On a reverse of Cauchy-Schwarz inequalities in pre-inner product C*-modules

芝浦工業大学工学部 瀬尾祐貴 (Yuki Seo) Faculty of Engineering, Shibaura Institute of Technology

1. Introduction

This report is based on [3].

Let A be a positive operator on a Hilbert space H such that $mI \leq A \leq MI$ for some scalars 0 < m < M. Then Kantorovich inequality [6, 4] says that

(1)
$$(Ax, x)(A^{-1}x, x) \le \frac{(M+m)^2}{4Mm}$$

for every unit vector $x \in H$. This inequality (1) can be rephrased as follows:

$$\parallel Ax \parallel \parallel x \parallel \leq \frac{M+m}{2\sqrt{Mm}}(Ax,x)$$

for every vector $x \in H$. Therefore, Kantorovich inequality is just regarded as a reverse of Cauchy-Schwarz inequality

$$(Ax, x) \le ||Ax|| ||x||.$$

Dragomir [1] considered Kantorovich inequality (1) in the framework of an inner product space: Let $(H, \langle \cdot, \cdot \rangle)$ be an inner product space. Cauchy-Schwarz inequality says that

Dragomir showed the following Kantorovich type inequality for Cauchy-Schwarz inequality (2): If $x, y \in H$ and $\alpha, \beta \in \mathbb{C}$ satisfy the condition

$$\operatorname{Re}\langle \alpha y - x, x - \beta y \rangle \ge 0,$$

then

$$\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} \le \frac{|\alpha + \beta|}{2\sqrt{\operatorname{Re}(\alpha \overline{\beta})}} |\langle x, y \rangle|$$

and

$$(x,x)^{\frac{1}{2}}(y,y)^{\frac{1}{2}} - |(x,y)| \le \frac{|\alpha - \beta|^2}{4|\alpha + \beta|}(y,y).$$

In this report, by virtue of the operator geometric mean and by using some ideas of [2], we shall consider Kantorovich type inequalities for Cauchy-Schwarz inequality in the framework of a pre-inner product C*-module over a unital C*-algebra, also see [9].

2. Pre-inner product C*-modules

Let \mathscr{A} be a unital C^* -algebra with the unit element e and the center $\mathscr{Z}(\mathscr{A})$. For $a \in \mathscr{A}$, we denote the real part of a by Re $a = \frac{1}{2}(a+a^*)$. If $a \in \mathscr{A}$ is positive (that is selfadjoint with positive spectrum), then $a^{\frac{1}{2}}$ denotes a unique positive $b \in \mathscr{A}$ such that $b^2 = a$. For $a \in \mathscr{A}$, we denote the absolute value of a by $|a| = (a^*a)^{\frac{1}{2}}$. If $a \in \mathscr{Z}(\mathscr{A})$ is positive, then $a^{\frac{1}{2}} \in \mathscr{Z}(\mathscr{A})$. If $a, b \in \mathscr{A}$ are positive and ab = ba, then ab is positive and $(ab)^{\frac{1}{2}} = a^{\frac{1}{2}}b^{\frac{1}{2}}$.

Let \mathscr{X} be an algebraic left \mathscr{A} -module which is a complex linear space fulfilling $a(\lambda x) = (\lambda a)x = \lambda(ax)$ ($x \in \mathscr{X}, a \in \mathscr{A}, \lambda \in \mathbb{C}$). The space \mathscr{X} is called a (left) pre-inner product \mathscr{A} -module (or an pre-inner product C^* -module over the unital C^* -algebra \mathscr{A}) if there exists a mapping $\langle \cdot, \cdot \rangle \colon \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ satisfying

- (i) $\langle x, x \rangle \geq 0$,
- (ii) $\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle$,
- (iii) $\langle ax, y \rangle = a \langle x, y \rangle$,
- (iv) $\langle y, x \rangle = \langle x, y \rangle^*$,

for all $x, y, z \in \mathcal{X}$, $a \in \mathcal{A}$, $\lambda \in \mathbb{C}$. Moreover, if

(v)
$$x = 0$$
 whenever $\langle x, x \rangle = 0$,

then \mathscr{X} is called an *inner product* \mathscr{A} -module. In this case $||x|| := \sqrt{||\langle x, x \rangle||}$, where the latter norm denotes the C^* -norm on \mathscr{A} . If this norm is complete, then \mathscr{X} is called a *Hilbert* \mathscr{A} -module. Any inner product space is an inner product \mathbb{C} -module and any C^* -algebra \mathscr{A} is a Hilbert C^* -module over itself via $\langle a,b\rangle=ab^*$ $(a,b\in\mathscr{A})$. For more details on Hilbert C^* -modules, see [8]. Notice that (iii) and (iv) imply $\langle x,ay\rangle=\langle x,y\rangle a^*$ for all $x,y\in\mathscr{X},a\in\mathscr{A}$.

We discuss the Cauchy-Schwarz inequality and its reverse in a pre-inner product C*-module over a unital C*-algebra \mathscr{A} . Since the product of $\langle x, x \rangle$ and $\langle y, y \rangle$ are not selfadjoint in general, we would expect that the following Cauchy-Schwarz inequalities hold:

$$|\langle x, y \rangle|^2 \le \text{Re}\langle x, x \rangle \langle y, y \rangle$$
 for $x, y \in \mathscr{X}$

and

$$\operatorname{Re}\langle x, y \rangle \le \operatorname{Re}\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} \quad \text{for } x, y \in \mathscr{X}.$$

But we have a counterexample. As a matter of fact, let $\mathscr{A}=M_2(\mathbb{C})$ be the C*-albegra of 2×2 matrices with an inner product $\langle x,y\rangle=xy^*$ for $x,y\in\mathscr{A}$. Put $x=\begin{pmatrix}0&1\\0&0\end{pmatrix}$ and

$$y = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}. \text{ Then we have } |\langle x,y \rangle|^2 \not \leq \operatorname{Re}\langle x,x \rangle \langle y,y \rangle \text{ and } \operatorname{Re}\langle x,y \rangle \not \leq \operatorname{Re}\langle x,x \rangle^{\frac{1}{2}} \langle y,y \rangle^{\frac{1}{2}}.$$

In a pre-inner product C^* -module, the Cauchy-Schwarz inequality is firstly established by Lance [8]:

$$|\langle y, x \rangle|^2 = \langle x, y \rangle \langle y, x \rangle \le ||\langle y, y \rangle|| \langle x, x \rangle$$

for $x, y \in \mathcal{X}$. Afterwards, Ilisević and Varosanec [5] showed another version:

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

for $x, y \in \mathscr{X}$ and $\langle x, x \rangle \in \mathcal{Z}(\mathscr{A})$.

3. Cauchy-Schwarz inequality and its reverse

Let A and B be positive operators on a Hilbert space. Then the operator geometric mean $A \sharp B$ is defined by

$$A \sharp B = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{\frac{1}{2}} A^{\frac{1}{2}}$$

if A is invertible, see [7]. The operator geometric mean has the symmetric property: $A \sharp B = B \sharp A$. If A commutes with B, then $A \sharp B = A^{\frac{1}{2}}B^{\frac{1}{2}}$. From viewpoint of (2), we would expect the following Cauchy-Schwarz inequality in a pre-inner product C*-module:

$$(3) |\langle x, y \rangle| \le \langle x, x \rangle \sharp \langle y, y \rangle$$

holds for $x, y \in \mathscr{X}$. Unfortunately we also have a counterexample. If $x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $y = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ mentioned above, then we have $|\langle x, y \rangle| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $\langle x, x \rangle \sharp \langle y, y \rangle = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$.

Therefore, we have $|\langle x, y \rangle| \not \leq \langle x, x \rangle \sharp \langle y, y \rangle$. However, we have the following Cauchy-Schwarz type inequality:

Theorem 1. Let $\mathscr X$ be a pre-inner product C^* -module over a unital C^* -algebra $\mathscr A$. Suppose that $x,y\in \mathscr X$ such that a polar decomposition $\langle x,y\rangle=u|\langle x,y\rangle|$ and $u\in \mathscr A$. Then

$$|\langle x, y \rangle| \le u^* \langle x, x \rangle u \sharp \langle y, y \rangle.$$

To prove a reverse of Cauchy-Schwarz type inequality in Theorem 1, we need the following lemma:

Lemma 2. Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* -algebra \mathscr{A} . Suppose that $x, y \in \mathscr{X}$ such that there exist a partial isometry $u \in \mathscr{A}$ such that a polar decomposition $\langle x, y \rangle = u | \langle x, y \rangle |$ and

(4)
$$\operatorname{Re}\langle Ay - u^*x, u^*x - ay \rangle \ge 0$$

for some $a, A \in \mathcal{Z}(\mathscr{A})$. Then

$$u^*\langle x, x\rangle u + \operatorname{Re}(Aa^*)\langle y, y\rangle \le \operatorname{Re}(A+a)|\langle x, y\rangle|.$$

Remark 3. The condition (4) in Lemma 2 is equivalent to

$$\langle u^*x - \frac{A+a}{2}y, u^*x - \frac{A+a}{2}y \rangle \leq \frac{|A-a|^2}{4} \langle y, y \rangle.$$

Theorem 4. Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* -algebra \mathscr{A} . Suppose that $x, y \in \mathscr{X}$ such that there exist a partial isometry $u \in \mathscr{A}$ such that a polar decomposition $\langle x, y \rangle = u |\langle x, y \rangle|$ and (4) holds for some elements $a, A \in \mathscr{Z}(\mathscr{A})$ and $\operatorname{Re}(Aa^*)$ is positive invertible and $\operatorname{Re}(A+a)$ is invertible. Then

(i)
$$u^*\langle x, x\rangle u \sharp \langle y, y\rangle \le \frac{\operatorname{Re}(A+a)}{2\sqrt{\operatorname{Re}(Aa^*)}} |\langle x, y\rangle|.$$

(ii)
$$u^*\langle x, x\rangle u \sharp \langle y, y\rangle - |\langle x, y\rangle| \le \frac{(\operatorname{Re}(A+a))^2 - 4\operatorname{Re}(Aa^*)}{4\operatorname{Re}(A+a)} \langle y, y\rangle.$$

(iii)
$$u^*\langle x, x\rangle u \sharp \langle y, y\rangle - |\langle x, y\rangle| \le \frac{(\operatorname{Re}(A+a))^2 - 4\operatorname{Re}(Aa^*)}{4\operatorname{Re}(Aa^*)\operatorname{Re}(A+a)} \langle x, x\rangle.$$

Finally, though the inequality (3) does not hold in general, we have reverse types of (3):

Theorem 5. Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* -algebra \mathscr{A} . Suppose that $x, y \in \mathscr{X}$ such that

$$\langle Ay - x, x - ay \rangle \geq 0$$
 for some positive invertible $A, a \in \mathcal{Z}(\mathscr{A})$.

Then

(i)
$$\langle x, x \rangle \sharp \langle y, y \rangle \leq \frac{A+a}{2\sqrt{Aa}} \operatorname{Re}\langle x, y \rangle.$$

(ii)
$$\langle x, x \rangle \sharp \langle y, y \rangle - \operatorname{Re}\langle x, y \rangle \le \frac{(A-a)^2}{4(A+a)} \langle y, y \rangle.$$

(ii)
$$\langle x, x \rangle \sharp \langle y, y \rangle - \operatorname{Re}\langle x, y \rangle \le \frac{(A-a)^2}{4Aa(A+a)}\langle x, x \rangle.$$

REFERENCES

- [1] S.S. Dragomir, Reverses of Schwarz, triangle and bessel inequalities in inner product spaces, J. Inequal. Pure Appl. Math., 5, Issue 3, Article 76, 2004.
- [2] N. Elezović, Lj. Marangunić and J.E. Pečarić, Unified treatment of complemented Schwarz and Grüss inequalities in inner product spaces, Math. Inequal. Appl., 8 (2005), no.2, 223-231.
- [3] J.I.Fujii, M.Fujii, M.S.Moslehian, J.E.Pečarić and Y.Seo, Reverse Cauchy-Schwarz type inequalities in pre-inner product C*-modules, preprint.
- [4] W. Greub and W. Rheinboldt, On a generalization of an inequality of L.V.Kantorovich, Proc. Amer. Math. Soc., 10(1959), 407-415.
- [5] D. Ilisević and S. Varošanec, On the Cauchy-Schwarz inequality and its reverse in semi-inner product C*-modules, Banach J. Math. Anal., 1 (2007), 78-84.
- [6] L.V.Kantorovich, Functional analysis and applied mathematics, Uspehi Mat. Nauk., 3(1948), pp.89-185. Translated from the Russian by Curtis D. Benster, National Bureau of Standards, Report 1509, March 7, 1952.
- [7] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.
- [8] E.C. Lance, Hilbert C*-Modules, London Math. Soc. Lecture Note Series 210, Cambridge Univ. Press, 1995.
- [9] M.S. Moslehian and L.-E. Persson, Reverse Cauchy-Schwarz inequalities for positive C*-valued sesquilinear forms, Math. Inequal. Appl., 4 (2009), no.12, 701-709.

FACULTY OF ENGINEERING, SHIBAURA INSTITUTE OF TECHNOLOGY, 307 FUKASAKU, MINUMA-KU, SAITAMA-CITY, SAITAMA 337-8570, JAPAN.

E-mail address: yukis@sic.shibaura-it.ac.jp