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Abstract

A unified development of the subject of the algebraic strain analysis methods using Rf/ϕ data is outlined, embodying the main
features the theories of Shimamoto and Ikeda, Mulchrone et al. and Yamaji. It is shown that the theories yields an identical strain
ellipse from the same data set. However, error estimation in that of Shimamoto and Ikeda is difficult owing to the distortion of its
parameter space: Resolution of their method depends on the choice of a reference orientation in the plane where strain markers
are observed. In this respect, the remaining two theories have advantages. The hyperbolic vector mean method was developed
in the Minkowski 3-space, thereby linked seamlessly with the visualizing methods of Rf/ϕ data, optimal strain and its confidence
region. In addition, the residuals of the optimal strain ellipse determined by this method have clear physical meanings concerning
logarithmic strains needed to transform a unit circle to given ellipses.
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1. Introduction

Assuming homogeneous strain for all strain markers and
their matrix, Rf/ϕ strain analysis determines the aspect ratio
and major-axis orientation of strain ellipse from the markers.
Isotropic pre-strain shape fabric is usually assumed for this pur-
pose (e.g., Ramsay, 1967; Ramsay and Huber, 1983; Lisle,
1985; Mulchrone et al., 2003). Matthews et al. (1974) pio-
neered in developing algebraic methods for the analysis. That
is, they found that the component-wise mean of the matrices
representing post-strain ellipses gave the aspect ratio of strain
ellipse, though it required an independent estimate of the max-
imum stretching orientation. This limitation was removed by
Shimamoto and Ikeda (1976). A few methods were proposed
to deal with Rf/ϕ with not only isotropic pre-strain fabric but
also the special types of anisotropic one (Dunnet and Siddans,
1971; Yamaji, 2005, 2008).

Three algebraic methods have been proposed for Rf/ϕ strain
analysis (Shimamoto and Ikeda, 1976; Mulchrone et al., 2003;
Yamaji, 2008). The computer programs for the algebraic meth-
ods are available at the websites of K. F. Mulchrone, F. W.
Vollmer and A. Yamaji. They yield accurate solutions rapidly
by taking the simple means of the quantities that represent ellip-
tical strain markers. Yamaji (2008) showed that his hyperbolic
vector mean method and the method of Mulchrone et al. (2003)
results in the same strain ellipse. In this paper, the result of the
method of Shimamoto and Ikeda (1976) is shown to be identical
as well.

However, the three methods are different with regard to error
estimation. For the estimation, the choice of parameter space is
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important. Mulchrone et al. (2003) used theϕ-R space (Fig.1)
for bootstrap error estimation, whereϕ andRare the major-axis
orientation and aspect ratio of an ellipse. This space has in-
conveniences. The paired data{R, ϕ} does not have one-to-one
correspondence with points in the space: All points on theϕ-
axis represent circles. Points at the centers of the ellipses C and
D in Fig.1 represent the same ellipses. In addition, distances
between the ellipses A and B is the same with that between
A′ and B′ in this diagram, but the dissimilarity of A and B is
larger than that of A′ and B′. The significance of difference
in ϕ become larger with increasingR. Is the dissimilarity be-
tween the ellipses A and B greater than that between A and C?
The quantification of dissimilarity or distance is needed for the
error estimation. An ordinary Rf/ϕ plot (Ramsay and Huber,
1983, p. 83), which uses logR instead ofR itself for a coordi-
nate, is inappropriate as well.

The parameter space of the method of Shimamoto and Ikeda
(1976) is not convenient. We show that the choice of their pa-
rameter space results in the anisotropic resolution the method.
The nature of anisotropy is demonstrated in this article.

As usual in Rf/ϕ strain analysis, volume changes associated
with strain are ignored (Appendix A). Accordingly, we consider
only the ellipses that have the same area with a unit circle, and
deal with area-preserving strains.

Area-preserving strains are represented by matrices of deter-
minant one (e.g., Matthews et al., 1974; Pollard and Fletcher,
2005). Ellipses with the area ofπ are represented also by
those called shape matrices (e.g., Shimamoto and Ikeda, 1976;
Wheeler, 1984). An identity matrix stands for a unit circle and
null strain. Any strain ellipse has its reciprocal strain ellipse
that is also represented a symmetric matrix with determinant
one. Therefore, the action of strain and its objects (ellipses)
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Figure 1: The Cartesian coordinates,ϕ andR for strain analysis, whereϕ and
R are the major-axis orientation and aspect ratio of an ellipse. This diagram
is inappropriate for error estimation in strain analysis, because dissimilarity
between ellipses is not proportional to the distance between the points corre-
sponding to the ellipses.

are all represented by matrices of determinant one, which make
up a mathematical group termed special linear group. Ac-
cordingly, the theories of strain analysis can take advantage
of group theory, thereby the theories have consistent geomet-
rical interpretations. Specifically, special linear group is rep-
resented by the Lorentz transformation of points on a curved
surface with a constant curvature of−1 in a Minkowski space
(Ratcliffe, 2006). Some of the interpretations were given in Ya-
maji (2008), including the equivalence of the formulas of strain
analysis (Dunnet, 1969; Lisle, 1985) with trigonometry on the
surface. Additional ones are presented in this article. First, we
introduce the space. Important symbols are listed in Table 1.

2. Method of Yamaji (2008)

2.1. Minkowski 3-space

As a parameter space for the shape and orientations of el-
lipses, we introduce the unit hyperboloid, H2, denoted byz =√

r2 + 1, wherer andz are cylindrical coordinates (Fig. 2). H2

has rotational symmetry about thez-axis. By means of the rect-
angular Cartesian coordinatesO-123, H2 is denoted by

x2
3 = x2

1 + x2
2 + 1 (x3 > 0), (1)

where x = (x1, x2, x3)⊤ is a position vector. Using the pa-
rameter,ρ, this surface is expressed by the pair of equations,
r = sinhρ andz = coshρ, because hyperbolic functions satisfy
the identity, cosh2 ρ − sinh2 ρ = 1. Accordingly, the position
vector of a point on H2 has the expression,

x =

sinhρ cosψ
sinhρ sinψ

coshρ

 , (2)

whereψ is the angle about theO-3 axis.
Now, we introduce the Minkowski norm,

∥x∥ =
√
|x ◦ x|, (3)

Table 1: List of symbols. The subscripts, ‘i’ and ‘f,’ indicate the quantities
of pre- and post-strain ellipses, respectively; and ‘s’ indicates the quantities of
strain ellipse.

Explanation Ref.
dH( ) hyperbolic distance Eq. (6)

e Position vectors with the endpoint on H2 Eq. (8)
f 11-component of shape matrix Eq. (11)
g 22-component of shape matrix Eq. (11)
h 12- and 21-components of shape matrix Eq. (11)

H2 Unit hyperboloid Eq. (1)
N Shape matrix Eq. (11)
n Number of ellipses
R Aspect ratio of an ellipse
Rs Aspect ratio of strain ellipse
s Vector corresponding to shape matrix Eq. (18)
x Position vectors with the endpoint on H2 Eq. (2)
µ Hyperbolic vector mean Eq. (10)
ϕ Major-axis orientation of an ellipse
ϕs Major-axis orientation of an ellipse
ρ Radial coordinate on H2 Eq. (7)
ψ Tangential coordinate Eq. (7)
◦ Lorentizan inner product Eq. (4)
· Ordinary (Euclidean) inner product
| | Euclidean norm
∥ ∥ Minkowski norm Eq. (3)

Figure 2: The unit hyperboloid, H2, in a Minkowski 3-space, in which the
rectangular Cartesian coordinatesO-123 and cylindrical coordinatesO-rψz are
defined. H2 is denoted byz=

√
r2 + 1. Each point on H2 represents an ellipse.

Point C at the base of this surface stands for a unit circle. C-ρψ is the system of
polar coordinates lying on H2 just like latitude and longitude on the globe.

where
x ◦ y = x1y1 + x2y2 − x3y3 (4)

is known as the Lorentz inner product of the vectorsx and y
(e.g., Ratcliffe, 2006). Since this product can have a negative
value, the absolute value ofx ◦ x is taken in Eq. (3). Due to
the introduction of this norm, our parameter space becomes a
Minkowski 3-space. H2 is denoted as

x ◦ x = −1, (5)

which resembles the equation of a unit spherex · x = 1. As
this analogy suggests, the formulas of spherical geometry have
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their counterparts on H2. Accordingly, spherical geometry is
a useful guide to consider strain analysis in this space. The
distance between the endpoints of the position vectorsx andy
is expressed as

dH(x, y) = cosh−1(−x ◦ y), (6)

called hyperbolic distance. Note the analogy of this equation
with the angular distance on a unit sphere, cos−1(x · y). It fol-
lows from Eq. (2) thatdH(x, c) = coshρ, wherec = (0,0,1)⊤

indicates the point at C in Fig. 2. Therefore,ρ is the hyperbolic
distance from C. Accordingly,ρ andψ are analogous to latitude
and longitude on the globe. The parameters are regarded as the
polar coordinates lying on H2.

Given n elliptical strain markers, we haven corresponding
points on H2 referred to ase(1), . . . , e(n). Their centroid is

2.2. Hyperbolic vector mean method

Let R andϕ be the aspect ratio and major-axis orientation of
an ellipse, respectively. We identify points on H2 with ellipses
through the equations,

ρ = logR, ψ = 2ϕ, (7)

where log means natural logarithm,ρ andψ are the polar coor-
dinates on H2. It follows that an ellipse in the physical space is
represented by the position vector,

e=

sinhρ cosψ
sinhρ sinψ

coshρ

 = 1
2

(R− 1/R) cos 2ϕ
(R− 1/R) sin 2ϕ

R+ 1/R

 . (8)

There are one-to-one correspondences among{R, ϕ}, {ρ, ψ} and
e. A unit circle is indicated by the point C in Fig. 2, and long
ellipses are represented by points far from C. If a unit circle be-
comes an ellipse with the aspect ratioR by strain, the principal
radii of this ellipse are

√
R and 1/

√
R. Therefore, the corre-

sponding logarithmic strain is log
√

R = ρ/2. It means thatρ
denotes doubled logarithmic strain.

ē=
1
n

[
e(1) + · · · + e(n)

]
. (9)

Then, the hyperbolic vector mean is defined as

µ = ē
/ ∥ē∥. (10)

Because of the convex downward shape of H2 (Fig. 2), the cen-
troid exists above H2. The denominator in Eq. (10) drops a
point at the centroid onto H2. It means thatµ ◦ µ = −1. Yamaji
(2008) showed thatµ represents the strain ellipse that best ex-
plains then data. It is assumed forµ to indicate the strain ellipse
that the points on H2 corresponding to the pre-strain ellipses in
the physical space have the centroid at the point C (Section 6).
The distribution of those points depicts the pre-strain shape fab-
ric, which is discussed in Section 6.

Once this mean vector is obtained, the parameters of the
strain ellipse is given by

Rs = exp
(
sinh−1

√
µ2

1 + µ
2
2

)

and

ϕs =
1
2

tan−1(µ2/µ1).

Let us consider the effect of the choice of reference orienta-
tion on the plane where strain markers are observed. Consider
that two persons take different reference orientations, which
meet at the angle ofϕ0. Then, the points on H2 indicated by
e-vectors (Eq. 8) of a person are rotated about theO-3 axis by
the angle of 2ϕ0 from those of the other person. Thanks to the
rotational symmetry of H2 about theO-3 axis, the relative po-
sitions of the points have no difference. It means that the strain
ellipse estimated by the hyperbolic vector mean method does
not depend on the choice of reference orientations.

3. Method of Shimamoto and Ikeda (1976)

3.1. Shimamoto-Ikeda method

Shimamoto and Ikeda (1976) identified the symmetric ma-
trix,

N =
(
f h
h g

)
, (11)

with an ellipse.N is called a shape matrix. The matrix should
satisfy detN = 1 to indicate the ellipses that has the same area
as the unit circle. Shimamoto and Ikeda (1976) showed that if
N(1), . . . , N(n) are the shape matrices ofn elliptical strain mark-
ers, the matrix standing for the optimal strain ellipse is obtained
by the mean,

N̄ =
1
n

[
N(1) + · · · + N(n)

]
, (12)

where

N(i) =

(
cosϕ(i) − sinϕ(i)

sinϕ(i) cosϕ(i)

) (
1/R(i) 0

0 R(i)

) (
cosϕ(i) sinϕ(i)

− sinϕ(i) cosϕ(i)

)
.

(13)
The superscript (i) indicates the quantities of theith ellipse.
The explanation of Shimamoto and Ikeda (1976, p. 321) on
the derivation of the principal radii of the strain ellipse is mis-
leading, because they suggest as if the radii are obtained as
the eigenvalues of̄N−1. This is not true, because detN̄ , 1
(Wheeler, 1984). For this condition to be met,N̄ must be nor-
malized as

N̄′ = N̄/
√

detN̄, (14)

or equivalently,

N̄′ =
N(1) + · · · + N(n)√

det
[
N(1) + · · · + N(n)

] .
Then, we have det̄N′ = 1. The eigenvalues of̄N′ are equal to
Rs and 1/Rs; the eigenvector corresponding to the larger eigen-
value indicates the major-axis of the optimal strain ellipse.
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Figure 3: (a) The hyperboloid with elliptical aperture that is denoted by the equationgh− h2 = 1, whereO- f gh is rectangular Cartesian coordinates. Dot-dash line
indicates the axis of the hyperboloid in the (1,1,0)-direction. Open circles depict points on the hyperboloid. (b) The ellipse lying on the plane perpendicular to this
direction. (c) The elliptical markers, A, B, A′ and B′, have the aspect ratio of 2. Principal axes of the first two ellipses are parallel or perpendicular to the reference
orientation, whereas those of remaining ones are inclined at 45◦. The ellipses are represented by the points A, B, A′ and B′ in (a) and (b).

3.2. Relationship of Shimamoto-Ikeda and the hyperbolic vec-
tor mean methods

Wheeler (1984, Eq. A7) wrote the components ofN in terms
of R andϕ:

f =
1
2

(
1
R
+ R

)
+

1
2

(
1
R
− R

)
cos 2ϕ (15)

g =
1
2

(
1
R
+ R

)
− 1

2

(
1
R
− R

)
cos 2ϕ (16)

h =
1
2

(
1
R
− R

)
sin 2ϕ. (17)

We can think of these equations as the parametric expression
of a curved surface in thef gh-space, whereR ≥ 1 andϕ are
the parameters (Fig. 3a). It is a hyperboloid with the axis in
the (1,1, 0)-direction. This surface is denoted by the equation,
detN = f g− h2 = 1. Point C at (1,1,0) stands for a unit circle.
The aperture of the hyperboloid is elliptical with the aspect ratio
of
√

2 (Fig. 3b). The major-axis is in the (1,−1, 0) orientation.
Increasingϕ carries a point along this ellipse lying on the plane
perpendicular to the axis: The ellipses, A, B, A′ and B′ in Fig.
3c are represented by the points A, B, A′ and B′ in Figs. 3a and
b.

Now, we introduce the position vector,

s= ( f ,g,h)⊤, (18)

which has a one-to-one correspondence withN in Eq. (11).
Then, the endpoint ofs exists on the hyperboloid in Fig. 3.
Let s(1), . . . , s(n) be the vectors representingn elliptical strain
markers. Then, their centroid,

s̄=
1
n

[
s(1) + · · · + s(n)

]
,

corresponds tōN, but the endpoint of this does not exist on the
elliptical hyperboloid that is illustrated in Fig. 3. Instead, that
of the vector

s̄′ =
s̄

s̄1s̄2 − s̄2
3

(19)

exists on the curved surface, where ¯s1, s̄2 and s̄3 are the com-
ponents of̄s. This vector represents the optimal strain ellipse.
The denominator in the right-hand side of Eq. (19) equals the
determinant ofN̄. Due to the concave shape of the hyperboloid
in the (1,1,0)-direction, the endpoint ofs̄, which is surrounded
by those ofs(1), . . . , s(n), does not exist on the hyperboloid, but
in the right of the surface in Fig. 4. In other words, the de-
nominator is greater than 1. It follows that detN̄ > 1. It means
that the aspect ratio of the strain ellipse is overestimated if it is
determined fromN̄ insterad ofN̄′ (Eq. 14).

Shimamoto and Ikeda’s (1976) formulation is related with
the Minkowski 3-space as follows. Using Eq. (8), Eqs. (15)–
(17) are rewritten as

f = coshρ − sinhρ cosψ (20)

g = coshρ + sinhρ cosψ (21)

h = − sinhρ sinψ, (22)

which are equivalent with Eq. (A9) of Wheeler (1984) except
for the signs of the terms including sinh. This difference comes
from the difference in the definitions ofN(i) in Eq. (13). It
follows from Eqs. (2) and (20)–(22) that

x1 =
− f + g

2
(23)

x2 = −h (24)

x3 =
f + g

2
. (25)

Eqs. (23)–(25) say thatO- f hg is a left-hand system with the
coordinate axes inclined with respect toO-123 (Fig. 4). That
is, the elliptical hyperboloid is mapped to H2: Points on the
surfaces have one-to-one correspondences through those equa-
tions. The factors of 1/2 in Eqs. (23) and (25) result in the
elliptical aperture of Shimamoto and Ikeda’s hyperboloid. Note
the difference in the lengths of the arrows in Fig. 4: The arrows
indicating f and g are longer than those ofh, 1, 2 and 3 by a
factor of

√
2, resulting from the factors of 1/2.
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Figure 4: Hyperboloids, H2 and W, the latter of which we call the Wheeler
hyperboloid (Section 5). Components of Shimamoto and Ikeda’s shape ma-
trix define the coordinatesO- f gh, the f - andg-axes of which are inclined and
different scales from the Cartesian coordinate axes of the Minkowski 3-space.

In general, matrix components are affected by coordinate ro-
tations. The functions of matrix components that are unaffected
by the rotations are called invariants: They include

traceN = N11 + N22 = f + g (26)

detN = N11N22 − N12N21 = f g− h2 (27)

FrobN =
√

N2
11 + N2

12 + N2
21 + N2

22 =

√
f 2 + g2 + 2h2. (28)

The last one is known as Frobenius norm (e.g., Meyer, 2000).
Combining Eqs. (26) and (25), we have

traceN = 2x3. (29)

Combining Eqs. (3), (4), (23)–(25) and (27), we have

detN = −x2
1 − x2

2 + x2
3 = −x ◦ x = ∥x∥2. (30)

It means that points on H2 satisfying Eq. (5) stand for the ma-
trices with determinant 1, indicating the correspondence of the
elliptical hyperboloid in Fig. 3 and H2. Frobenius norm (Eq.
28) becomes

FrobN =
√

2
(
x2

1 + x2
2 + x2

3

)
=
√

2|x|,

where|x| =
√

x · x is the Euclidean norm ofx.
Because of the linearity of the transformation between the

coordinate systemsO-123 andO- f gh, the points denoted bȳs
andē are mapped from each other via Eqs. (23)–(25). The de-
nominator in Eqs. (10) is interchangeable with that in (19) via
Eqs. (27) and (30). In other words, the strain ellipses deter-
mined by the method of Shimamoto and Ikeda (1976) and the
hyperbolic vector mean method are mathematically identical.

4. Method of Mulchrone et al. (2003)

The mathematical equivalence of the method of Mulchrone et
al. (2003) and the hyperbolic vector mean method was pointed
out by Yamaji (2008). Accordingly, we explain the equivalence

�

ℓ

reference
orientation

 /2

!

(a)

(b)

Figure 5: (a) Moving radius,ℓ(φ), of an ellipse. (b) Schematic picture for the
explanation of the equivalence of the method of Mulchrone et al. (2003) and
the hyperbolic vector mean method. Gray line depicts the unit circle, a point on
which is indicated byχ = (cosϑ, sinϑ,1)⊤.

briefly, here. Mulchrone et al. (2003) used the parametric ex-
pression of an ellipse,

ℓ−2 = − sinhρ cosψ cos 2φ − sinhρ sinψ sin 2φ + coshρ, (31)

whereℓ(φ) is the moving radius of the ellipse (Fig. 5a); the
ellipse is represented byρ andψ, the polar coordinates on H2.
They showed that the generalized mean with the power−2 of
then ellipses,

ℓ−2
s ≡

1
n

{[
ℓ(1)

]−2
+ · · · +

[
ℓ(n)

]−2
}
, (32)

indicates the ellipse that is similar to the strain ellipse, where
ℓ(i)(φ) is the moving radius of theith ellipse (i = 1,2, . . . n).

The relationship of this method and the hyperbolic vector
mean method is shown as follows. In terms of position vectors
in the Minkowski 3-space, Eq. (31) is rewritten as

ℓ−2 = −e◦ χ, (33)

wheree= (sinhρ coshψ, sinhρ sinψ, coshρ)⊤ is the vector de-
fined by Eq. (8), andχ = (cosϑ, sinϑ,1)⊤ is the position vector
of a point on the unit circle that is characterized byz = 1 and
r = 1 (Fig. 5b). Using Eqs. (10) and (33), the right-hand side
of Eq. (32) is rewritten as−

∥∥∥e(1) + · · · + e(n)
∥∥∥µ ◦ χ. Minkowski

norm is a scalar quantity with a positive sign. Therefore, we
have

ℓ−2
s ∝ −µ ◦ χ. (34)

It follows that the strain ellipses determined by this method are
equal to those obtained by the hyperbolic vector mean method.

The strain ellipse determined by the method of Mulchrone et
al. (2003) is not affected by the choice of reference orientations,
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Figure 6: Hyperboloids, H2 and the Wheeler hyperboloid, W. Closed circles
indicate the points on H2 corresponding to the pre- and post-strain ellipses.

because the freedom of this choice,ϕ0, gives rise only to the
rigid-body rotation ofµ andχ about theO-3 axis by the angle
of 2ϕ0. The relative position indicated by these vectors are not
affected by the rotation. What the formulation of this method
is not endowed with is the measure of dissimilarity between
ellipses, which enables error estimation.

5. Isometry of H2

It is known that area-preserving strain is represented by the
Lorentz transformation of points in the Minkowski 3-space
(Ratcliffe, 2006). That is, the hyperbolic distances between
points on H2 corresponding to elliptical stain markers are pre-
served during strain, analogous to the preservation of great-
circle distances during Euler rotations on the globe. Such a
movement is termed isometry. Therefore, it is mathematically
natural to use the Minkowski 3-space as the parameter space
of strain analysis: Straining and destraining are represented by
linear mapping and its inverse in the space (Yamaji, 2008). We
have seen that the formulas of shape matrices have geometri-
cal interpretations in the space, thereby theories of Rf/ϕ strain
analysis were shown to be mathematically identical. Those are
natural results of the introduction of the space. The hyperbolic
vector mean method is based on the isometry. In addition, hy-
perbolic distance (Eq. 6) is a natural measure of distance or
dissimilarity between ellipses, because the hyperbolic norms of
the residuals,µ − e(i) (i = 1,2, . . . , n), equal the doubled loga-
rithmic strain needed to transform a unit circle to theith ellipse.
That is, the residuals have well-defined physical meanings con-
cerning strain.

In the following part of this section, we introduce a theorem
of Wheeler that allows us to evaluate dispersion in the shapes
and attitudes of ellipses. Wheeler (1984) pointed out that the
spread of pre-strain ellipses was preserved during strain. This
theorem is obvious in the Minkowski 3-space, because area-
preserving strain is represented by isometry of H2. We ex-
plain that the theorem has a corresponding solid figure in the
Minkowski 3-space, which we call the Wheeler hyperboloid
(Fig. 6).

If N̄i andN̄f are the mean shape matrices (Eq. 12) for the pre-

and post-strain ellipses, respectively, Wheeler (1984) derived

detN̄i = detN̄f , (35)

which is called the distribution spread invariant (Wheeler,
1984). It follows from Eq. (30) that Eq. (35) is equivalent
with

∥ēi∥ = ∥ēf ∥ , (36)

Isotropic distribution of the shape and attitudes of pre-strain el-
lipses is represented by the points with the centroid,ēi , at the
point (0,0, J) on theO-3 axis (Fig. 6). Due to the concave up-
ward shape of H2, this point is above H2, meaning thatJ > 1.
This inequality was derived by Wheeler (1984). Eq. (36) says
that post-strain centroid̄ef exists always on the hyperboloid that
has the base at the point (0,0, J). We call it the Wheeler hyper-
boloid. The denominator in Eq. (10) to yield the hyperbolic
vector mean equals the right-hand side of Eq. (36) equalsJ
(Fig. 6).

It is obvious that the isometry preserves the areas of poly-
gons on H2, the vertices of which correspond to ellipses in the
physical space. Fig. 7 shows the equal-area projection of H2

(Reynolds, 1993) to visualize this area preservation. The pro-
gressive strain of ellipses does not affect the area surrounded
by the data points corresponding to the ellipses. Yamaji (2008)
showed the orthographic and gnomonic projections have sig-
nificance as well in strain and vorticity analyses. H2 is not only
the parameter space where the optimal strain and its error are
evaluated, but also connected seamlessly with their visualiza-
tion techniques.

6. Pre-strain fabric

The hyperbolic vector mean method assumes that the points
on H2 corresponding to the pre-strain elliptical markers have
the centroid at the point C in Fig. 2. Coaxial deformation de-
termined by the Rf/ϕ strain analysis is denoted by the linear
transformation,

ef =

1 0 0
0 cosψs − sinψs

0 sinψs cosψs


coshρs sinhρs 0
sinhρs coshρs 0

0 0 1


×

1 0 0
0 cosψs sinψs

0 − sinψs cosψs

 ei ,

in the Minkowski 3-space, whereρs andψs are the quantities
of strain ellipse,ei andef are the position vectors standing for
the pre- and post-strain ellipses, respectively (Yamaji, 2008, Eq.
13). It is obvious from Fig. 7 that destraining is denoted by

ei =

1 0 0
0 cos(ψs + π) − sin(ψs + π)
0 sin(ψs + π) cos(ψs + π)


coshρs sinhρs 0
sinhρs coshρs 0

0 0 1


×

1 0 0
0 cos(ψs + π) sin(ψs + π)
0 − sin(ψs + π) cos(ψs + π)

 ef . (37)
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Figure 7: Equal-area projection of H2 showing progressive strain of such ellipses that the corresponding points at the pre-strain stage make up a circle about the
point C in Fig. 2. Crosses represent the strain ellipses withRs = 1, 3 and 8. Arrow indicates the maximum stretching orientation. The area on H2 surrounded by
the points corresponding to ellipses is preserved by progressive strain. Concentric circles depicted by solid lines indicate iso-R lines, whereas concentric colored
zones indicate the ranges ofρ. The distribution of data points on the equal-area projection changes through progressive strain on this plot from pre-strain circular
distribution to oval ones. However, the variations are the result of the distortion of the equal-area projection, which is inevitable like the distortion of cartographic
projection of the globe. The distribution does not change on H2. Data points to the right of the cross for each cases ofRs = 3 and 8 are somewhat clustered than
those to the left. This is also a result of the distortion.

Therefore, once strain ellipse is determined, the points corre-
sponding to pre-strain ellipses are readily obtained through Eq.
(37). Lete(1)

i , . . . , e(n)
i be the position vectors of those points.

Then, we have their hyperbolic vector mean,

µi =
e(1)

i + · · · + e(n)
i

∥e(1)
i + · · · + e(n)

i ∥
.

The hyperbolic vector mean method assumesµi = (0, 0,1)⊤.
The equal-area projection of the points shows the shape

fabric of the pre-strain ellipses. The hyperbolic vector mean
method assumes that those points have the centroid at the point
C in Fig. 2. That is, the method allows strain markers to have a
variety of pre-strain shape fabric, but the deviation of the cen-
troid of the pre-strain points from C gives rise to inaccuracy.

Not only the deviation, but also the distribution of the points
denoted bye(1)

i , . . . , e(n)
i indicates the reliability of the result of

the analysis. If pre-strain strain markers had isotropic fabric,
their corresponding points on H2 make a circular cluster around
the point represented byµi (Fig. 8a). The hyperbolic vector
mean method requires only the coincidence of this point and
C, i.e.,µi = (0,0,1)⊤. This condition is met not only by the
circular cluster but also by various types of clusters indicating

anisotropic fabrics of pre-strain ellipses. Points in the ellipti-
cal cluster in Fig. 8b have the corresponding ellipses that have
dominant major-axis orientations atϕ = ±45◦. Such bimodal
distributions are often found in depositional fabric, which sug-
gests paleocurrent directions (Potter and Pettijohn, 1963, p. 44).
The points in Fig. 8c have the centroid also at C, but make three
clusters. Such an odd pattern suggests inaccuracy of the strain
determined by the Rf/ϕ strain analysis: For example, the strain
markers of different clusters may be the formed in different de-
formation stages. In this respect, the equal-area projection of
pre-strain points,e(1)

i , . . . , e(n)
i , is important to check the valid-

ity of the Rf/ϕ strain analysis.
Shimamoto and Ikeda (1976) and Mulchrone et al. (2003)

wrote that their algebraic method worked for the case of the cir-
cular cluster in Fig. 8a. However, the three algebraic methods
are mathematically identical. Therefore, the above argument
applies not only to the hyperbolic vector metan method but also
to their method.

7. Error estimation

We have seen the equivalence of results of the methods of
Shimamoto and Ikeda (1976), Mulchrone et al. (2003) and Ya-
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(a) (b) (c)

Figure 8: Schematic illustrations for the distribution of points on H2 with the centroid at the point C, which is depicted by a cross. (a) Distribution with rota-
tional symmetry about C, indicating isotropic shape fabric of the corresponding ellipses in the physical space. (b) An elliptical distribution.(c) More complicated
distribution indicating anisotropic shape fabric of the corresponding ellipses.

maji (2008). However, they show difference in the difficulty of
error estimation.

For this estimation, distance or dissimilarity between ellipses
with different shapes and attitudes have to be defined quanti-
tatively, because the confidence limit of the optimal strain de-
pends on the spread in the shapes and attitudes of strain markers
(e.g., Yamaji, 2005). The spread is evaluated from the distances
of data points from the point corresponding to the optimal strain
ellipse. The distance measure and the parameter space where
the measure is defined are appropriate for this purpose, if they
have satisfy the conditions:

1. The paired data of a marker{R, ϕ} have to have a one-to-
one correspondence with a point in the parameter space.

2. The distances between the points representing elliptical
strain markers must not be affected the choice of reference
orientation on the plane where the markers are observed.

H2 as the parameter space for ellipses meets these demands.
Bootstrap error estimation was made on H2 by Yamaji (2008).

The formulation of Shimamoto and Ikeda (1976) is not con-
venient for error estimation, because it does not satisfy the sec-
ond condition. Shape matrices are denoted by points in thef gh-
space. Four ellipses, A, A′, B and B′, in Fig. 3c have the same
aspect ratios, but have different attitudes. The ellipses A and B
have difference only in theϕ values by 90◦. The same is true
for the ellipses A′ and B′. However, the Euclidean distances
AB andA′B′ are not equal to each other (Fig. 3b).

The method of Shimamoto and Ikeda (1976) is not suitable
for error estimation owing to its anisotropic resolution: The
dispersion of ellipses evaluated in thef gh-space depends on
the choice of reference orientation. To show this anisotropy,
we conducted a simple numerical experiment. Nine ellipses
with tiny difference inR andϕ values were assumed (Fig. 9a).
Specifically, assumed apect ratios and major-axis orientations
were 1.1± 0.001 andϕ0 ± 0.01◦; and the dispersion of those el-
lipses were observed during the increase inϕ0. The dispersion
was evaluated as follows. First, the nine points corresponding
to the ellipses in thef gh-space were calculated. Lets(1), . . . ,
s(9) be the position vectors indicating the points (Eq. 18). Then,

(a)

(b)

reference
orientation

�₀ = 0°

90°

180°

270°

�₀

1

2

Figure 9: Anisotropic resolution of the Shimamoto-Ikeda method. (a)
Schematic illustrations of ellipses with slightly different aspect ratios and
major-axis orientations. The ellipse at the middle has the aspect ratio of 1.1,
and major-axis orientation,ϕ0. The ratios of the ellipses are exaggerated. (b)
Polar plot showing the dispersion,σ, of the nine ellipses in (a) in thef gh-space.
Curves showσ versusϕ0, whereσ is normalized by the size of error ellipsoid
of ē in the Minkowski 3-space. See text in detail.

the matrix,

C =
1
9

9∑
i=1

[
s(i) − s̄

] [
s(i) − s̄

]⊤

is the covariance matrix (e.g., Johnson and Wichern, 2002) of
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the points. The dispersionσ was evaluated by

σ =

√√√ 3∑
i, j=1

C2
i j ,

the right-hand side of which is the Frobenius norm ofC. As a
result,σ represents the size of error ellipsoid ofs̄ in the f gh-
space. The norm can be thought of as the magnitude ofC. Fig.
9b shows the dispersion versusϕ0. Since the dispersion evalu-
ated in the same manner from thee vectors defined by Eq. (8)
does not have suchϕ0-dependence. Therefore, the dispersion of
thesvectors was normalized by that of theevectors to show the
anisotropy. Solid circle in Fig. 9b shows the latter dispersion.

As a result, the dispersion showed oscillatory behavior with
the periodicity of 90◦ (Fig. 9b). The ratio of maximum and
minimum dispersion was

√
2. Accordingly, the method of Shi-

mamoto and Ikeda (1976) overestimates the dispersion of el-
lipses if their major-axes are subparallel to the reference orien-
tation, whereas underestimation occurs if the major-axes meet a
reference orientation at around 45◦. In other words, the method
has the best resolution when the reference orientation is parallel
to a strain axis.

The ellipticity of the aperture of the hyperboloid gives rise
to the anisotropy. Open circles in Fig. 10 depict the points
representing the ellipses with the same aspect ratios and with
the small intervals in the∆ϕ values. The central angles of the
points have the differences of 2∆ϕ: Angles in the physical space
are doubled in thef gh-space. Obviously, Euclidean distances
between the points have the maximum values at 2ϕ = 0 and
180◦, and the minimum values at 2ϕ = 90 and 270◦, resulting
in theϕ-dependency of the dispersion.

In contrast, the methods of Mulchrone et al. (2003) and Ya-
maji (2008) do not have such dependency, so that the choice of
reference orientation does not affect their resolution.

8. Conclusions

The algebraic methods of Rf/ϕ strain analysis by Shimamoto
and Ikeda (1976), Mulchrone et al. (2003) and Yamaji (2008)
were shown to yield the same strain ellipses. However, error
estimation is difficult for the former two methods in their for-
mulations. The Minkowski 3-space and the unit hyperboloid,
H2, are natural parameter space for strain analysis. Theorems
of stain analysis have geometrical interpretations in the space,
which also provides visualization techniques for Rf/ϕ data, the
optimal strain and its confidence region.
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(1,1,0)-direction

(–1,1,0)-direction

(a)

(b)
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2�₀

Figure 10: Illustrations for the origin of the anisotropic resolution of the
Shimamoto-Ikeda method. Ellipses show the sections of the elliptical hyper-
boloid in theO- f ghparameter space (Fig. 3a). Open circles represent the three
ellipses that has the sameR values but has differentϕ values with constant an-
gular intervals, which are indicated by solid circles. The situations of (a) and
(b) are different only in their reference orientations. Note that the distances be-
tween the three points on the elliptical hyperboloid in (a) is greater than that in
(b). This difference indicates the anisotropic resolution. (c) Polar plot showing
the anisotropy. See text in detail.

Appendix A. Validity of ignoring volume changes

The methods of Rf/ϕ strain analysis, including the algebraic
ones, are shown in this section to be able to deal with such strain
markers that experienced volume changes. LetD be the defor-
mation gradient tensor (e.g., Chadwick, 1999) for isochoric
(volume-preserving) shape change, and letςI be the deforma-
tion gradient tensor for dilatation with no shape change, where
I is the identity matrix,ς the ratio of expansion. Then, it can
be seen that the order of the deformations is exchangeable to
describe an arbitrary deformation, becauseD and I are com-
mutable: DςI = ςID = ςD. Suppose that incremental defor-
mation is decomposed into stepwise isochoric and dilating in-
finitesimal deformations,ς(1)D(1), . . . , ς(m) D(m), wherem is the
number of steps (Fig. A1). Then, the total, finite deformation
is denoted by the deformation gradient tensor of the form,[

ς(m) D(m)
]
· · ·

[
ς(1)D(1)

]
=

[
ς(1) · · · ς(m) I

][
D(m) · · · D(1)

]
.

The left-hand side of this equation denotes the iteration of the
pair of isochoric and dilating deformations, and the first and
second brackets in the right-hand side are the volume and shape
changes, respectively. This equation says that the series of iso-
choric deformations followed by the series of dilating ones has
the same effect with the series of iterative ones. The series of
dilations does not affect Rs and ϕs, i.e., the aspect ratio and
major-axis orientation of the strain ellipse, of the strain denoted
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Figure .11: Schematic diagram for a deformation path (thick line) as a result of
infinitesimal deformations (thin arrows). The horizontal axis denotes the shapes
and attitudes of ellipses, and the vertical one denotes the size of ellipses. Thick
solid arrows depict the two-step deformation that is equivalent with the total of
the incremental deformations.

by D(n) · · · D(1). Therefore, we can estimate the strain ellipse
for non-isochoric deformations by means of geological strain
analysis methods.

The Rf/ϕ strain analysis deal only with the paired data,{R, ϕ},
where the information of ellipse size is abstracted away. The
analysis ignores the sizes of strain markers to determineRs and
ϕs at the cost of the indeterminacy of volume changes. Geolog-
ical data other than the paired data of post-strain elliptical strain
markers are necessary to determine volume changes.
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