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1 Introduction

We consider a market model consisting of one bank account SY and N risky secu-
rities S},...,SN. We assume that the mean returns of risky security prices de-
pend nonlinearly upon “hidden economic factors,” which evolve as a continuous-
time Markov chain with finite state space. “Hidden” means that the factors are
only partially observable through the information of security prices.

Let Vr(h) be an investor’s wealth at time T', correponding to an investment
strategy h = (h¢)t>0. Set

Vr(h)

XT(h) = 10g S—O
T

For a given level k € R, we want to minimize a down-side risk probability
Xr(h)
P(—— < k)
T =

over a large time interval [0,7"). More specifically, we consider the long-time
average of a minimized down-side risk

o1, Xr(h)
II; (k) = lim -T—Hfllfl()gp( T

T—oo0

<k),
and also the minimized long-time average of a down side risk
. o1 Xr(h)
= = < k).
Ip(k) = inf lim o logP( < k)

To treat these problems, we first consider the following risk-sensitive portfolio
optimization problems (1) and (2), for a given “risk-averse” parameter v €
(—00,0):

Finite time horizon problem:
inf log Elexp{yXr(h)}], (1)

and its long time average

.1
x1(y) = lim TmflogEexp{'yXT(h)}].
T—oc h

Infinite time horizon problem:



P
x2(7) = inf lim = log Elexp{vXr(h)}]. (2)

h T 00 T
Suppose that we have “solved” the optimization problems (1) and (2). Then,
in view of the large deviations principle, we expect that the following duality

relation holds:
I,(k)=- inf x3(K'), v=12,

k'€(—o0,k)
where x} () is the Legendre transform of x,(-):

xo(k)y= sup {kv—-x.(7)}, v=12.
Y€ (—0c,0)

2 The Model

We consider a market model with 1+N securities S2, S},..., SN, N € {1,2,3,...},
and an economic factor process x;. We assume that the factor process is
a continuous-time Markov chain, whose state space is the unit vectors &; =
{e1,e2,...,eq} C R4 d € {2,3,4,...}. The bond price S? and risky stock

prices S}, i = 1,..., N, are assumed to have the following dynamics:
ds? = rS2dt, SO =s°,
S N o (3)
dS; = Si{gh(xc)dt + > _oidW/}, Si=s', i=1,...,N,
j=1

where W; = (W/);=1,..,~ is an N-dimensional standard Brownian motion in-
dependent of x;, defined on a probability space (2, F, P). Here we assume that
r > 0 is constant, go(-) = (g§(-))i=1.... ~ is an RV-valued function defined on &,
and o = (O';)i’j=1,“., ~ is a nonsingular constant matrix.

We recall that the dynamics of the Markov chain x; can be written as

dXt = A*xtdt + th,
X0 =&,

where A = (X;;)i j=1,...,d is a Q-matrix, M; is a martingale of pure jump type,
and ¢ is a random vector taking values in £;. We set

/Bi ::P(ézei)7 /8:= (ﬂla"'aﬁd)*'
It will be convenient to consider the logarithmic prices of S:
Y} :=logS! —logsh, i=0,1,...,N, Y,=(Y},...,Y,")"

Then, by (3),
t
YP=rt, Y= / g(xs)ds + o W4,
0



We define
fé) = 0(Xy, Wysu < 1) = 0(Xy, Yo;u < t),
yt" =o0(Y,;u <t),

and F;, ); as the corresponding right-continuous, complete filtrations aug-
mented by P-null sets.

Suppose that an investor invests, at time ¢, a proportion h¢ of his wealth in
the 4-th security S, i = 0,1,..., N. Then, under the self-financing condition,
the dynamics of the investor’s wealth V; = V;(h) with initial value vq is given
by

th dSt dSt R v 1s
1—-h hl = - hebdt h|™dWr,
v, = ( ¢ E = {r + go(x¢) - he}dt + (0" hy] t (@)
VO = g,

where hy = (h},...,AN)*, 1 =(1,...,1)* and

QQ(E) = go(e) - rl.
Definition 2.1. h; = (h},...,hl¥)* is said to be an investment strategy if the
following conditions are satisfied:

(i) (ht)o<i<T is an RN wvalued Y;-progressively measurable process,
(i) E [} |he|2dt < 0.
We denote by H(T) the totality of all investment strategies.

For simplicity let us assume

Vo
S

Then, by (4), the process X;(h) := log 455~ Vt(h ) has the dynamics

XT(h) = /0 {go(xt) . ht - 5(0*ht‘2}dt +/O [U*ht]*th,

for h € H(T).

3 The Results

Assumptions
(A1) gt >0forallie{1,...,d}.
(A2) The N x (d — 1)-matrix G defined by
G:=afle) ~aslen] _
has rank d — 1. In particular, d — 1 < N.
(A3) Irreducibility: Vi,j Ji1,...,0n St Mgy Aigip - Ainj # 0.
(A3)’ “S-irreducibility”: A;; # 0 for all 4,5 € {1,...,d}.

Under (some of) these assumptions, we have the following results:



Theorem 1. For any v € (—00,0) and T € (0,00), there exist a subclass
A(T) c H(T) and a strategy h{T7) = (Ihng‘W))te[O,T] € A(T) such that
inf log Elexp{yXr(h)}] = log Elexp{yXr(AT")}].
h€A(T)

Theorem 2. For anyy € (—00,0), there exist a subclass A C H and a strategy
A = (Bﬁ”’)te[o,m) € A such that

1 1 R
. . L - L L AONT
}:&f‘l Tth; 7 log Elexp{vXr(h)}] Tl_r’r;o T log Elexp{yX7(h'")}]

Theorem 3. Set

1
= lim = i h}},
x1(7) T%m;o T he‘fi(fT) log Elexp{vX7(h)}]

. . 1 i

Then we have
x1(7) = x2(7)-

Theorem 4. x(7) := x1(7) = x2(7) is a conver and continuously differen-
tiable function of v € (—00,0) and it satisfies x'(—o0) = 0. In particular,
for each k € (0,x'(0-)), we can choose a number vx € (—00,0) satisfying
X' () = k.

For k € (0,x'(0—)), set x*(k) := sup..¢(—o0,0)1k7 — Xx(7)} and let v be the
number specified in Theorem 4.

Theorem 5. We have

1 X7 (ATm)) .1 Xr(h)
—_ N I = — <
lim TlogP( - _k) lim o inf logP( - _k)
— 3 * /
= k,e(lggo’k]x (k)

where h(T7) is an optimal strategy from Theorem 1.
We also have

.1 Xr(h(w) Xz (h)
— < = — <
fm ilog P(TEp— < k) = jaf lim g P(Z5= < k)
=— inf  x*(k),
el ¥ )

where () is an optimal strategy from Theorem 2.



