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Learning Complex Numbers assisted by
Mathematica

Koichi Kato
Aichi Prefectural Chiryu-higashi Highschool

1 INTRODUCTION

In this article, I would like to report my experience of learning complex numbers assisted
by Mathematica ver.7 following the text [1] from a beginner’s viewpoint. Where I wrote
Mathematica code, I often described it in traditional form instead of source code when
it was adequate to show the logic clearly.

2 THE ALGEBRA OF COMPLEX NUMBERS

2.1 Arithmetic Operations, Square Roots, Conjugation and
Absolute Value.

I show the arithmetic operations with complex numbers using Mathematica symbolic
calculation.

In[1]:= (a+if) + (y + id)//Complex Expand
Out[1]= a + v + (B + §)

In[2]:= (a+ iB)(y + 6)//Complex Expand
Out [2]= ay — B0 + i(By + ad)

In[3]:= (o +iB)/(y + i)/ /Complex Expand
Out[3]= 2% + 2% + i(-2 — -85%)
Inf4]:=1/(a+iB)//Complex Expand
Out[4]= :

6 13
oZ4B% T oZ+pB2
The numbers 0 + 0¢ and 1 + 04 are neutral elements under addition and multiplication
respectively. The complex number system C is a field with these operations.

I defined an own function sqrt[z_] for calculating the square root of a complex number
z with the equations (1).

For B#0
m:i(\/a+w+i%\/—a+\gm) (1)
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For 3 = 0 the values are £y/a if @ > 0, £iy/—a if a < 0.
The code of sqrt[z_] is shown in In[6]. I show an example to calculate the square
root of a complex number using the function sqrt[z_].

In[5] := sqrt[3 — zﬁg]

Out [5]= {_% + ¥3 i _ 3§}

272

Using the built-in symbol, Sqrt[} — i¥2] gave the output " sqrt[: — 437
[EXERCISE] Solve the quadratic equation

24+ (a+iB)z+vy+1i6=0. (2)
T show Mathematica codes to answer and check the result.

In[6]:= Clear[’Global‘ x);
sqrt[z_]:= Module[{a = Re[z],3 = Im[z]},

o o?432 . —-a a2432 a a
IF(B 0, (TSP | g [z /B for/oEest

5]
iy T

If[a Z Oa {\/—v _\/a}a
{iv=a,—iv=a}]]];
b=a+1i8;¢c="y+10;
exprlz_, b_, c_l:=22+bz+¢
d[b_,c_]:=b* — 4c//Complex Ezpand,;

sol[b_,c_]:= -—g— + @;

In[7]:= sol2i, —2]//Complex Expand;
Out[71= {1 —4,—1 — i}
In[8] := SeedRandom[]; {a, 3,7,8} = RandomlInteger({0,10},4];
z = solb, c];
Row[{"expr =", expr(#,b, c|H&/Q{z([1]], 2[[2]]}// Simplify
Out [8]= {ezpr = 0, expr = 0}

In In[6],] defined an own function sqrt[z_]. Then I let b be a + i3 and c be v + 4.
I also defined the equation expr(z,b,c| as (2). In the definition of sol(b,c], I gave the
solution, where the second term had two symmetric values.

In[7] and Out[7] are numerical calculation for check. 1 defined an equation sub-
stituting 27 for b and —2 for c¢. Out[7] showed the set of solutions for the equation
224+2i2—-2=0.

In In[8], I substituted for b and ¢ with randomly given integers o, 3,7 and 4. In
Qut[8], it was confirmed that the two solutions of sol satisfied the equation with random
coeflicients.

I defined own functions for symbolic calculations with complex numbers as follows:
conj|z] for the complex conjugation of z, abs[z] which calculates the absolute value of 2,
re[z] which gives the real part of z, and im[z] which gives the imaginary part of z.
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In[9] := Clear[’Global‘ x”];
complex[z_] := Compler Expand|:];
conjlz_]:= complex|z]/ {Complez[p_, q_|— > Complez[p, —q|};
abs [z_] := Sqrt[Complex Expand[complez[z] * conj[z]]};
re[z_]:= Simplify[(complex|z] + conj[z])/2];
im(z_]:= Simplify[(complex|z] — conj|z])/(2¢)];
In(10]:=a=a+ if;
In[11]:= {complezx|a], conj|a], abs|a],re[a], im[a]}

Out[111= {a + i,a — i3,Va% + B2, a, 5}

In In[10], I defined a complex number a = a+ i3 and checked the outcomes in In[11]
and Out[11].

In In[12], I defined own function replace[z] for transforming o? + 32 to |z|>. With
replace(z], I checked that the calculations of abs[a + b]%, absa — b]* and abs|a + b]* +
absla — b]? were carried out correctly.

In[12] :=a=a+iB;b =+ id;
replacelz_] :=re[z]2 +im[z]? — |z|%
Column({ abs[a + b]~2 //. replacela] //. replace[b],
abs{a - bl"2 //. replace[a] //. replace[b],
Simplify[abs[a + b]"2 + abs[a - b]"2] //. replacela] //.
replace([b] }]
Out [12]= 2ay + 2036 + |a + i8|? + |y + id)?
—2ay — 200 + o+ 10)% + [y + 0|2
2(|a+ B> + |y + id]?)

3 THE GEOMETRIC REPRESENTATION OF COM-
PLEX NUMBERS

Using Manipulate or Dynamic, we can draw the pictures and move any variable. After
the pictures have been drawn, we can observe them and change the view angles. Various
types of coloring, lighting and styling are possible. All the pictures I present here were
drawn using Mathematica. Mathematica helped me to understand the situations and
experiment on the ideas.

In order to draw graphs in complex planes, I defined own functions as follows:

cclz_] := {re[z],im[z]};

plrlr_, 8 _] :=r(cosf + isinf);

The function cc[z_] transforms z to its coordinate and plr(r_, 6_] makes polar form of a
complex number.
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FIG. 1: Vector addition. FIG. 2: Vector multiplication.

3.1 Geometric Addition and Multiplication.

A complex number z = x + iy corresponds to a point in a complex plane with the
coordinates (Rz,3z). The addition of complex numbers can be visualized as vector
additions. Introducing polar coordinates, for two complex numbers a; = 71(cos¢; +
isin¢;) and ay = 72(cos @2 + isin ¢s), their symbolic multiplication can be calculated
with own functions as shown in In[13] and Out[13]. FIG.1 and FIG.2 were drawn using
own functions.

In[13] := plr[r_, ¢-] :=r(cos ¢ + isin¢);
a1 = plrlr1, ¢1]; a2 = plr{ra, ¢2l;
Simplifyla, * az//Complex Expand)
Out [13] =171 75 (cos(¢y + ¢2) + @ sin(¢1 + ¢2))

[EXERCISE] Suppose that a and b are two vertices of a square. Find the
two other vertices in all possible cases.
ila—b) __

Let {ck,dr} be the two other vertices. Because arg =z

a—b 29 G = a+i(a—-b),d1 =
a+b

b+i(a—b),co =a—i(a—b),dy =b—i(a—b). Because “3* is the midpoint of a — b,
c3 = w—%@———bl,dg = 5‘—{’—9—_—;19—'32 Hence {c;,d1}, {c2,d2} and {c3,d3} are the two other
vertices in all possible cases.
To check, the cross ratio

a—c a—d

b—c b—d
was calculated. It was 0.5 for {cl,d1} and {c2,d2}. i.e. inseparable. It was -1 for
{c3,d3} i.e. separative.(FIG.3).

3.2 The Binomial Equation.

Let a = r(cos¢ + isin$) # 0. For the equation 2" = a, the complete solution is given
by

2= Yr cos(?+k2—7r)+isin(?+k2—7r) k=0,1,...,n—1. (3)
n n n n
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FIG. 3: 2.1.exercise. All squares.
FIG. 4: 7" roots of unity.

In the case 2™ = 1, setting w by (4), 1,w,w?,...,w" ! are nth roots of unity.(FIG.4).

2 .2
w = cos — + isin — (4)
n n

[EXERCISE]

1. Express cos 3¢, cos4¢, and sin 5¢ in terms of cos ¢ and sin ¢.
The built-in symbol TrigExpand gives such a transformation.

In[14] := TrigEzpand[Cos[3¢]]

Out [14] = Cos[¢]® — 3Cos|¢]Sin[¢)?

In[15] := TrigExpand[Cos[4¢]]

Out [15] = Cos[g]* — 6Cos[¢]2Sin[¢]? + Sin[¢]*

In[16] := TrigEzpand[Sin[5¢]|]

Out [16] = 5Cos[d|*Sin[p] — 10Cos[¢]2Sin|g]® + Sin|g]®

2. If w is given by (4), prove that
1+ +w? 4. 4w D=, (5)

I show the process to answer the exercise with Mathematica in the case h = 3 and
symbolic calculation for n.

In[17]:= Clear[”Global‘ x’|; h = 3;
Sum[(wh)k’ {k7 Oa (Tl - 1)}]

Out[17] = ="

In[18] :=%/. w — cos & + isin 2
_ —14((cos %’--&—z‘sin -in)s)"

Out [18] = —14(cos 2;"-—H'sin %13)3

In[19] :=%//. (cos &= + isin &=)P~ — (cos & + 4 sin &2)
Out[19] =0
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3.3 Analytic Geometry.

Problems of finding intersections between lines and circles, parallel or orthogonal lines,
tangents, and the like usually become simple when expressed in complex form.

[EXERCISE] Show that all circles that pass through a and ; intersect the
circle |z| =1 at right angles.(FIG.5,FIG.6)

y y

—
Z
m/
) X X
a m
\_
a

FIG. 5: 2.3. exercise. FIG. 6: 2.3. exercise.

Let the circle |z] = 1 be C, a circle which passes through a and % be B and its center
be a point b. arg a = arg 1. |a||| = 1. Hence B and C intersect. Let the mid-point of
a and ; be m. That is m = (a+ ;)/2. Taking any real number ¢, b = i t(a - 2)+m. For
any point z on B, there exists a correspondent point z’ on S such that arg 2’ = arg 2
and |z||z'| = 1 from the power theorem. Let the mid-point of z and 2’ be m/. Now
take a point zp on the intersection of B and C. Then |z] = 1. Hence zp = z{, = m'.
Therefore the tangent to B and the tangent to C intersect on 2.

3.4 The Spherical Representation.

The equation of the unit sphere S in three-dimensional space is z% +z%+2z3 = 1. Every

point P(z,,z2,x3) on S, except N(0,0, 1), corresponds one-to-one to a complex number
z as follows: (FIG.7, FIG.8)

x + i.’L‘Q

— =yt oe 6
z 1—:133’ ()

z+Z Z2—Zz |22 — 1
T ST R S Ny 7
TETIRR T OAa R T P+l (7)

By letting the point at infinity oo correspond to N(0,0,1), we can regard the sphere
as a representation of the extended complex plane. Writing z = z + iy we can verify
that

z:y:—1=x;:20:23—1, (8)
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FIG. 7: Stereographic projection. (z3 > 0) FIG. 8: Stereographic projection. (z3 < 0)

This means that the point z(z, y,0), Z(z;, 2, z3) and N(0,0, 1) are in a straight line.
The correspondence is a central projection from the center N(0,0,1). This is called a
stereographic projection.

Any circle on the sphere corresponds to a circle in the z-plane. When a circle on the
sphere goes through N, the corresponding image in the z-plane is a straight line. (FIG.9,
FI1G.10)

FIG. 9: A circle to a circle. FIG. 10: A circle to a straight line.

Let Z = (z1,z2,23) and Z' = (2}, z}, z}) be stereographic projections of z and 2/,
and let d(z, 2’') be the distance between Z and Z’,

2|z — 2/

d(z,2) = : (9)
VL +[z)(1+]7)
[EXERCISES]
1. Show that z and 2’ correspond to diametrically opposite points on the
Riemann sphere if and only if zZ' = -1 .

Let p(z1,x2,x3) and p'(z}, 24, z3) be opposite points on the Riemann sphere and let
them correspond to z and z’. As p and p’ are in the position of point symmetry about
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the center of the sphere, (2}, 25, 25) = — (1,22, z3). From (6)
T + 129 g T 1T
1—xz3’ T 14,
By calculation zz' = —1 . On the other hand, if 2z’ = —1, then 2 = -1, 2/ =
-1, |7 = |712— From (7), (z},z5,2%) = —(z1,%2,23). i.e. p and p’ are the opposite
points on the hiemann sphere.

2. A cube has its vertices on the sphere S and its edges parallel to the
coordinate axes. Find the stereographic projections of the vertices.
Let a vertex (a,a,a), (a > 0), be v and another vertex (a,a,—a) be v/. Let the

stereographic projections of v and v’ be z and z’. Then 3a®> = 1, a = % From (6)
2= \}é*_il, 2 = —\}% . 2z = 1. Hence z' = 2™ }. Therefore, the stereographic projections

outside of the unit circle run counterclockwise { z = %‘%, —Z, —z, Z} , and inside the

unit circle they run counterclockwise { z7!, —z71, —z71, z7'}. (FIG.11, FIG.12)
(CHECK) For each pair of {z,2”} which corresponds to the diametrically opposite

b/

|
(&1}
~N

lll

FIG. 11: exercise 2.

FIG. 12: exercise 2. Plan View.

points on the Riemann sphere, zzZ” = —1. This coincides with the fact mentioned in
Exercise 1.

3. The same problem for a regular tetrahedron in a general position.(FIG.13,
FIG.14)

Let the vertices of the tetrahedron be V4, V4, V,, Va. Let the central angle of each edge
of the tetrahedron be 6. Let the length of each edge of the tetrahedron be [. First, let

0 sin @ cos grr sin @ cos §7r sin @
Vo=1| 0 | and V] = 0 ,then V5 = | sinjwsinf |and V3= | sin3w sin 6
1 cos 0 cos 0 cos @

When H is the center of gravity of AViV,Vs, Vo H = 4§. I =V,V, = ,/(%)2 +sin?4. On
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V3 T

FIG. 13: exercise 3. Front Elevation. FIG. 14: exercise 3. Plan View.

the other hand, [ = V3V3 = v/3sin 6. By calculation, sin 8 = 233é Hence

0 2v2 —¥2 _\/?5
3
Vo= 0 ) Vi= 0 ) V= ﬁ ) ‘/3 = -/ 2
1 ! Vi _\/1;
3 3 3
From (6),
1 1 V3 1 V3
20 =00, 21 =

L m e Zg = —
V2 T a2 e T v 2R

Let M(k, u, A) be a matrix which yields x rotation around the x-axis, u rotation around
the rotated z-axis, and A rotation around the rotated y-axis.

1 0 0 cosp —sinpg 0 cosA 0 —sinA
M(k,u,A) =1 0 cosk —sink sing  cosp O 0 1 0
0 sink cosk 0 0 1 sinA 0 cosA

Then {V/ = M(k,u, \)V;; ¢ =0,1,2,3. 0 < k,u, A < 27} gives the vertices in a general
position.

- T
{20,21,22,23} (k = O,p = 0,A = 0) and {2} = fﬁ‘_ixf“ Vi = ( T3 ) S
T3
0,1,2,3., 0 < k,pu, A < 2m, xij, # 0} are the stereographic projections of the vertices of
the tetrahedron in a general position.
(CHECK) It is verified, with random numbers between —7 and 7 for x, 4 and A,
that VJ, V/, V4, V4 are on the sphere S by checking 272 +z2 + 22 = 1 for V;, 0 < Vi < 3,
and that they are the vertices of a regular tetrahedron by checking the angle between
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OV; and OV} is equal to § = 7w + tan™* %, 0 <Vi,j <3, i# j, with the built-in
Mathematica symbol Vector Angle.

4. Let Z,7Z' denote the stereographic projections of z,z’, and let N be the
north pole. Show that the triangles NZZ' and N:z' are similar, and use this
to derive (9).

FIG. 15: exercise 4. FIG. 16: exercise 4.
As shown in FIG.7 and FIG.8,

NZ =+2—-2x3, Nz = V2 NZ' =./2 -2z, N = V2

Therefore

Hence ANZZ' and ANz are indirectly similar. Consequently, from (7), (9) is derived.
y

4 CONCLUSION

Through this work, Mathematica allowed me to have vivid mental pictures of the sub-
jects with interactive and dynamic visualization, and to experiment with the ideas on
the subjects.

When I tried to use Mathematica for some subjects, I was led to think about and
understand the subjects deeply. Not only using the finished programs but also the
programming processes facilitated my understanding of the subjects.
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