sin w/*!(t)}

with o/ (t) = u(t, z;) , 1/ (t) = v(t,z;) (see, [16]). Putting

un(t) = (), V@), ) = (1), 0N ()"
we obtain the MOL approximation

dus(t) o dup(t)

G = o), H—= = Lyun(t) + n(t) + Hgn(t, un(t)), (48)
where
-2 1 0 0 10 1 O 0
[ (1) —12 —12 0 [T (1)11O 110 8
h= 73 , =13 : :
0 O 1 -2 O 0 1 10
and @n(t) = (Bo(t), 0, ---, 0, B1(t))T. The eigenvalues of L, and H are
%(cos%~1),é<5+cos%), j=0,1,---,N, (49)
respectively.

* Multiplying H! to (48), we get (2) with D =1, L, = H L, on(t) = f{‘lgf)h(t).
By (49) the eigenvalues of L, are

12 6 |
7 (- srmmr ) S0
Since
237 6 NG
o) = — (5+cos((N+1)7r/(N+2))_1) < Tho

if we take the step size 7 < v/2h//3, (H6) holds for the leapfrog scheme. If we
take the step size 7 < 2h, (H6) holds for RKS4. We take the spatial step size
h and temporal step size 7 such that h = 27 = 1/N so that both conditions are
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satisfied. We apply the leapfrog scheme and RKS4 to the MOL approximation (48),
and integrate from ¢t = 0 to t = 7. We measure the errors of the schemes by using
the discrete Lo-norm

€ulz = IMaxX leall, €v,L2 = o nax Hen+1/2ll,

the discrete energy norm

Ee = 0<Iv?§a2)1(VT l|(5nv€n+1/2)HWh
and maximum norm
€u,max = 0<r7?32)1<VT{H5nHoo}» €y,max = 0<21§32)}\,T{||5n+1/2“oo}
with || + ||oo the maximum norm on R™.

Table 1: Numerical results for (47) using the leapfrog scheme

N 10 20 40 80 160 320 640
—log, e, 2 | 16.04 18.15 20.17 22.18 24.18 26.18 28.18
Increment 2.11 202 2.01 200 200 2.00
—logy ey e | 1410 16.13 18.14 20.14 22.15 2415 26.15
Increment 203 201 200 201 200 2.00

—log, €y max | 15.55 17.66 19.68 21.69 23.69 25.69 27.69
Increment 2.11  2.02 2.01 200 200 2.00

—logy €y max | 13.70 1575 17.76 19.77 21.77 23.77 25.77
Increment 2.05 201 201 200 200 200

—log, €. 13.31 1540 17.42 19.42 21.43 23.43 2543
Increment 209 202 200 201 200 2.00




Table 2: Numerical results for (47) using RKS4

N 10 20 40 80 160 320 640
—logy ey o | 19.17 23.16 27.15 31.15 35.15 39.15 43.14
Increment 399 399 4.00 4.00 400 3.99
—log, e, 12 | 18.28 22.27 26.23 29.67 3224 34.74 37.14
Increment 3.99 396 344 257 250 240

—log, ey max | 18.73 2271 26.70 30.70 34.70 38.70 42.62
Increment 398 399 4.00 4.00 4.00 3.92

—logy ey max | 17.01 21.51 24.62 26.60 28.59 30.59 32.57
Increment 400 311 198 199 200 1.98

—log, . 16.98 20.97 2490 28.60 31.75 34.55 36.73
Increment 399 393 370 315 280 2.18

Table 1 and Table 2 show that the observed order of the leapfrog scheme and
RKS4 are more than or equal to 2. We observe that the order for u of RKS4 is
higher than expected results from Theorem 4.1.
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