Risk-Sensitive Portfolio Optimization and Down-Side Risk Minimization for Hidden Markov Factor Models

大阪大学・基礎工学研究科 渡辺 有佑 (Yûsuke Watanabe)
Graduate School of Engineering Science
Osaka University

1 Introduction

We consider a market model consisting of one bank account S_t^0 and N risky securities S_t^1, \ldots, S_t^N . We assume that the mean returns of risky security prices depend nonlinearly upon "hidden economic factors," which evolve as a continuous-time Markov chain with finite state space. "Hidden" means that the factors are only partially observable through the information of security prices.

Let $V_T(h)$ be an investor's wealth at time T, corresponding to an investment strategy $h = (h_t)_{t>0}$. Set

$$X_T(h) := \log \frac{V_T(h)}{S_T^0}.$$

For a given level $k \in \mathbb{R}$, we want to minimize a down-side risk probability

$$P\Big(\frac{X_T(h)}{T} \le k\Big)$$

over a large time interval [0,T]. More specifically, we consider the long-time average of a minimized down-side risk

$$\Pi_1(k) = \underline{\lim}_{T \to \infty} \frac{1}{T} \inf_h \log P\left(\frac{X_T(h)}{T} \le k\right),$$

and also the minimized long-time average of a down side risk

$$\Pi_2(k) = \inf_{h} \underline{\lim}_{T \to \infty} \frac{1}{T} \log P\left(\frac{X_T(h)}{T} \le k\right).$$

To treat these problems, we first consider the following risk-sensitive portfolio optimization problems (1) and (2), for a given "risk-averse" parameter $\gamma \in (-\infty, 0)$:

Finite time horizon problem:

$$\inf_{h} \log E[\exp{\{\gamma X_T(h)\}}],\tag{1}$$

and its long time average

$$\chi_1(\gamma) = \underline{\lim}_{T \to \infty} \frac{1}{T} \inf_h \log E \exp{\{\gamma X_T(h)\}}.$$

Infinite time horizon problem:

$$\chi_2(\gamma) = \inf_{h} \underline{\lim}_{T \to \infty} \frac{1}{T} \log E[\exp{\{\gamma X_T(h)\}}]. \tag{2}$$

Suppose that we have "solved" the optimization problems (1) and (2). Then, in view of the large deviations principle, we expect that the following duality relation holds:

$$\Pi_{\nu}(k) = -\inf_{k' \in (-\infty, k]} \chi_{\nu}^{*}(k'), \quad \nu = 1, 2,$$

where $\chi_{\nu}^{*}(\cdot)$ is the Legendre transform of $\chi_{\nu}(\cdot)$:

$$\chi_{\nu}^{*}(k) = \sup_{\gamma \in (-\infty,0)} \{k\gamma - \chi_{\nu}(\gamma)\}, \quad \nu = 1, 2.$$

2 The Model

We consider a market model with 1+N securities $S_t^0, S_t^1, \ldots, S_t^N, N \in \{1, 2, 3, \ldots\}$, and an economic factor process \mathbf{x}_t . We assume that the factor process is a continuous-time Markov chain, whose state space is the unit vectors $\mathcal{E}_d = \{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_d\} \subset \mathbb{R}^d, \ d \in \{2, 3, 4, \ldots\}$. The bond price S_t^0 and risky stock prices $S_t^i, \ i=1,\ldots,N$, are assumed to have the following dynamics:

$$dS_t^0 = rS_t^0 dt, S_0^0 = s^0,$$

$$dS_t^i = S_t^i \{ g_0^i(\mathbf{x}_t) dt + \sum_{j=1}^N \sigma_j^i dW_t^j \}, S_0^i = s^i, i = 1, \dots, N,$$
(3)

where $W_t = (W_t^j)_{j=1,\dots,N}$ is an N-dimensional standard Brownian motion independent of \mathbf{x}_t , defined on a probability space (Ω, \mathcal{F}, P) . Here we assume that $r \geq 0$ is constant, $g_0(\cdot) = (g_0^i(\cdot))_{i=1,\dots,N}$ is an \mathbb{R}^N -valued function defined on \mathcal{E}_d , and $\sigma = (\sigma_j^i)_{i,j=1,\dots,N}$ is a nonsingular constant matrix.

We recall that the dynamics of the Markov chain \mathbf{x}_t can be written as

$$\begin{cases} d\mathbf{x}_t = \Lambda^* \mathbf{x}_t dt + dM_t, \\ \mathbf{x}_0 = \xi, \end{cases}$$

where $\Lambda = (\lambda_{ij})_{i,j=1,...,d}$ is a Q-matrix, M_t is a martingale of pure jump type, and ξ is a random vector taking values in \mathcal{E}_d . We set

$$\beta^i := P(\xi = \mathbf{e}_i), \quad \beta := (\beta^1, \dots, \beta^d)^*.$$

It will be convenient to consider the logarithmic prices of S_t^i :

$$Y_t^i := \log S_t^i - \log S_0^i, \quad i = 0, 1, \dots, N, \quad Y_t = (Y_t^1, \dots, Y_t^N)^*.$$

Then, by (3),

$$Y_t^0 = rt, \quad Y_t = \int_0^t g(\mathbf{x}_s) ds + \sigma W_t,$$

where

$$g^{i}(\mathbf{e}) := g_{0}^{i}(\mathbf{e}) - \frac{1}{2}(\sigma\sigma^{*})^{ii}, \quad g(\mathbf{e}) := (g^{1}(\mathbf{e}), \dots, g^{N}(\mathbf{e}))^{*}, \quad \mathbf{e} \in \mathcal{E}_{d}.$$

We define

$$\mathcal{F}_t^0 := \sigma(\mathbf{x}_u, W_u; u \le t) = \sigma(\mathbf{x}_u, Y_u; u \le t),$$

$$\mathcal{Y}_t^0 := \sigma(Y_u; u \le t),$$

and \mathcal{F}_t , \mathcal{Y}_t as the corresponding right-continuous, complete filtrations augmented by P-null sets.

Suppose that an investor invests, at time t, a proportion h_t^i of his wealth in the i-th security S_t^i , i = 0, 1, ..., N. Then, under the self-financing condition, the dynamics of the investor's wealth $V_t = V_t(h)$ with initial value v_0 is given by

$$\frac{dV_t}{V_t} = (1 - h_t \cdot \mathbf{1}) \frac{dS_t^0}{S_t^0} + \sum_{i=1}^N h_t^i \frac{dS_t^i}{S_t^i} = \{r + \hat{g}_0(\mathbf{x}_t) \cdot h_t\} dt + [\sigma^* h_t]^* dW_t,
V_0 = v_0,$$
(4)

where $h_t = (h_t^1, \dots, h_t^N)^*$, $\mathbf{1} = (1, \dots, 1)^*$ and

$$\hat{g}_0(\mathbf{e}) := g_0(\mathbf{e}) - r\mathbf{1}.$$

Definition 2.1. $h_t = (h_t^1, \dots, h_t^N)^*$ is said to be an investment strategy if the following conditions are satisfied:

- (i) $(h_t)_{0 \le t \le T}$ is an \mathbb{R}^N valued \mathcal{Y}_t -progressively measurable process,
- (ii) $E \int_0^T |h_t|^2 dt < \infty$.

We denote by $\mathcal{H}(T)$ the totality of all investment strategies.

For simplicity let us assume

$$\frac{v_0}{\epsilon^0} = 1.$$

Then, by (4), the process $X_t(h) := \log \frac{V_t(h)}{S_t^0}$ has the dynamics

$$X_T(h) = \int_0^T \left\{ \hat{g}_0(\mathbf{x}_t) \cdot h_t - \frac{1}{2} |\sigma^* h_t|^2 \right\} dt + \int_0^T [\sigma^* h_t]^* dW_t,$$

for $h \in \mathcal{H}(T)$.

3 The Results

Assumptions

- **(A1)** $\beta^i > 0$ for all $i \in \{1, ..., d\}$.
- (A2) The $N \times (d-1)$ -matrix G defined by

$$G := \left[g_0^{\nu}(\mathbf{e}_i) - g_0^{\nu}(\mathbf{e}_d) \right]_{1 \le \nu \le N, 1 \le i \le d-1}$$

has rank d-1. In particular, $d-1 \leq N$.

- (A3) Irreducibility: $\forall i, j \ \exists i_1, \dots, i_n \text{ s.t. } \lambda_{ii_1} \lambda_{i_1 i_2} \cdots \lambda_{i_n j} \neq 0.$
- (A3)' "S-irreducibility": $\lambda_{ij} \neq 0$ for all $i, j \in \{1, \ldots, d\}$.

Under (some of) these assumptions, we have the following results:

Theorem 1. For any $\gamma \in (-\infty,0)$ and $T \in (0,\infty)$, there exist a subclass $\mathcal{A}(T) \subset \mathcal{H}(T)$ and a strategy $\hat{h}^{(T,\gamma)} = (\hat{h}_t^{(T,\gamma)})_{t \in [0,T]} \in \mathcal{A}(T)$ such that

$$\inf_{h \in \mathcal{A}(T)} \log E[\exp{\{\gamma X_T(h)\}}] = \log E[\exp{\{\gamma X_T(\hat{h}^{(T,\gamma)})\}}].$$

Theorem 2. For any $\gamma \in (-\infty, 0)$, there exist a subclass $A \subset \mathcal{H}$ and a strategy $\hat{h}^{(\gamma)} = (\hat{h}_t^{(\gamma)})_{t \in [0,\infty)} \in \mathcal{A}$ such that

$$\inf_{h \in \mathcal{A}} \underline{\lim}_{T \to \infty} \frac{1}{T} \log E[\exp{\{\gamma X_T(h)\}}] = \underline{\lim}_{T \to \infty} \frac{1}{T} \log E[\exp{\{\gamma X_T(\hat{h}^{(\gamma)})\}}].$$

Theorem 3. Set

$$\chi_1(\gamma) := \underline{\lim}_{T \to \infty} \frac{1}{T} \inf_{h \in \mathcal{A}(T)} \log E[\exp{\{\gamma X_T(h)\}}],$$

$$\chi_2(\gamma) := \inf_{h \in \mathcal{A}} \varliminf_{T \to \infty} \frac{1}{T} \log E[\exp{\{\gamma X_T(h)\}}].$$

Then we have

$$\chi_1(\gamma) = \chi_2(\gamma).$$

Theorem 4. $\chi(\gamma) := \chi_1(\gamma) = \chi_2(\gamma)$ is a convex and continuously differentiable function of $\gamma \in (-\infty, 0)$ and it satisfies $\chi'(-\infty) = 0$. In particular, for each $k \in (0, \chi'(0-))$, we can choose a number $\gamma_k \in (-\infty, 0)$ satisfying $\chi'(\gamma_k) = k$.

For $k \in (0, \chi'(0-))$, set $\chi^*(k) := \sup_{\gamma \in (-\infty,0)} \{k\gamma - \chi(\gamma)\}$ and let γ_k be the number specified in Theorem 4.

Theorem 5. We have

$$\frac{\lim_{T \to \infty} \frac{1}{T} \log P\left(\frac{X_T(\hat{h}^{(T,\gamma_k)})}{T} \le k\right) = \lim_{T \to \infty} \frac{1}{T} \inf_{h \in \mathcal{A}(T)} \log P\left(\frac{X_T(h)}{T} \le k\right) \\
= -\inf_{k' \in (-\infty, k]} \chi^*(k'),$$

where $\hat{h}^{(T,\gamma_k)}$ is an optimal strategy from Theorem 1. We also have

$$\frac{\lim_{T \to \infty} \frac{1}{T} \log P\left(\frac{X_T(\hat{h}^{(\gamma_k)})}{T} \le k\right) = \inf_{h \in \mathcal{A}} \frac{\lim_{T \to \infty} \frac{1}{T} \log P\left(\frac{X_T(h)}{T} \le k\right)$$

$$= -\inf_{k' \in (-\infty, k]} \chi^*(k'),$$

where $\hat{h}^{(\gamma_k)}$ is an optimal strategy from Theorem 2.