中国古代の周率 (上) 数学史の研究

杉本 敏夫

数理解析研究所講究録 数学史の研究 (2011) 1739: 91-101

2011-04

http://hdl.handle.net/2433/170883

.publisher

京都大学
中国古代の周率（上）

Calculations of pi in the ancient China (Part I)

杉本 敏夫
Sugimoto Toshio

第1節 序

この論文は、私が二回の国際会議 [1, 2] で、英文資料を配布して英語で発表した内容に、その後の研究成果を補足し、報告することを目指す。両会議の主催者とも、proceedings 印刷の予定はないので、発表者が補足発表し、印刷しても構わない、と言った。私はその後も研究を続け、新たな知見を得たので、2 回に分けて報告しようと思う。（上）では、劉徽による周率の計算を批判的に報告し、祖沖之による精密な周率の計算を詳細に跡付きたい。特に後者が、計算を幾段階で進めたようにあることを追求する。（下）では、祖による有名な「密率」335/113 の発見が、π という特別な数値に由来することを証証する。

第2節 九章算術の劉徽註

第3節 周率の研究

周率は、直径 1 なる円の円周の長さ 3.14159… のことであり、西洋では π なる文字で表される。第1 図によって、[6] 錦論文 54～55 頁の表の一部を訂正・追加して、各概念を整理する。外接積を追加した。（末位は四捨五入した。）

<table>
<thead>
<tr>
<th>辺数</th>
<th>各辺長</th>
<th>周</th>
<th>内面積</th>
<th>面積差</th>
<th>外面積</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1.</td>
<td>6.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>0.517638</td>
<td>6.211656</td>
<td>3.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>0.261052</td>
<td>6.265248</td>
<td>3.105828</td>
<td>0.105828</td>
<td>3.211656</td>
</tr>
</tbody>
</table>
Liu Hui は、半径 1 の円の内接正十二角形の辺長 0.517638 を 12 倍して、周を 6.211656 とした。正十二角形の面積は、下図の矩形 ACBO の 6 倍であり、矩形の面積は \(\text{AB} \times \text{CO} \div 2 = 1 \times 1 \div 2 = 0.5 \) だから、内面積は 6 倍して 3 となる。以下、周と内面積とは辺数の数え方がずれるので、注意が必要である。さらに正十二角形は、正十二角形の辺長 0.517638、円の面積は 0.517638 \(\div 2 = 0.258819 \)、面積は 12 倍で、3.105828 とされる。正十二角形と面積差（劉はこれを「差累」と呼ぶ）0.105828 を加えた面積 EFBOA（野球の本塁の形に相当）、即ち、外面積は 3.211656 となる。（劉は内・外面積の概念を持ち、用語としては用いない。以下便宜のために用いる。）以下の各数値は、数表 I を参照。

古代中国では、面積・体積問題、比例問題、納税・輸送の問題等が役人必携であった。特に田畑の面積評価が《課税》対象として重要で、正方形、矩形、梯形、等々の面積の課題が必携として課された。続いて、曲線で囲まれた土地（その典型は円形の土地）の面積が重要な課題となった。西洋で有名なアルキメデスの外接形は、線分 EF の延長と、半径の延長との交点 G、H を、中心 O と結ぶ二等辺三角形 GHO を考えた。中国流より面積が広い。（内接形は正弦と調和し、外接形は正接と調和するので、数値計算では三角形 GHO が優用される。）

第 4 章 公式集

半径 1 の円に内接する、一边が x なる正 \(2^n \)・6 角形から、正 \(2^{n+1} \)・6 角形の一边 y を求めることを考えよう。第 1 図で、AO = CO = BO = 1 とする。

辺 AB = x の 2 倍角の辺 AC = y は、

(1) \(\text{AB} = x \)
(2) \(\text{AD} = x/2 \)
(3) \(\text{AD}^2 = (x/2)^2 = x^2/4 \)
(4) \(\text{DO}^2 = u^2 = 1^2 - x^2/4 \)
(5) \(\text{DO} = u = \sqrt{1^2 - x^2/4} \)
(6) \(\text{CD} = v = 1 - u \)
(7) \(\text{AC}^2 = y^2 = x^2/4 + v^2 \)
(8) \(\text{AC} = y = \sqrt{x^2/4 + v^2} \)

の 8 段階を辿る。辺数 6・2^n を掛けて、

第 1 図

(9) 内面積 = 6・2^n x y

を得る。[3] にて引用された「劉徽九章算術」では、(1) x, (3) \(x^2/4 \), (5) u, (6) \(1-u \), (7) \(y^2 \) が示明に記され、各段階での計算結果が載せる。本稿の第一の目的は、劉徽の計算を検算して、その誤りを指摘し、私の精確な計算と比較し、その「誤りの原因」を探ることにある。数表 I を参照されたい。
[補足] 捷径
劉徽も祖沖之も（恐らく和算家も）気付かなかった捷径がある。

\[AC^2 = AD^2 + CD^2, \quad 1^2 = CD^2 + 2CD \cdot DO + DO^2, \quad 1^2 = AD^2 + DO^2 \]
から、\(AD^2 = CD^2 + 2CD \cdot DO \)を代入し、\(CD + DO = 1 \)の関係を用いて、\(AC^2 = CD^2 + 2CD \cdot DO + CD^2 = 2CD \cdot (CD + DO) = 2CD \)これから次の有用な公式（捷径）を得る。

(10) \(AC^2 = 2CD \)

第3節 開方方程式
[6] 鈴木洋道の「中国数学史」、[3] 川原氏の翻訳 56 頁に、「開方従方程」が解説されている。通常の「開方程」が、二次の方程式

(11) \(x^2 = c \)
を解くのに対して、開方従方程は、一次の項（従）\(bx \)を伴う（帯）二次方程式

(12) \(x^2 + bx = c \)
を解く。第7節で必要な \(\sqrt{0.75} \)を求めよう。\(t = 0.8 \)ならば \(0.75 - t^2 = 0.11 \)で不足する。\(t = 0.8 + x \)と置き、\(0.75 = 0.64 + 1.6x + x^2 \), ここから、

(13) \(x^2 + 1.6x = 0.11 \)
なる開方従方程を得、\(x \)は小なので \(x^2 \)を無視し、\(x = 0.11 / 1.6 = 0.06875 \).

(14) \(x = 0.86 + y \)
と置けば、次の式を得る。

(15) \(y^2 + 1.72y = 0.75 - 0.86^2 = 0.75 - 0.7396 = 0.0104 \).
再び \(y^2 \)を無視し、\(y = 0.0104 / 1.72 = 0.00604 65116 \)を得る。亦々。
途中は（似たような計算が続く）省略することにして、最後に

(16) \(\sqrt{0.75} = 0.86602 54037 \ldots \left[= \sqrt{3} \div 2 \right] \)
に達する、これから目標の \(1 - \sqrt{0.75} = 0.13397 45962 \ldots \)を得たのであろう。
劉徽は、第4節の式 (5) や式 (8) の開平の第二段階以降は、この開方従方程を駆使したであろう。電卓を用いて「検算」する場合、開平計算には通常の「\(\sqrt{\text{キー}} \)」を用い、それより長い桁の場合、プログラム電卓の中に自作した、有効数字（mantissa）約 25 桁の精度で計算可能な「長尺開平」を用いた。

第6節 単位と表示
古代特有の表示法について、川原氏 [3] の注記に従い、単位と表示について、いささか補足する。例えば 0.75 の平方根 \(\sqrt{0.75} = 0.86602 54037 \ldots \)を、原文では小数7位まで示す。古代中国の表示法を尺の上から書くと、

丈、尺、寸、分、厘、毫、秒、忽、微
である（厘は旧字体を通用の漢字に改めた）。原文は八寸六分六厘○毫二秒五忽と小数第6位まで表示し、続く 0.4 を「五分の二忽」と分数\(2/5 \)で表す。本稿
表1 剉徽の計算

<table>
<thead>
<tr>
<th>六→十二</th>
<th>AB</th>
<th>AD²</th>
<th>DO</th>
<th>CD</th>
<th>CD²</th>
</tr>
</thead>
<tbody>
<tr>
<td>杉</td>
<td>1</td>
<td>.25</td>
<td>.8660254</td>
<td>.133974596</td>
<td>.01794912431</td>
</tr>
<tr>
<td>九</td>
<td>1</td>
<td>.25</td>
<td>.8660254</td>
<td>.1339946</td>
<td>.01794912445</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>→廿四</th>
<th>AB</th>
<th>AD²</th>
<th>DO</th>
<th>CD</th>
<th>CD²</th>
</tr>
</thead>
<tbody>
<tr>
<td>杉</td>
<td>.517638</td>
<td>.066987298108</td>
<td>.9659258263</td>
<td>.0340741737</td>
<td>.001161049314</td>
</tr>
<tr>
<td>九</td>
<td>.517638</td>
<td>.066987298361</td>
<td>.9659258</td>
<td>.0340742</td>
<td>.001161049314</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>→四十八</th>
<th>AB</th>
<th>AD²</th>
<th>DO</th>
<th>CD</th>
<th>CD²</th>
</tr>
</thead>
<tbody>
<tr>
<td>杉</td>
<td>.261052</td>
<td>.017037086856</td>
<td>.9914448614</td>
<td>.00855513863</td>
<td>.007319039613</td>
</tr>
<tr>
<td>九</td>
<td>.261052</td>
<td>.017037087366</td>
<td>.9914448</td>
<td>.00855552</td>
<td>.007319039613</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>→九十六</th>
<th>AB</th>
<th>AD²</th>
<th>DO</th>
<th>CD</th>
<th>CD²</th>
</tr>
</thead>
<tbody>
<tr>
<td>杉</td>
<td>.1308063</td>
<td>.004277569313</td>
<td>.9978589232</td>
<td>.0021410767</td>
<td>.04584296498</td>
</tr>
<tr>
<td>九</td>
<td>.1308063</td>
<td>.004277569703</td>
<td>.9978589</td>
<td>.00214101</td>
<td>.04584296498</td>
</tr>
</tbody>
</table>

復元の方法（例）
十二 $CD=1.33974596 \rightarrow CD²=0.01794912431$，
$AD²=.25$ との和が $AC²=.26794193431$ となり、$AC=51.7638090204$,
廿四面積 $6 \cdot AC=3.1058285412$。【参考】$12 \cdot \sin(\pi/12) = 3.10582854122$。

表2 祖沖之の前面積の計算

<table>
<thead>
<tr>
<th>六</th>
<th>AD²</th>
<th>DO</th>
<th>CD</th>
<th>CD²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.250*33</td>
<td>.866025403782514</td>
<td>.133974596217</td>
<td>.017949192431638</td>
</tr>
<tr>
<td></td>
<td>.25</td>
<td>.866025403784438</td>
<td>.133974596216</td>
<td>.017949192431240</td>
</tr>
<tr>
<td></td>
<td>.249*66</td>
<td>.866025403783683</td>
<td>.133974596196</td>
<td>.017949192425966</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>十二</th>
<th>AD²</th>
<th>DO</th>
<th>CD</th>
<th>CD²</th>
</tr>
</thead>
<tbody>
<tr>
<td>.204*5307360641</td>
<td>.01045820459987</td>
<td>.9477089588345</td>
<td>.01327340329861</td>
<td></td>
</tr>
<tr>
<td>.204*5307360505</td>
<td>.0104582045973</td>
<td>.9477089588414</td>
<td>.01327340329574</td>
<td></td>
</tr>
<tr>
<td>.204*5307360369</td>
<td>.01045820459</td>
<td>.9477089588584</td>
<td>.01327340329587</td>
<td></td>
</tr>
</tbody>
</table>

6144 AB

| AD² | 7925294688294 | DO | 414944708 | CD² |

| 558888 | 08 | 558888 | CD² |

10226538	1401	0.2614552058	99869723885419	.013170897083976
10226538	1394	0.26145520579	99869723885888	.013170897083931
10226538	1387	0.26145520575	998697238857626	.013170897083885

10226538

| AD² | 7925294688294 | DO | 558888 | CD² |

| 08 | 558888 | CD² |

10226538	1401	0.2614552058	.9869723885419	.013170897083976
10226538	1394	0.26145520579	.9869723885888	.013170897083931
10226538	1387	0.26145520575	.98697238857626	.013170897083885
\[
\begin{array}{cccc}
\text{AC}^2 & \text{AC} & \text{十二內面積} & \text{十二四面積} \\
.26794 91924 31 & .51763 80902 04 & 3. & - \\
.26794 91934 45 & .51763 80911 84 & 3. & - \\
\text{AC}^2 & \text{AC} & \text{廿四內面積} & \text{廿四四面積} \\
.06814 83474 216 & .26105 23844 4 & 3.10582 85409 & 3.21165 70818 \\
.06814 83494 66 & .26105 23844 4 & 3.10582 85412 & 3.21165 70824 \\
\text{AC}^2 & \text{AC} & \text{四十八內面積} & \text{四十八四面積} \\
.01711 02772 52 & .13080 62584 6 & 3.13262 86133 & 3.15942 86854 \\
.01711 02788 13 & .13080 6 & 3.13262 86143 & 3.15942 86874 \\
\text{AC}^2 & \text{AC} & \text{九十六內面積} & \text{九十六四面積} \\
.00428 21535 228 & .06543 81656 44 & 3.13935 0203 & 3.14607 179 \\
.00428 21540 12 & .06543 8 & 3.13934 4 & 3.14607 159 \\
24 \cdot \sin(\pi / 24) =3.13262 86132 8 & & & \\
48 \cdot \sin(\pi / 48) =3.13935 02030 5 & & & \\
96 \cdot \sin(\pi / 96) =3.14103 19508 9 & & & \\
\end{array}
\]

第2行が計算の主体（四ヶ所で、下線の数字を切り捨てた。本文10節を参照。）

\[
\begin{array}{cccc}
\text{AC}^2 & \text{十二AC} & \rightarrow (\times 6) & \rightarrow (\times 12) \\
.26794 91924 34971 & .51763 80902 08759 & 3.10582 85412 52556 & \\
.26794 91924 31200 & .51763 80902 05116 & 3.10582 85412 30697 & \\
.26794 91923 92632 & .51763 80901 67863 & 3.10582 85402 07178 & \\
\text{AC}^2 & \text{廿四AC} & \rightarrow (\times 12) & \rightarrow (\times 12) \\
.06814 83474 22388 & .26105 23844 41108 & 3.13262 86132 962 & \\
.06814 83474 21780 & .26105 23844 39943 & 3.13262 86132 800 & \\
.06814 83474 21182 & .26105 23844 38798 & 3.13262 86132 655 & \\
\text{AC}^2 6144AC^{*} 13941 99367 \rightarrow 13942 & 12288 & \text{內面積} & \\
.0^6 10458 20823 30 & .0^6 102 26538 14009 99999 & 3.14159 25166 387 & \\
.0^6 10458 20823 17 & .0^6 102 26538 13941 99367^* & 3.14159 25164 298 \rightarrow 643 & \\
.0^6 10458 20823 03 & .0^6 102 26538 13873 98735 & 3.14159 25162 203 & \\
\text{AC}^2 12288AC & & \text{內面積} & \\
.0^6 2614 55222 917 & .0^6 51 13269 23716 19579 69080 & 3.14159 26193 123 & \\
.0^6 2614 55222 882 & .0^6 51 13269 23682 13713 40490 & 3.14159 26191 030 & \\
.0^6 2614 55222 847 & .0^6 51 13269 23648 13711 93610 & 3.14159 26188 941 & \\
\end{array}
\]
では普通の洋数字に直して、0.8660254と表す。帯分数の形で書けば、

$$0.8660254^2/\approx 0.8660254^2/10$$

となる。原文は分母・分子を約分する。本稿では通常の小数表示に直した。

第7節 検算の結果
数表1と比べれば、文献[3]～[5]に見られる数値は大幅な誤りを伴うが、
その後に登場する数値が案外正しい値に近いことから判断すれば、誤りは恐らく写本の伝承の途中で生じた「書き誤り」に過ぎないと思われる。私は、「中国
人は祖先崇拝の慣習から、目前の写本の数値が、伝承の中に生じた書き誤りで
あろうと推測されたとしても、濫らに正しくなかったろう」と想像する。

目下の計算の場合、後に行くほど面積は少しずつ増えて、次第に真の面積に
近づく。と、$n-1$番目の面積の値Tとn番目の面積の値T'から、

$$T' = T + (T - S)$$

を求める。Tを「内面積」、T'を「外面積」と呼ぶ。その幾何学的意味は、
第1図を用いて、第3節で説明した。数表1に示した数値計算の結果に戻る。
内面積、外面積の欄に見るような、小数7位までの値を検算したところ、途中
の数値の表示された値（表示上の誤りを含む）の元の数値は、末位を除き、
ほぼ合っている。と、引用する際、便宜のため現行の小数表示に改めた。

劉徴の成した計算は、「正N角形」から「正2N角形」へと歩を進め、次第に
内外から「円」に近づけようとする。第1図で言えば、辺ABから、辺ACを
求める。用いるのは第4節の公式群であるが、二つの勾股(直角三角形)に対し
て勾股弦の公式(三角方の定理)を用いる。大勾股AODでは、$AD=AB/2$が勾
DOが股、半径AOが弦である。小勾股CADでは、CDが小勾、ADが股、
最後に得られる辺ACが小弦である。[3]『九章算術』(丙正解)を読む際、同
じ長さが所により別の名称で呼ばれるので、この注意が必要。円の半径1尺を
単位とするが、無名数として扱う。また、「正二十四角形」を「廿四角」と略す。

私の検算結果と劉の計算に対する意見は、凡て数表1に盛り込んだ。個々の
注意は、表内の記述を参照。劉の最終的な結論は、次の不等式に集約される。

(18) $3.14103195 < \pi < 3.14271370$

劉自身の表現では、帯分数を用い、次の通り（小数に直したものを併用）。

(19) $3.14^{4*4}/825 = 3.141024 < \pi < 3.142074 = 3.14^{4*4}/825$

古代中国に「有効数字」の概念はあったか？それは、[3]『劉徴注・九章算
術』の表現を見れば分かる。例えば、正92822角の弦図について、
「…余分を捨てて、四十二億、七千七百五十六万、九千七百三万方命数となる。」
と書いてある。現行の洋算表示では（下線部の誤植を修正し）0.00427 75693.13
を表している。一貫して有効数字10桁で計算している。数値は小数点下12桁
ではなく、意味のある数値の桁数 10 桁を確実に把握しているので、「有効数字」の観念はあったと推測される。数表 I の中で劉徽の実例は挙げにくい。私の数
値 DO の 0.99785 89232 は、一見 10 桁に見えるが、実体は 1 から引いた値
1−0.00214 10768 であって、有効数字 8 桁を意味する。数表 I から、劉が有
効数字 10〜11 桁で計算していたことが分かる。

私の結論。劉徽の計算は、末位を除き、凡て正しかったが、写本から写本へ
と書き写される間、多くの書き損じが生じた。だが後世の学者は誰も検算し、
訂正しようとせず、いま見る劉の計算は、見るも無残な姿になっている。

[1] の会議で、私の発表には何の反響もなかった。その後、来日した研究者
に尋ねたら、「恐らく英語による発表も原因でしょう。さらに内容も、中国人の
研究動向から懸離れていたかもしれません。」とのこと。逆に、その会議におけ
る中国人研究者の報告（私に聞き取れた内容、発表要旨の中国文から理解した
内容）は、祖先の業績の賛美に終始し、私の興味をそそる内容に乏しかった。

第 8 節 祖沖之の業績

祖沖之(425-500)は有名な割合に、その事跡の肝心な部分は、重要な文献の逸
失により、殆ど伝わらない。鍊宝琮の記述[3]、[6]に従ってまとめると、

(i) 劉宋朝の役人で、何承天（次回に述べる）の元嘉暦を修改した。
(ii) 数学・天文学を研究し、また技術面では指南車などを作った。
(iii) 『緯術』なる数学書を著したが、伝承の途中で失せた。（後述のように、
この逸失が彼の業績を甚だ分かり難くさせた。）
(iv) 特に重要な業績は、不等式

(20) \[3.1415926 < \pi < 3.1415927\]

と、密率 335/113 の発見。（本稿では、密率は、(下)で扱う。）

国際会議[1]は祖沖之の生まれ故郷、涇水（河北省）で開かれた。

本稿（上）の目標は、この不等式 (20) が実際に成立することを、数値計算に
よって裏付けることである。しかし、祖を検算したくとも、『緯術』が失われた
ので、劉の場合のように参照すべき数値がない。参照できるのは結論として
の式 (20) のみである。この不等式は、両辺の有効数字 8 桁だから、祖が計算に
用いた数値も、知る由がない。一つの手掛かりとして、第 7 節の劉徽は有効数
字 11 〜 12 桁を用いた。祖は、実はこれより多くの有効数字を用いていた！

私は苦心の末に、有効な手段に到達した。具体的には、この不等式の左辺が
\[T = 3.1415926\] であり、一つ手前の値が \[S = 3.1415925\] だっつ仮定すれば、

(21) \[T + (T - S) = 3.1415926 + (3.1415926 - 3.1415925)\]
\[= 3.1415926 + 0.0000001\]
第9節 不等式の裏づけ

本来は、祖沖之の時代の技法に絞るべきである。しかし見当を付けるため、
或る種の工夫を実行した。昨年の報告 [7] で示した公式

\[n \sin(\pi/n) = \pi - \pi^3/6 n^3 + \pi^5/120 n^5 - \pi^7/5400 n^7 + \cdots \]

が有用である。不等式 (21) の数値を小数点下 7 桁まで表示するには、小数点
下、先の方までの値を用いて計算し、末位を丸めればよい。模索した末に

\[S = 6144 \sin(\pi/6144) = 3.1415925 \cdots \]

\[T = 12288 \sin(\pi/12288) = 3.1415926 \cdots \]

を思いついた。両者を小数 7 位まで算して、小数 8 位以下を切り捨てれば、
\[S = 3.1415925, \quad T = 3.1415926 \]

なり、祖沖之の不等式(20)が成立する！

しかしこれは、現代的な方法によって推定される所の祖の不等式を得たので
過ぎず、なんら過去の計算を《復元》したことにはならない。数学史の目的は、
現代の数学で過去の計算をなぞってみること(往々にして解釈過剰)ではなく、
過去の計算を当時の道具立てのみを用いて再現することである。

本稿（上）の目的は、[1] で発表した祖沖之による周率計算を再記し、併せて
その後の私の成果を報告することである。計算の手順は劉徽の計算と同じで
あり、第4節の図と公式 (1) 〜 (9) と全く同じである。これはまた、[6]錢宝琮
の推論に従っている。数表 II に各段階の値を示した。AD²は初め有効数字
(mantissa)17 桁、後のほうで 14 桁、DO²=1−AD² は続く 9 の後の有効数字を
14 桁とした。AC²=AD²+CD² の計算は、開平して辺長 AC を求めるために
（続く 0 の後に始まる）有効数字が十数桁確保されることを意図した。そ
れ故、実際の計算に用いる数値は、かなり多くの桁数となる。

数値の表示は簡略にし、小数点の下に 0 または 9 が並ぶ場合、例えば
0.00001673… を 0.0*1673… と、0.99998326… を 0.9*8326… と表わす。

第10節 祖沖之の計算

私は予め、二種類の計算を試みた。その一は、第4節の計算公式 (1)〜(9) に
よって、20 桁強の数値を用いて、AB → AC を計算した。各段階で得られた
AC (次角の辺長) は、正弦関数(22) を用いた AC と、ほぼ 18 桁一致した。

ここで、私は祖沖之の計算段階を一部飛ばす《捷徑》も用いた。それは第4
節の(6)までは同じ過程を進め、(7)と(8)の代わりに第4節の補足に述べた関係

(10) \[AC^2 = 2CD = 2 \nu \]

(23) \[AC = \sqrt{2} \cdot \sqrt{CD} = \sqrt{2} \cdot \sqrt{\nu} \]
を用いる。
試みその二として、《逆向きの計算》（それは n 番目の (8) AC から、(7), (6)
… と遡って、(1)番目の (1) AB を求める計算）も実行した。公式は

$$AB = AC \cdot \sqrt{1-AC^2/4}$$

も併用する。こうした計算によっても、ほぼ 18 桁が確保された。（この公式は
検算の際に非常に有効である。）これで《祖冲之が行なったと推測される計算》
を復元する準備ができた。私が一番苦心したのは、《どの段階で何桁を残して、
以下を切り捨ててるか？》という一般的な方針を立てる中であった。

逆向きの計算と言うのは、例えば通常の「正廿四角形→正廿四角形」の内
面積を計算する前に、逆向きに「正廿四角形→正廿四角形」の内部積を計算
しておく。その時、正廿四角形の推定値 3.13262…（それは、正弦関数を用
いた 24 sin($\pi/24$) の値と、かなりの桁数が一致する）を元にする。これを 12 で
割った 2sin($\pi/24$) の値 0.26105…（正廿四角形の AC に相当）を出発値に取
り、第 4 節の計算を《逆変換》の形に直して、(8) から (1) へと辿る。この逆
算により 0.51763…（正十二角形の AC）が得られる。一見した所、《見当外れ》
な計算のように見えるが、実はこれが、予想外に《有効な》方法であった。

私は各種の数値実験を行なって、次の方針を立てた。劉徽が実行し、祖沖之
がそれを踏襲したと思われる（第 4 節の）九つの計算段階がある。そのうちどの
段階で切り捨てを行なったか？ それも有効数字としての数値の桁数を考慮
して、私は熟慮と試行錯誤の末に、(3) AD²を得た所、(5) DO を得た所、(6) CD
を得て(7) AC²に必要な CD²を作った所、(8) AC を得た所の四箇所で、有効数
字 12〜25 桁を残し、それ以下の数値を切り捨てた。求まった $y = AC$ に、そ
れに応ずる辺数 $6 \cdot 2^n$ を掛けて、(9) 内面積 $= 6 \cdot 2^n \times y$ を求めた。

計算結果を数表 II に示した。 AD = AB/2, DO² = 1−AD², CD = 1−DO の
三つの欄は、掲載を省略した（前後の数値から簡単に復元できる）。

第 11 節 祖沖之の計算（続き）

私の方法の目玉、逆向きの計算は、新奇なため理解を得にくいかもしれない。
正 n 形の推定値（祖沖之が行ったと推測される計算方法により私が求めた値）
から、上述のように計算順序を丁度逆に辿って、正 n−1 角形を計算する。

さらに一晩一つの工夫がある。目標とする値（未知）を上下両側から挟む値
を、上下の限界として計算しておく。数表 II の 1 行目と 3 行目の数値は、例え
ば正十二角形の辺長 AC を、上下に近い値を隔てた数値として計算していった。
最後の値から順々に遡って逆向きに計算し、正六角形の辺長 AB に至る。喩え
と言えば、スキーの大回転競技の際、コースの両側に立てた「旗門」であり、
プレイヤーは、その中間を滑り抜ける。急カーブを曲がり切れなければ、コー
スから逸れてしまう。2行目の数値（プレイヤーに相当）は、正六角形の辺長ABである。ここから順々に、通常のやり方で、正十二角形の辺長ACに至る計算をする。しかも四ケ所で、一定の小数位での切捨て（下線で示した）を行う。

これで私の意図がご理解頂けただろうか。毎回、通常のやり方で計算を進め行って行き、途中のAD², DO, CD², ACの四箇所で、或る小数位で切捨てを実行すれば、切り捨てによる誤差（負数の作用をする）が積み重なって、数値は次第に偏ってゆき、期待する正12288角形の辺長に到達しない。どこか途中で「旗門」の外に逸れてしまうだろう。前述の如く、祖沖之が計算した正24576角の面積は、第8節の不等式(20)の中に納まっている。祖は所々、或る小数位で切捨てたにも拘わらず、我々にとって周知のπの近似値に到達した。

幾らでも長い桁数を用いたならば、それは可能であろうが、祖がさほど多くの桁数を用いた筈がない。そこでこの桁数を用いた計算で、不等式(18)の中に納まるためには、どのような原則で切り捨てを行えばよいのか、それを見つけるのが数表IIには凡ての段階の一覧表は掲げない。典型的として六角→十二角のAC, 十二角→廿四角のACと、最終段階の正3072角→6144角のAC、正6144角→正12288角のACの四つに絞る。それぞれから二倍角の面積を得る。途中のDO＝1－CDの段階で、一時上下の数値の大小が反転する。表示について、小数点の下に0または9が並ぶとき、9節末に述べた略記を用いた。検算のため、正四十八角の面積Tから逆向きに正廿四角の面積Sを求める際CDを得るには、前段階で既知のAD²が必要で、CD²＝AC²－AD², CD＝√CD²と計算するのが普通である。代わりに第4節末で述べた、AD²を経由せずに済む、次の短縮した関係式を用いた。

(10)\[CD=AC^2/2\]

なお僅かの場合、99を繰り上げた所がある。祖沖之が《切捨て》原則に基づいた、という仮設に反するが、数値9は繰り上げの効果（例えば.799は.8に極めて近い）があるので、例外的に「繰り上げ」を認めた。祖の時代に、「四捨五入が使われた」証拠があれば、文面なしに成立するが、私にはその確認がない（後日への課題として残す）。僅かの事例で例外的に「繰り上げ」を使用した。

最後の二つの面積3.1415925164…と3.1415926193…は第9節の値

\[S=6144\sin(\pi/6144)=3.1415925166…\]

及び

\[T=12288\sin(\pi/12288)=3.1415926193…\]

と極めて近い。同所で私が述べた期待に合致する。祖沖之は、恐らくここまで私が《復元》したような計算を実行したであろう。これが本稿の結論である。

第12節 祖沖之の限界

祖沖之は、彼の不等式を得た後、さらに計算を続けたかも知れない。精度が
高ければ、間限もなく続けられる。しかし、計算には有限桁を用いるのが常だから、一昨年の報告 [8] で関孝和について述べたのと同様に、或る間界に突き当たらざるを得ない。限界の様相を見るため、便宜的に、小数点下9桁程度の値を用いたと仮定し、さらに S と T に、あと二つの数値を追加しよう。

| 角の内部積 | $S = 3.1415925164$ | (再記) |
| 12288 | |

| 角の内部積 | $T = 3.1415926191$ | (再記) |
| 24576 | |

| 角の内部積 | $U = 3.1415926450$ | (再記) |
| 49152 | |

| 角の内部積 | $V = 3.1415926514$ | |
| 98304 | |

これから、それぞれ外面積

| 角の外面積 | $T' = T + (T - S) = 3.1415927218$ | |
| 24576 | |

| 角の外面積 | $U' = U + (U - T) = 3.1415926707$ | |
| 49152 | |

| 角の外面積 | $V' = V + (V - U) = 3.1415926578$ | |
| 98304 | |

を求める。末位を丸めて、内外の面積で挟んだ不等式は

$3.141592619 < \pi < 3.141592722$

$3.141592645 < \pi < 3.141592671$

$3.141592651 < \pi < 3.141592658$

となる。小数9桁までの両側の数値は、内外の面積が互いに接近して行き、このすぐ先で区別がつかなくなる！第1節で予告したように、有限な桁数を用いた周率の計算は、（桁数に応じて）或る段階で打ち切らざるを得ない。

目標とした、祖沖之の不等式は、一行目（24576角）で成立している。

文献

[1] 杉本敏夫：祖沖之の π 計算の復元過程と銭宝琮の推定値(英文)、祖沖之記念学术討論会、中国、浄水、2000.

