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The Euler form of the gamma function I'(x) is given by
I(z) = / et dt
0

for £ > 0. The Weierstrass form

O

1 T, _z
— T /’71‘ — _‘.1-1,- 1
o) Te nl=|1(1 + n)e (1)
extend it to R\ {0,—1,—2,---}, where v is the Euler constant defined

by
7:7}Lr£10(1+%+---+%—logn) =0.57721---.

It is clear that I'(1) = I'(2) =1, (1) = —, T'(2) = —y + 1. Denote
the unique zero in (0, 00) of I''(z) by a. It is known that oo = 1.4616- - -
and I'(a) = 0.8856 - --. We call the inverse function of the restriction of
I'(z) to (o, 00) the principal inverse function and write I'™1. T'"!(z) is
an increasing and concave function defined on (I'(a), 0). (1) guarantees
that I'(z) has the holomorphic extension which is a meromorphic function

with poles at non-positive integers and (3) holds there. This implies that

I''(2) does not vanish on C\ (—oo, al.

logl'(z) = —loga:—vx+2(£——log(l+%)), (2)

n=1

I;((j)) - _W—I—Z(n%l—l_n%l—x)' 3)
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Let II, and II_ be respectively the upper half plane and the lower half

plane.
We will show

Theorem 1 The principal inverse I'"}(z) of I'(z) has the holomorphic
extension I'"1(2) to C\ (—oo, I'(a)], which satisfies

(i) I~YI1,) c I, and T"}(I1_) C I1_,
(i) I'~1(2) is univalent,
(ifi) T(T-1(2)) = z for z € C\ (=00, T'(a))].

Let K(z,y) be a real continuous function defined on I x I, and suppose
K(z,y) = K(y,z). Then K(z,y) is said to be a positive semidefinite -

abbreviated to p.s.d. - kernel function on an interval I x [ if

/ [ Kooy 2 0 (4)

for every real continuous function ¢ with compact support in 1.
In this case (4) holds for complex valued functions ¢(z) as well.
It is clear that K(z,y) is p.s.d. if and only if for each n and for all n

points z; € I, the n X n matrices

(K('Tiv xj))n

i,j=1

are positive semidefinite matrices. Suppose K(z,y) 2 0 for every z,y in
I. Then K(z,y) is said to be infinitely divisible if K(z,y)* is p.s.d. for
every a > 0.

K(z,y) is said to be conditionally (or almost) positive semidefinite -

abbreviated to c.p.s.d. - on I if (4) holds for every continuous function
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¢ on I such that the support of ¢ is compact and the integral of ¢ over
I vanishes. One can see K(z,y) is c.p.s.d. if and only if
2”: K(zi,2;)2%z; 20 (5)
ij=1
for each n, for all n points x; € I and for n complex numbers z; with
r . 2i=0.
Let f(x) be a C'-functions on I. Then the Lowner kernel function is

defined by
f(w):f(y) (z #vy)
Ki(z,y) =
fl@) (z=y)

We make use of the following excellent theorem by Lowner[6] (also see

Koranyi[5] and [7]).

Theorem A Let f(z) be a C*'-functions on I. Then the Lowner kernel
function Ky(z,y) is p.s.d. if and only if f(z) has a holomorphic extension

f(z) to I, and it is a Pick function.

Lemma 2
REIZXEV (g7 y)

Kl(way) =

8 [~
—
8
Il
NS
N

is p.s.d. on (0,00) x (0, )

Proof. This is wellknown. However we give direct proof.

By the formula

> —1 t
1 = dt >0
ogr= [ (g + it (@>0)

135



we obtain
1

K@) =/o CEDIED

for z,y > 0.
Suppose the support of ¢(z) is included in [m, M] with m > 0. Since the
above infinite integral converges uniformly with respect to z,y € [m, M],

we have

/000 /000 Ki(z,y)¢(z)d(y)dzdy =

mM/mM ( o (@+t)(y+1?) dt) ¢(z)d(y)dzdy
- /ooo (LMLAI (z + t)l(y " t)¢($)¢(y)dévdy) dt =

o) M 1 2
/ ¢(:c)da:> dt=0. O
0

r+t

Lemma 3 Let K»(z,y) be the function defined on (0, 00) x (0, 00) by

log I'(z)—-log I
og (z;_yog (¥) (3375 y)

Ky(z,y) :=

Fl
r((;)) (z=1y).

Then —K,(z,y) is c.p.s.d. on (0, 00).

Proof. Suppose the support of ¢(z) is included in [m, M] with m > 0
and fry ¢(z)dx = 0. From (2) it follows that —Ks(z,y) = Ki(z,y) +v—
K,y(z,y), where K, is a Lowner kernel function of g defined by

=z x
=) =3 (£ —los1+ ).
Since Ki(z,y) is p.s.d. and [J° [;° v¢(z)d(y)dzdy = 0, we have only to
show —K,(z,y) is c.p.s.d. Put

n

ga(@) =Y (T —log1+7))-

k=1

136



137

Then
z
/
g(@) =) o=
~ k(k + x)
converges uniformly to Y .-, s = g'(z) on [0, M]. The sequence

of Lowner kernel functions K, (z,y) converges uniformly to K,(z,y);

indeed,

= () - d @) dt (z#y)
Kgn(x,y) - Kg(x,y) =
9, (z) — ¢'(x) (z=1y)

converges uniformly to 0 on [0, M] x [0, M]. Since

- 1 1 T y
—Kgn(]], y) = (—E + 'EKl(l + 74;7 14+ ]—g-))
k=1

is c.p.s.d., so is —Ky(z,y). O

The following is known (p.152 of [7], [8] and [9]).

Lemma 4 Let K(z,y) >0forz,y € I. If —K(z,y) isc.ps.d. on I x I,

then the reciprocal function f(;lcj is infinitely divisible there.

Lemma 5 Let K3(z,y) be the kernel function defined on (o, 00) X (e, 20)
by
emym BN CEE)
Ks(z,y) =
o (@=y)
Then Kj(z,y) is p.s.d.



Proof.
1
log I'(z)—log I'(
Tl (z#Y)
Ki([(z),T(y)) =

ol (z=y)

log I zz):;ogI‘ ) (.’L‘ # y)

KQ(xay) =
1;‘/((5)) (z=1y).

O

Proof of Theorem1 The Lowner kernel Kr-1(z,y) defined on (I'(a), 00) X

(T(a), 00) by
C@-I0 (5 y)
Kr-1(z,y) =
(= (z=y)
coincides with K3(I'~*(z),~!(y)), which is p.s.d. Thus by Theorem A,
I'~!(z) has the holomorphic extension I'"!(z) onto Il,, which is a Pick
function. By reflection I'"*(z) has also holomorphic extension to II_
and the range is in it. We thus get (i). I'(I'"!(z)) is thus holomorphic
on the simply connected domain C \ (—o0,[(a)], and I(I'"}(z)) = =
for ['(a) < z < oo. By the uniqueness theorem, I' (I'"!(z)) = z for
z € C\ (—o00,T'(a)]. This means (iii), which clearly yields (ii). O

Corollary 6

> 1 1

I (x) =a+bx+/m)(—x+t+t2+1)d“(t)’ (6)
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where fl?(oa) T?iﬁdﬂ(t) < o0, and a, b are real numbers and b 2 0.

Corollary 7 The principal inverse I'~!(z) of I'(x) is operator monotone
on [['(a),0); and hence for bounded self-adjoint operators A, B whose

spectra are in [a, 00)

I(A)<I(B) = A<B.
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