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Abstract
This paper explains the methodology called ‘a hybrid asymptotic ex-
pansion technique’ proposed by Takahashi and Takehara [4] in much
simpler setting than in the original paper. To obtain accurate approx-
imation formulas in closed form for option prices or risk sensitivities,
the method can be applied under a broad class of models appearing in
finance such $\kappa^{\tau}$ : stochastic volatility models, cross-currency (longterm-
$)$ Libor market models, models with a certain class of jumps.

1 Introduction
This paper explains a ‘hybrid’ scheme with an symptotic expnasion,
developed by [4], under a rnuch simeper setting than in the original
paper without referring to regorous mathematical arguments. For de-
tails in the general setting, see Kunitmo and Takahashi[3], Takahashi
and Takehara[4] and Takahashi, Takehara and Toda[5].

In this scheme, the option price will be derived via Fourier inver-
sion of the characteristic function(henceforth sometimes called ch. $f.$ )
of the log-forward price of the terminal value of the underlying asset $s$

price. Since in most of important applications in finance the under-
lying model is too complicated to obtain the closed-form solution of
the ch. $f.$ , we approximate it with an asymptotic expansion technique.
Moreover, in order to increase accuracy of our method, a certain change
of the probability measure and a transformation of variable will be also
applied, those are reasons why the method is called ‘hybrid’. Finally,
the asymptotic expansion will be used as a control variable in Monte
Carlo simulations to accelerate their convergence.

2 A Hybrid Asymptotic Expansion Method

2.1 A Pricing Problem
Let $(W, P)$ be a one-dimensional Wiener space. Hereafter $P$ is con-
sidered as a risk-neutral equivalent martingale measure and a risk-free
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interest rate is set to be zero for simplicity. Then, let also assume
that the underlying economy has only a ( $R+$ -valued)single risky asset
$S=\{S_{t};0\leq t\}$ satisfying

$S_{t}=S_{0}+ \int_{0}^{t}S_{s-}\tilde{\sigma}(\omega, s)dW_{s}+\int_{0}^{t}S_{s-}d\tilde{A}_{s}$ (1)

where $\tilde{\sigma}:\Omega\cross R\mapsto R$ satisfies some regularity conditions; $\tilde{A}=\{\tilde{A}_{t};0\leq$

$t\}$ is some (possiblyjumping) martingale independent of $W$ . Then, We
will consider the following pricing problem of a plain-vanilla call option;

$V(0;K, T)=E[(S_{T}-K)_{+}]$ (2)

where $x+= \max(x, 0)$ and $E[\cdot]$ is an expectation operator under the
probability measure $P$ .

With a log-price of $S_{T},$ $s_{t}$ $:= \ln(\frac{s_{t}}{S_{()}}),$ (2) can be rewritten as:

$V(0;K, T)$ $=$ $S_{0}E^{P}[(e^{s_{T}}-e^{k})^{+}]$

where $k:= \ln(\frac{K}{s_{0}})$ denotes a log-strike rate. Here we note that $e^{s_{t}}=S_{t}$

is a martingale under the pricing measure.

Carr and Madan [1] proposed an expression of option prices alter-
native to (2) as some Fourier inversion of the characteristic function of
the logarithm of the underlying asset.

Proposition 1 Let $\Phi^{P}(u)$ denote a characte$7^{\vee}tstic$ function of $s_{T}$ un-
der P. Then, $V(0;K, T)$ is given by:

$V(0;K, T)=\Psi(\Phi^{P};S_{0}, K, T)$ (3)

where

$\Psi(\Phi;S, K, T)$ $:=$ $S \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-iuk}\gamma(u;\Phi)du+(S-K)_{+}$, (4)

$\gamma(u;\Phi)$ $;=$ $\frac{\Phi(u-i)-1}{iu(1+iu)}$ and $i:=\sqrt{-1}$ . (5)

Then, we need to know the characteristic function of $s_{T}$ under
the measure $P$ for pricing the option. In particular, in our setting $s_{t}$

satisfies
$s_{t}=Z_{t}+A_{t}$ (6)

where $Z=\{Z_{t};0\leq t\}$ is an exponential martingele given by

$Z_{t}=- \frac{1}{2}\int_{0}^{t}\tilde{\sigma}^{2}(\omega, s)ds+\int_{0}^{t}\tilde{\sigma}(\omega, s)dW_{s}$ (7)
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and $A=\{A_{t};0\leq t\}$ is a exponential martingale obtained by appling
$It\hat{o}$ ’s formula to $s_{t}=\ln(S_{t}/S_{0})$ , which is independent of $W$ due to the
asssumption on $\tilde{A}$ .

Further, we assume that the characteristic function of $A(t)$ is known
in closed-form. e.g. $A(t)$ is a compound Poisson process, a variance
gamma process, an inverse Gaussian process, a CGMY model or a L\’evy
process appearing in the Stochastic Skew Model(Carr and Wu [2]).

2.2 A Transformation of the Underlying Stochastic
Differential Equation
Note that, due to independence of $Z$ and $A,$ $\Phi^{P}(u)$ can be decomposed
as;

$\Phi^{P}(u)=\Phi_{Z}^{P}(u)\Phi_{A}^{P}(u)$ (8)

where $\Phi_{Z}^{P}(u)$ and $\Phi_{A}^{P}(u)$ denote the characteristic functions of $Z_{T}$ and
$A_{T}$ under $P$ , respectively.

For evaluation of the option, an explicit expression of $\Phi^{P}(u)$ is nec-
essary. However, in most cases of in practical application, the process
$Z_{t}$ is too complicated to obtain the analytical expression of $\Phi_{Z}^{P}(u)$ while
that of $\Phi_{A}^{P}(u)$ is assumed to be known. Then, later we will suggest to
utilize the asymptotic expansion for the approximation of $\Phi_{Z}^{P}(u)$ .

In (7), $Z_{t}$ , the key process for evaluation of the option, has a nonzero
drift. Thus, unless we provide the approximation which has not any
error in the drift term, even the first moment(i.e. the expectation
value) of that approximation will not match the target’s. Contrarily,
if we can eliminate its drift term by some means, that is the objective
process will be a martingale, its first moment can be much easily kept
by using a martingale process as an approximation. In this light, here
we consider a certain change of measures so that the main objective
process of our expansion will be martingale.

For a fixed $u$ (an argument of $\Phi_{Z}^{P}(u)$ ) we define a new probability
measure $Q_{u}$ on $(\Omega, \mathcal{F}_{T}-)$ with the Radon-Nikodym derivative of

$\frac{dQ_{u}}{dP}=\exp(-\frac{1}{2}\int_{0}^{T}||\lambda_{u}(s)||^{2}ds-\int_{0}^{T}\lambda_{u}’(s)dW_{s})$ (9)

where

$\lambda_{u}(t)$ $:=((-iu)+i\sqrt{u^{2}+iu})\tilde{\sigma}(\omega, t)=\tilde{h}(u)\tilde{\sigma}(\omega, t)$

and $\tilde{h}(u):=(-iu)+i\sqrt{u^{2}+iu}$ .
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Then $\Phi_{Z}^{P}(u)$ , the characteristic function of $Z_{T}$ under the measure
$P$ , is expressed as that of another random variable $\hat{Z}_{T}$ under $Q_{u}$ with
a transformation of variable $h(\cdot)$ :

$\Phi_{Z}^{P}(u)$ $=$ $E^{P}[\exp(iuZ_{T})]$

$=$ $E^{Q_{\tau\iota}}[\exp(ih(u)\int_{0}^{T}\tilde{\sigma}^{J}(\omega, s)dW_{s}^{Q_{u}})]$

$=$ : $\Phi_{\hat{Z}}^{Q_{v}}(h(u))$ (10)

where $E^{Q_{u}}[\cdot]$ is an expectation operator under $Q_{u};W_{t}^{Q_{\tau\iota}};=W_{t}+$

$\int_{0}^{t}\lambda_{u}’(s)ds$ is now a Wiener process under that measure; $\Phi_{\hat{Z}}^{Q_{\iota}}(v)$ de-

notes the characteristic function of $\hat{Z}_{T}$ $:= \int_{0}^{T}\tilde{\sigma}^{J}(\omega, s)dW_{s}^{Q_{\tau\iota}}$ under $Q_{u}$

and $h(u);=\sqrt{u^{2}+iu}$.
Now, we have the martingale objective process for the approxima-

tion. Then, in the following, we will apply the asymptotic expansion
method to the process of the new underlying variable, $\hat{Z}$ , under $Q_{u}$ .

2.3 Approximating the Characteristic Function by
an Asymptotic Expansion
Here, to fit the framework of the asymptotic expansion, the processes
of $s_{t}^{(\epsilon)}$ is redefined under the measure $Q_{u}$ with a parameter $\epsilon$ as follows;

$S_{t}^{(\epsilon)}=S_{0}+ \epsilon\int_{0}^{t}S_{s-}^{(\epsilon)}\sigma(\epsilon, \omega, s)dW_{s}+\int_{0}^{t}S_{s-}^{(\epsilon)}d\tilde{A}_{s}$ (11)

where $\epsilon\in(0,1]$ is a parameter for an expansion and $\sigma$ satisfies $\epsilon\sigma(\epsilon,\omega, t)=$

$\tilde{\sigma}(\omega, t)$ . Further we assume that $\sigma(0, \omega, t)$ does not depend on $\omega$ .
Then $\hat{Z}_{t}^{(\epsilon)}$ , the analogy of $\hat{Z}_{t}$ , is given by

$\hat{Z}_{t}^{(\epsilon)}$

$=$ $\epsilon\int_{0}^{t}\sigma(\epsilon, \omega, s)dW_{s}^{Q_{u}}$ (12)

Then, followign tha way given by related papers such as Kunitomo
and Takahashi [3], we can derive the following asymptotic expansion:

Proposition 2 The asymptotic expansion of $G_{\hat{Z}}^{(\epsilon)}= \frac{1}{\epsilon}\hat{Z}_{T}^{(\epsilon)}$ up to $\epsilon^{2}$ is
expressed as follows:

$G_{\hat{Z}}^{(\epsilon)}= \hat{G}_{T}^{Q_{24},\langle 1)}+\frac{\epsilon}{2!}\hat{G}_{T}^{Q_{\tau r},\langle 2\rangle}+\frac{\epsilon^{2}}{3!}\hat{G}_{T}^{Q_{u},\langle 3\rangle}+o(\epsilon^{2})$ (13)

where $\hat{G}_{T}^{Q_{\tau\iota},\langle k\rangle}$ $:= \frac{\partial^{k}\hat{Z}^{(\epsilon)}(T)}{\partial\epsilon^{k}}|_{\epsilon=0},$ $k=1,2,3$ .
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Remark 1 $\hat{G}_{T}^{Q_{u},\langle k\rangle}$ for any $k$ is expressed as a certain (iterated) It\^o
integral. Since (iterated) It\^o integrals always have zero means, the
martingale property of $G_{\hat{Z}}^{(\epsilon)}$ (and hence $\hat{Z}^{(\epsilon)}(t)$) is kept at any order

of this expansion. Especially, the first-order term $\hat{G}_{T}^{Q_{\tau\iota},\langle 1\rangle}$ follows a
nomal $distr^{J}ibution$ with mean $0$ and variance $\Sigma$ ;

$\Sigma:=\int_{0}^{T_{N+1}}\Vert\sigma(0, \omega, s)\Vert^{2}ds$ (14)

(by the assumption, $\sigma(0,$ $\omega,$ $t)$ is deterministic function of $t$ ). Here it
is assumed that $\Sigma>0$ .

Then, by the standard procedures of the asymptotic expasnion
method given by [3] or [5], the desired characteristic function can be
approximated with the following theorem.

Theorem 1 An asymptotic expansion of $\Phi_{G_{\hat{Z}}}^{Q_{u},(\epsilon)}(v)$ , the characteristic

function of $G_{\hat{Z}}^{(\epsilon)}$ under $Q_{u}$ , is given by

$\Phi_{G_{\hat{Z}}}^{Q_{u},(\epsilon)}(v)=[1+\sum_{j=2}^{6}D_{j}^{Q_{\tau\iota},(\epsilon)}(iv)^{j}]\Phi_{0,\Sigma}(v)+o(\epsilon^{2})$

(15)

where $\Phi_{\mu,\Sigma}(v)$
$:=e^{i\mu v-\doteqdot v^{2}}$ .

$D_{2}^{Q_{11},(\epsilon)},$ $D_{3}^{Q_{u},(\epsilon)},$ $D_{4}^{Q_{u},(\epsilon)},$ $D_{5}^{Q_{1J},(\epsilon)}$ and $D_{6}^{Q_{\tau r},(\epsilon)}$ are constants for pre-
specified $\epsilon$ and $u$ . Each subscnpt corresponds to the order of (iv) in
the equation (15).

For details, see [4] and [5].

Finally, we provide an approximation formula for valuation of Eu-
ropean call options written on $S_{T}^{(\epsilon)}$ by direct application of Theorem 1
to Proposition 1.

Theorem 2 Let $\hat{V}(0;K, T)$ be an approximated value of $V(O;K, T)$

which denotes the exact value of the option with matunty $T$ and strike
rate K. Then, $\hat{V}(0;K, T)$ is given by:

$\hat{V}(0;K, T)$ $:=$ $\Psi(\hat{\Phi}^{(\epsilon)};S_{0}, K, T)$ (16)

where the pricing functional $\Psi(. ; S, K, T)$ is given in (4), $\hat{\Phi}^{(\epsilon)}(u)$ $:=$

$\hat{\Phi}_{G_{\hat{Z}}}^{Q_{u},(\epsilon)}(\epsilon h(u))\cross\Phi_{A}^{P}(u)$ , and $k:=ln( \frac{K}{s_{0}})$ . Here, $\hat{\Phi}_{G_{Z^{-}}}^{Q_{\tau\iota},(\epsilon)}(v)$ is defined
$as$ ;

$\hat{\Phi}_{G_{\dot{Z}}}^{Q_{1A},(\epsilon)}(v)=[1+\sum_{j=2}^{6}D_{j}^{Q_{u},(\epsilon)}(iv)^{j}]\cross\Phi_{0,\Sigma}(v)$
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where $D_{2}^{Q_{2J},(\epsilon)},$ $D_{3}^{Q_{u},(\epsilon)},$ $D_{4}^{Q_{\tau\iota},(\epsilon)},$ $D_{5}^{Q_{\tau r},(\epsilon)}$ and $D_{6}^{Q_{1J},(\epsilon)}$ are the coefficients
in Theorem 1.

Remark 2 Note that since $h(-i)=0$ and $A$ is assumed to be an expo-
nential martingale, $E^{P}[e^{s_{T}^{(\epsilon)}}]=\Phi^{P,(\epsilon)}(u)$ is approximated by $\hat{\Phi}^{(\epsilon)}(-i)=$

$\hat{\Phi}_{G_{\dot{Z}}}^{Q_{i},(\epsilon)}(\epsilon h(-i))\cross\Phi_{A}^{P}(-i)=1$ , which means that in our approximation

the exponential-martingale property of $s_{T}^{(\epsilon)}$ is kept.
Especially, when $A\equiv 0$ the first-order approximation of the op-

tion price coincides $BS(\Sigma^{\frac{1}{2}};S_{0}, K, T)$ which is the Black-Scholes price
under the case where the stochastic interest rates and the stochastic
volatility would be replaced by $($their $limiting-)deterministic$ processes:

$BS(\sigma;S, K, T)$ $:=SN(d_{+})-KN(d_{-})$ (17)

where

$d \pm:=\frac{\ln(S/K)\pm\frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}$ , $N(x):= \int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^{2}}dz$ .

Moreover, in this case $(A\equiv 0)$ , the pricing functional can be modified
so that the numerical inversion is stabilized as follows;

$V(0;K, T)=\tilde{\Psi}(\Phi_{T}^{P};S_{0}, K, T)$ (18)

where

$\tilde{\Psi}(\Phi;S, K, T)$ $:=$ $S \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-iuk}(\gamma(u;\Phi)-\gamma(u;\Phi_{BS}))du+BS(\Sigma^{\frac{1}{2}};S, K, T)$ ,

and $\Phi_{BS}(u)$ is the first-order-approximated chamcteristic function, $or$

equivalently that of the (hypothetical)Gaussian underlying log-forward
forex;

$\Phi_{BS}(u):=\Phi_{0,\Sigma}(h(u))=\Phi_{-\frac{1}{2}\Sigma,\Sigma}(u)$ .

Remark 3 Using these approximation formulas, we can also provide
analytical approximations of Greeks of the option, sensitivities of the
option price to the factors. Note that our approximation for the un-
derlying characteristic function does not depend upon the initial value
of the spot price. Thus in particular, $\triangle$ and $\Gamma$ , the first and second
derivatives of the option value with respect to $S_{0}$ respectively, can be
explicitly approximated with ease. For simplicity here we again assume
$A\equiv 0$ . Then $\hat{\Delta}$ and $\hat{\Gamma}$ , the approximations of $\triangle$ and $\Gamma$ respectively,
are given by

$\hat{\Delta}$

$:=$ $\{\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-iuk}(\gamma(u;\hat{\Phi}^{(\epsilon)})-\gamma(u;\Phi_{BS}))du$
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$- \frac{1}{2\pi}\int_{-\infty}^{\infty}(-iu)e^{-\iota uk}(\gamma(u;\hat{\Phi}^{(\epsilon)})-\gamma(u;\Phi_{BS}))du\}+\triangle_{BS}$,

$\hat{\Gamma}$

$:=$ $- \frac{1}{S_{0}}\cross\{\frac{1}{2\pi}\int_{-\infty}^{\infty}(-iu)e^{-iuk}(\gamma(u;\hat{\Phi}^{(\epsilon)})-\gamma(u;\Phi_{BS}))du$

$- \frac{1}{2\pi}\int_{-\infty}^{\infty}(-iu)^{2}e^{-iuk}(\gamma(u;\hat{\Phi}^{(\epsilon)})-\gamma(u;\Phi_{BS}))du\}+\Gamma_{BS}$ ,

where $\Delta_{BS}$ and $\Gamma_{BS}$ are the risk sensitivities of the Black-Scholes price
$BS(\Sigma^{\frac{1}{2}};S_{0}, K, T)$ given by

$\Delta_{BS}=N’(d_{+})$ and $\Gamma_{BS}=\frac{1}{s_{0}\sqrt{\Sigma T}}N’(d_{+})$ .

For other risk pammeters such as $\Theta$ , sensitivities of the option price
with respect to $t$ respectively, their approximations are given in easy
ways such as the difference quotient method, which needs few seconds
for calculation with our closed-fom fomula and has satisfactory ac-
cumcies.

3 A Characteristic-function-based Monte
Carlo Simulation with the Asymptotic EX-
pansion
Here we will introduce a Monte Carlo (henceforth sometimes called
M.C.) simulation scheme which incorporates the analytically obtained
characteristic function. Further, with the asymptotic expansion as a
control variable, the variance of this characteristic-function-based(ch.$f.-$

based) M.C. is reduced.

In a usual M.C. procedure, we discretize the stochastic differen-
tial equations (6) and (7), and generate $\{s^{j}\}_{j=1}^{M},$ $M$ samples of $s_{T}^{(\epsilon)}$ .
Then the approximation for the option value, the discounted average
of terminal payoffs, is obtained by;

$\hat{V}_{MC}^{payoff}(0, M;K, T)$ $:= \frac{1}{M}\sum_{j=1}^{M}(S_{0}e^{s^{j}}-K)^{+}$ . (1)

On the other hand, via the pricing formula (3) in Proposition 1, the
option price can be expressed with the pricing functional $\Psi(\cdot ; S, K, T)$

substituted the characteristic function of the underlying log-process
into:

$V(0;K, T)$ $=$ $\Psi(\Phi^{P,(\epsilon)};S_{0}, K, T)$

where $\Psi(\Phi;S, K, T)$ $=$ $S \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-iuk}\gamma(u;\Phi)du+(S-K)^{+}$ .
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Since $\Phi^{P,(\epsilon)}(u)$ is defined by $E^{P}[e^{ius_{T}^{(\epsilon)}}]=E^{P}[e^{iuZ_{T}^{(\epsilon)}}]\cross E^{P}[e^{iuA_{T}}]$ ,
the alternative approximation with M.C. can be constructed;

$\hat{V}_{MC}^{chf}(0, M;K, T)$ $:=$ $\Psi(\hat{\Phi}_{MC}^{P}(. ; M);S_{0}, K, T)$ (2)

$\hat{\Phi}_{MC}^{P}(u;M)$ $=$ $\hat{\Phi}_{Z,MC}^{P}(u;M)\cross\Phi_{A}^{P}(u):=(\frac{1}{M}\sum_{j=1}^{M}e^{iuZ^{j}})\Phi_{A}^{P}(u)$

(3)

where $\{Z^{j}\}_{j=1}^{M}$ are samples of $Z_{T}^{(\epsilon)}$ . Here it is stressed that in this
approximation there does not exist any error caused by M.C. for the
(jump or continuous) part $A$ .

Further, this ch. $f$.-based scheme can be much refined through the
better estimation for $\Phi_{Z}^{P,(\epsilon)}(u)$ by M.C., achieved with our asymp-
totic expansion of the first order. Since $\Phi_{Z}^{P_{)}(\epsilon)}(u)$ is expressed as
$\Phi_{G_{\hat{Z}}}^{Q_{1A},(\epsilon)}(\epsilon h(u))$ , it is done by the approximation of $\Phi_{G_{\hat{Z}}}^{Q_{1J},(\epsilon)}(\epsilon h(u))$ with
M.C.. In what follows in this section, we abbreviate $\epsilon$ (or set $\epsilon=1$ ) for
simplicity and use the notation $g_{1}=\hat{G}_{\tau^{u}}^{Q,\langle 1\rangle}$ , the first order coefficient
of the expansion (13).

Here, in order to avoid the infiuence appearing in this variance
reduction procedure caused by the variable transformation $h(\cdot)$ , we
use the following relationship

$E^{Q_{v}}[e^{ih(u)g_{1}}]=\exp(-\frac{1}{2}iu\Sigma)E^{Q_{u}}[e^{iug_{1}}]$ , (4)

i.e. $\Phi_{g_{1}}^{Q_{t\iota}}(h(u))=\exp(-\frac{1}{2}iu\Sigma)\cross\Phi_{g_{1}}^{Q_{\tau r}}(u)$ . $\Phi_{g_{1}}^{Q_{\tau r}}(v)$ is the characteristic
function of $g_{1}$ , which is equivalent to $\hat{\Phi}_{G_{Z^{-}}}^{Q_{1l},(\epsilon)}(v)$ in Theorem 1 if the
expansion were made only up to the first order. This equation can be
easily checked with recalling $\Phi_{g_{1}}^{Q_{u}}(v)=\Phi_{0,\Sigma}(v)=\exp(-\frac{\Sigma}{2}v^{2})$ .

Thus on the one hand, the closed-form characteristic function of $g_{1}$

evaluated at $v=h(u)$ is given by

$\Phi_{g_{1}}^{Q_{u}}(h(u))=\exp(-\frac{1}{2}iu\Sigma)\Phi_{0,\Sigma}(u)$ . (5)

But on the other hand, generating samples of $g_{1}$ following $N(O, \Sigma)$ ,
$\{g^{j}\}_{j=1}^{M}$ , we can further approximate the right hand side of (4) by

$\hat{\Phi}_{g_{1},MC}^{Q_{14}}(u;M):=\exp(-\frac{1}{2}iu\Sigma)\frac{1}{M}\sum_{j=1}^{M}(e^{iug^{j}})$ . (6)
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Note that because only the distribution of $g_{1}$ matters here, we can
simulate samples of $\tilde{g}_{1}$ $:= \int_{0}^{T}\sigma(0, \omega, s)dW_{s}$ following $N(O, \Sigma)$ under $P$

instead of those of $g_{1}$ , not under the measure $Q_{u}$ but under $P$ as well
as other random variables simulated for (3).

Using two functions in (5) and (6), which both are the first-order
approximations for $\Phi_{Z}^{Q_{1J},(\epsilon)}(h(u))$ , define two following estiiilators for
the option price.

$\hat{V}_{ana}^{AE}(0;K.T)$ $:=$ $\Psi(\Phi_{g_{1}}^{Q_{u}}(h(\cdot))\cross\Phi_{A}^{P};S_{0}, K, T)$ (7)

$\hat{V}_{MC}^{AE}(0, M;K, T)$ $:=$ $\Psi(\hat{\Phi}_{g_{1}’,MC}^{Q_{l}}(. ; M)\cross\Phi_{A}^{P};S_{0},$ $K,$ $T)$ (8)

Finally, using $\Phi_{g_{1}}^{Q_{u}}(h(u))$ as a control variable, we can construct the
more sophisticated estimator $\hat{V}^{CV}(0, M;K, T)$ for the option price
$V(0;K, T)$ as

$\hat{V}^{CV}(0, M;K, T)$ $:=$ $\hat{V}_{MC}^{chf}(0, M;K, T)+(\hat{V}_{ana}^{AE}(0;K, T)-\hat{V}_{MC}^{AE}(0, M;K, T))$ (9)

$=$ $\Psi(\{\hat{\Phi}_{Z,MC}^{P}(\cdot;M)+(\Phi_{g_{1}}^{Q_{u}}(h(\cdot))-\hat{\Phi}_{g_{1},MC}^{Q_{11}}(\cdot;M))\}\cross\Phi_{A}^{P};S_{0},$ $K,$ $T)$

where $T=T_{N+1}$ and

$\hat{\Phi}_{Z,MC}^{P}(u;M)$ $=$ $\frac{1}{M}\sum_{j=1}^{M}e^{iuZ^{j}}$

$\Phi_{g_{1}}^{Q_{u}}(h(u))$ $=$ $\exp(-\frac{1}{2}iu\Sigma)\cross\Phi_{0,\Sigma}(u)$ ,

$\hat{\Phi}_{g_{1},MC}^{Q_{14}}(u;M)$ $=$ $\exp(-\frac{1}{2}iu\Sigma)\cross\frac{1}{M}\sum_{j=1}^{M}(e^{iug^{j}})$ .

Remark 4 Here we note the following fact.
$V(O;K, T)-\hat{V}^{CV}(0, M;K, T)$

$=$ $(V(0;K, T)-\hat{V}_{MC}^{chf}(0, M;K, T))-(\hat{V}_{ana}^{AE}(0;K, T)-\hat{V}_{MC}^{AE}(0, M;K, T))$

$=$ $\Psi(\{(\Phi_{Z}^{P,(\epsilon)}-\hat{\Phi}_{Z,MC}^{P}(\cdot;M))-(\Phi_{g_{1}}^{Q_{u}}(h(\cdot))-\hat{\Phi}_{g_{1},MC}^{Q_{u}}(h(\cdot);M))\}\cross\Phi_{A}^{P};S_{0},$ $K,$ $T)$

where $\Phi_{Z}^{P,(\epsilon)}$ is the exact chamcteristic function of $Z_{T}^{(\epsilon)}$ . The fomer in
the first parentheses is the exact chamcteristi$c$ function of $Z_{T}^{(\epsilon)}$ and the
latter is its approximation by Monte Carlo simulations. Similarly, the
fomer in the second parentheses is the exact one of $g_{1}$ , the first-order
expansion for $Z_{T}^{(\epsilon)}$ , and the latter is its approximation. Thus, in the
case where the first and second $tem$ in the bmces cancel each other
out, the $emr$ of our hybrid estimator is expected to be small.
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