MULTIPLE SIGN-CHANGING SOLUTIONS FOR AN ASYMPTOTICALLY LINEAR ELLIPTIC PROBLEM

横浜国立大学大学院・工学研究院 塩路直樹 (NAOKI SHIOJI) FACULTY OF ENGINEERING, YOKOHAMA NATIONAL UNIVERSITY

1. Introduction

We consider the problem

(1)
$$\begin{cases} -d^2 \Delta u + u = f(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where d > 0, $f : \mathbb{R} \to \mathbb{R}$ is an appropriate function, and Ω is a bounded domain in \mathbb{R}^N . (For the sake of simplicity, we consider the case $N \geq 3$.) By using the Lusternik-Schnirelmann category theory, we will give a lower estimate of the number of sign-changing solutions of (1). Such a research was first studied for positive solutions by Benci and Cerami [4]. In [6], they obtained the following result; see also [5].

Theorem 1 (Benci-Cerami). Assume

- (i) $f \in C^1(\mathbb{R}, \mathbb{R}), f(0) = 0, f'(0) = 0,$
- (ii) there exist $p \in (2, 2^*)$ and C > 0 such that $|f'(t)| \le C(1 + |t|^{p-2})$ for all $t \in \mathbb{R}$, where $2^* = 2N/(N-2)$,
- (iii) f'(t) > f(t)/t for all $t \neq 0$,
- (iv) there exists $\theta > 2$ such that $0 < \theta \int_0^t f(s) ds \le t f(t)$ for all $t \ne 0$.

If d > 0 is small enough, then problem (1) has at least cat Ω positive solutions. Moreover if Ω is not contractible, then it has at least one other positive solution.

Recently, Bartsch and Weth [2,3] studied sign-changing solutions of (1). For each $\rho > 0$ and $A \subset \mathbb{R}^N$, we set

$$\Omega_{\rho} = \{ x \in \Omega : \operatorname{dist}_{\mathbb{R}^{N}}(x, \partial \Omega) \ge \rho \}, \qquad \Omega^{\rho} = \{ x \in \mathbb{R}^{N} : \operatorname{dist}_{\mathbb{R}^{N}}(x, \Omega) \le \rho \},
C_{\rho}A = \{ (x, y) \in A \times A : |x - y| \ge \rho \}, \quad CA = \{ (x, y) \in A \times A : x \ne y \}.$$

In [3], they showed the following result:

Theorem 2 (Bartsch-Weth). Assume (i)–(iv). If d > 0 is small, then problem (1) has at least $cat(j_{\rho}) + 1$ (with $\rho > 0$ small) sign-changing solutions and it is greater than or equal to $cupl(C\Omega) + 2$, where j_{ρ} is the embedding

$$j_{\rho}: (C_{2\rho}\Omega_{\rho} \times [-1, 1]^{2}, C_{2\rho}\Omega_{\rho} \times \partial [-1, 1]^{2})$$

$$\hookrightarrow (C\Omega^{\rho} \times \mathbb{R}^{2}, C\Omega^{\rho} \times (\mathbb{R}^{2} \setminus \{(0, 0)\})).$$

In this paper, we study the case that f is asymptotically linear. We show a lower estimate of the number of the sign-changing solutions of (1), which is obtained in [12]. We note that we do not assume the differentiability of f, and that since we consider the case that f is asymptotically linear, f does not satisfy the so-called Ambrosetti-Rabinowitz superlinear condition (iv). Now, we show our result:

Theorem 3. Assume

- (f1) $f \in C(\mathbb{R}, \mathbb{R}), f(0) = 0,$
- (f2) $t \mapsto f(t)/t$ is strictly increasing on $(0, \infty)$ and strictly decreasing on $(-\infty, 0)$,
- (f3) $f'_{+}(0), f'_{-}(0) \in [0, 1), \text{ where } f'_{\pm}(0) = \lim_{t \to \pm 0} f(t)/t,$
- (f4) $(\mathfrak{f}_+,\mathfrak{f}_-) \in (0,\infty) \times (0,\infty)$, where $\mathfrak{f}_{\pm} = \lim_{t \to \pm \infty} f(t)/t$.

Then there exists $d_0 > 0$ such that for each $d \in (0, d_0)$ such that $(\mathfrak{f}_+ - 1, \mathfrak{f}_- - 1)$ is not a Fučík spectrum of $-\Delta$ on $H_0^1(\Omega/d)$, problem (1) has at least $\operatorname{cat}(C\Omega \times [0, 1]^2, C\Omega \times \partial[0, 1]^2) + 1$ sign-changing solutions.

Remark 1. As in [3], we can give the following estimate:

$$\operatorname{cat}(C\Omega\times[0,1]^2,C\Omega\times\partial[0,1]^2)+1\geq \operatorname{cupl}C\Omega+2\geq \max\{\operatorname{cupl}\Omega+2,2\operatorname{cupl}\Omega\}+1\geq 3.$$

In the next section, we give some preliminaries. In Section 3, we give sketch of proofs for Theorems 1 and 3.

2. Preliminaries

First, we recall the category in the sense of Lusternik-Schnirelmann. Let A be a topological space and let $B \subset A$. The category $\operatorname{cat}_A B$ is defined to be the least integer $n \in \mathbb{N} \cup \{0\}$ such that there exist open subsets $\{A_1, \ldots, A_n\}$ (not $\{A_0, A_1, \ldots, A_n\}$ as in other definitions below) of A such that $B \subset \bigcup_{i=1}^n A_i$ and each A_i is contractible in A. If there is no such open covering, we set $\operatorname{cat}_A B = \infty$. We set $\operatorname{cat} A = \operatorname{cat}_A A$ and we understand $\operatorname{cat}_A \emptyset = 0$.

By the proposition below, we can see that the category gives a lower estimate of the number of critical points in a level set of a functional which is bounded from below.

Proposition 1. Let H be a Hilbert space and let $I \in C^1(H, \mathbb{R})$ be a functional such that it is bounded from below and it satisfies (CPS), i.e., each sequence $\{u_n\} \subset H$ satisfying $\sup_n |I(u_n)| < \infty$ and $(1 + ||u_n||)||\nabla I(u_n)|| \to 0$ has a convergent subsequence. Assume that $c \in \mathbb{R}$ is not a critical value for I. Then $I^c \equiv \{u \in H : I(u) \leq c\}$ has at least cat I^c critical points of I.

We give simple examples for this proposition. In the figures below, we consider the case $H = \mathbb{R}^2$.

However, in general, it is difficult to find the value cat I^c . So the conclusion of Proposition 1 may not make sense. In some cases, by the lemma below, we may give an estimate of cat I^c .

Lemma 1. Let Y be topological space. Assume that there exist $\alpha \in C(Y, I^c)$ and $\beta \in C(I^c, Y)$ such that $\beta \circ \alpha \simeq \operatorname{Id}_Y$, i.e., $\beta \circ \alpha$ is homotopic to Id_Y . Then $\operatorname{cat} I^c \geq \operatorname{cat} Y$.

Now, we recall relative category for a pair of sets. Let A be a topological space and let $B \subset A$. The relative category $\operatorname{cat}(A, B)$ is defined to be the least integer $n \in \mathbb{N} \cup \{0\}$ such that there exists an open covering $\{A_0, A_1, \ldots, A_n\}$ of A satisfying

- (i) $B \subset A_0$,
- (ii) there exists $h_0 \in C([0,1] \times A_0, A)$ such that $h_0(0,x) = x$ and $h_0(1,x) \in B$ for all $x \in A_0$, and $h_0(t,x) \in B$ for all $(t,x) \in [0,1] \times B$,
- (iii) each A_i is contractible in A for i = 1, ..., n.

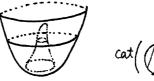
If there is no such open covering, we set $cat(A, B) = \infty$.

Remark 2. It holds that $\operatorname{cat} A = \operatorname{cat}(A, \emptyset)$.

By the proposition below, we can understand that the relative category also gives a lower estimate of the number of critical points.

Proposition 2. Let H be a Hilbert space and let $I \in C^1(H, \mathbb{R})$ satisfying (CPS). Assume that $a, b \in \mathbb{R}$ (a < b) are not critical values of I. Then $I^b \setminus I^a$ has at least $\operatorname{cat}(I^b, I^a)$ critical points of I.

We also give some examples for this proposition. We consider the same functionals as before; see the examples just after Proposition 1. On the right hand side example, we can understand that it has at least two critical points from Propositions 1 and 2.



Next, (in order to understand Theorem 2,) we recall category for a map. Let (A, B) and (A', B') be pairs of topological spaces, i.e., A, A' are topological spaces and $B \subset A$, $B' \subset A'$. Then cat(g) is defined to be the least integer $n \in \mathbb{N} \cup \{0\}$ such that there exists an open covering $\{A_0, A_1, \ldots, A_n\}$ of A satisfying

- (i) $B \subset A_0$,
- (ii) there exists $h_0 \in C([0,1] \times A_0, A')$ such that $h_0(0,x) = g(x)$ and $h_0(1,x) \in B'$ for all $x \in A_0$, and $h_0(t,x) \in B'$ for all $(t,x) \in [0,1] \times B$,
- (iii) for each i = 1, ..., n, there exists $h_i \in C([0, 1] \times A_i, A')$ such that $h_i(0, x) = g(x)$ and $h_i(1, x) = h_i(1, y)$ for all $x, y \in A_i$.

If there is no such open covering, we set $cat(g) = \infty$.

Remark 3. It holds that $cat(A, B) = cat(Id_{(A,B)})$ and $cat A = cat(A, \emptyset) = cat(Id_{(A,\emptyset)})$.

Finally, we recall excisive category for a pair of topological spaces. Let (A, B) be a pair of topological spaces. The excisive category ecat (A, B) is defined to be a least integer $n \in \mathbb{N} \cup \{0\}$ such that there exists an open covering $\{A_0, \ldots, A_n\}$ of A satisfying

- (i) $B \subset A_0$,
- (ii) there exists $h_0 \in C([0,1] \times A_0, A)$ such that $h_0(0,x) = x$ and $h_0(1,x) \in B$ for all $x \in A_0$, and for $(t,x) \in [0,1] \times A_0$ with $h_0(t,x) \in B$, $h_0(s,x) = h_0(t,x)$ for all $s \in [t,1]$,
- (iii) for each i = 1, ..., n, $A_i \cap B = \emptyset$ and A_i is contractible in $A \setminus B$.

If there is no such open covering, we set $ecat(A, B) = \infty$. From the definitions, we can easily see the following:

Lemma 2. $\operatorname{ecat}(A, B) \geq \operatorname{cat}(A, B)$.

The following is the property that ecat is named excisive category.

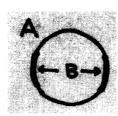
Lemma 3. Let A be a topological space and let B, C be closed subset of A with $C \cup B = A$. Then ecat $(A, B) = \text{ecat}(C, C \cap B)$.

We give simple examples for these lemmas. We can see that cat does not satisfy the lemma above. In the example below, we consider

$$A = \{(\cos \theta, \sin \theta) : \theta \in [-\pi/2, 3\pi/2)\},\$$

$$B = \{(\cos \theta, \sin \theta) : \theta \in [-\pi/6, \pi/6] \cup [5\pi/6, 7\pi/6]\},\$$

$$C = \{(\cos \theta, \sin \theta) : \theta \in [-\pi/2, -\pi/8] \cup [\pi/8, 7\pi/8] \cup [9\pi/8, 3\pi/2)\}.$$



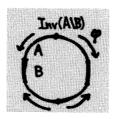
On the figures, we can easily see ecat (A, B) = 2 > 1 = cat(A, B) and ecat $(C, C \cap B) = 2 = \text{cat}(C, C \cap B)$.

The following is an important property that shows why excisive category appears; see [3]. In the following, we understand that B is an "exit" set for A.

Lemma 4. Let A be a metric space and let $\varphi:[0,\infty)\times A\to A$, a semiflow. Let B be a closed subset of A such that B is strictly positively invariant by φ , i.e., $\varphi(t,u)\in \mathrm{Int}(B)$ for each $u\in B$ and t>0. Then $\mathrm{cat}_{A\setminus B}(\mathrm{Inv}(A\setminus B))\geq \mathrm{ecat}(A,B)$, where

$$Inv(A \setminus B) = \{ u \in A \setminus B : \varphi(t, u) \in A \setminus B \text{ for all } t \ge 0 \}.$$

We also give a simple example for this lemma. On the figure below, we consider that A and B as in the example above and $\varphi : [0, \infty) \times A \to A$ is a semiflow as in the figure whose fixed points are (0, -1), (1, 0), (0, 1) and (-1, 0). Then we can see $Inv(A \setminus B) = \{(0, -1), (0, 1)\}$ and the following:



$$cat_{A\setminus B}(Inv(A\setminus B)) = 2 = ecat(A, B).$$

3. Sketch of Proofs of Theorems 1 and 3

In this section, we give sketch of proofs of Theorems 1 and 3. For $a \in \mathbb{R}$, we set $a^+ = \max\{a,0\}$ and $a^- = \min\{a,0\}$. We note that $a = a^+ + a^-$. For each domain $G \subset \mathbb{R}^N$, we consider $H^1_0(G) \subset H^1(\mathbb{R}^N)$. For $u \in H^1_0(G)$, we set $(u,v) = \int_{\mathbb{R}^N} (\nabla u \nabla v + uv) \, dx$ and $||u||^2 = (u,u)$. We recall a generalized barycenter map β on $L^2(\mathbb{R}^N)$ defined in [2]. For $u \in L^2(\mathbb{R}^N) \setminus \{0\}$, we define a bounded continuous function \check{u} on \mathbb{R}^N by $\check{u}(x) = \int_{B_1(x)} |u(y)|^2 \, dy$ for $x \in \mathbb{R}^N$, and we set $\Lambda(u) = \{x \in \mathbb{R}^N : \check{u}(x) \geq |\check{u}|_{\infty}/2\}$. We define $\beta: L^2(\mathbb{R}^N) \setminus \{0\} \to \mathbb{R}^N$ by

$$\beta(u) = \frac{\int_{\Lambda(u)} x \left(\check{u}(x) - |\check{u}|_{\infty}/2\right) dx}{\int_{\Lambda(u)} \left(\check{u}(x) - |\check{u}|_{\infty}/2\right) dx} \quad \text{for } u \in L^{2}(\mathbb{R}^{N}) \setminus \{0\}.$$

We note that β is continuous from $L^2(\mathbb{R}^N) \setminus \{0\}$ into \mathbb{R}^N .

We note that problem (1) is equivalent to

(2)
$$\begin{cases} -\Delta u + u = f(u) & \text{in } \Omega/d, \\ u = 0 & \text{on } \partial \Omega/d. \end{cases}$$

We set

$$F_+(t) = \int_0^t f^+(s) \, ds$$
 for $t \in \mathbb{R}$.

For each domain G (we consider $G = \mathbb{R}^N$ or $G = \Omega/d$), we set

$$\Phi_{G,+}(u) = \int_{G} \left(\frac{1}{2} (|\nabla u|^{2} + |u|^{2}) - F_{+}(u) \right) dx, \quad u \in H_{0}^{1}(G),
\mathcal{N}_{G,+} = \{ u \in H_{0}^{1}(G) : u^{+} \neq 0, (\nabla \Phi_{G,+}(u), u) = 0 \},
c_{G,+} = \inf \{ \Phi_{G,+}(u) : u \in \mathcal{N}_{G,\pm} \},
\mathcal{K}^{+} = \{ u \in \mathcal{N}_{\mathbb{R}^{N},+} : \Phi_{\mathbb{R}^{N},+}(u) = c_{\mathbb{R}^{N},+}, u(0) = \max_{x \in \mathbb{R}^{N}} u(x) \}.$$

By the concentration compactness principle, we have the following:

Proposition 3. Let $d_n \to 0$ and $\{u_n\} \subset \mathcal{N}_{\Omega_{d_n},+}$ such that $\Phi_{\Omega/d_n,+}(u_n) \to c_{\mathbb{R}^N,+}$. Then there exist a subsequence $\{u_{n_m}\}$ of $\{u_n\}$, $\{y_m\} \subset \mathbb{R}^N$ and $v \in \mathcal{K}^+$ such that

- (i) $y_m \in \Omega/d_{n_m}$ for all $m \in \mathbb{N}$, and $\operatorname{dist}(y_m, \partial \Omega/d_{n_m}) \to \infty$,
- (ii) $||u_{n_m} v(\cdot y_m)|| \to 0.$

Remark 4. In the proposition above, we note that $d_n \to 0$ and $\{u_n\} \subset \mathcal{N}_{\Omega_{d_n},+}$ imply $\|\Phi_{\Omega/d_n,+}(u_n)\| \to 0$. Indeed, in Theorem 1, we treat the case that f is superlinear. We note that in the case of f is asymptotically linear, the proposition above may not hold.

We also know the following.

Lemma 5. For each d > 0, $\Phi_{\Omega/d,+}$ satisfies Palais-Smale condition on $\mathcal{N}_{\Omega/d,+}$.

Now, we give the sketch of proof of Theorem 1. Let $0 < \delta_0 \ll 1$, $0 < d \ll 1$ and set $X = \{u \in \mathcal{N}_{\Omega/d,+} : \Phi_{\Omega/d,+}(u) \leq c_{\Omega/d,+} + \delta_0\}$. By the following steps, we can give the proof of Theorem 1.

- (I) Since $\Phi_{\Omega/d,+}$ satisfies Palais-Smale condition on $\mathcal{N}_{\Omega/d,+}$, by a similar proof of that of Proposition 1, we can show that X has at least cat X critical points of $\Phi_{\Omega/d,+}$.
- (II) By Proposition 3, for each $u \in X$, there exist $v \in \mathcal{K}^+$ and $y \in \Omega/d$ such that $\operatorname{dist}(y, \partial \Omega/d) \approx \infty$ and $||u v(\cdot y)|| \approx 0$. Hence we have $\beta(u) \approx dy$.
- (III) Fix $w \in \mathcal{K}^+$ and define $\alpha \in C(\Omega, X)$ by $\alpha(z) \approx w(\cdot z/d)$. Then by (II), we can infer that $\beta \circ \alpha \simeq \mathrm{Id}_{\Omega}$. Hence by Lemma 1, we have $\mathrm{cat} X \geq \mathrm{cat} \Omega$. (Technically, α should be a continuous function from Ω_{ρ} (for the definition of Ω_{ρ} , see Section 1) into X with small $\rho > 0$ and we need a precise argument.)
- (IV) In the case when Ω is not contractible, we can find a critical point u of $\Phi_{\Omega/d,+}$ such that $\Phi_{\Omega/d,+}(u) > c_{\Omega/d,+} + \delta_0$.

From (I)–(III), we can see that problem (1) has at least cat Ω positive solutions, and from (IV), we can see that if Ω is not contractible, problem (1) has at least one other positive solution.

Next, we go to Theorem 3. Although f has changed to a function satisfying (f1)–(f4), we also set

$$F(t) = \int_0^t f(s) \, ds \quad ext{and} \quad F_\pm(t) = \int_0^t f^\pm(s) \, ds \quad ext{for } t \in \mathbb{R},$$

and for each domain G (we consider $G = \mathbb{R}^N$ or $G = \Omega/d$), we set

$$\begin{split} &\Phi_{G}(u) = \int_{G} \left(\frac{1}{2}(|\nabla u|^{2} + |u|^{2}) - F(u)\right) \, dx, \quad u \in H_{0}^{1}(G), \\ &\Phi_{G,\pm}(u) = \int_{G} \left(\frac{1}{2}(|\nabla u|^{2} + |u|^{2}) - F_{\pm}(u)\right) \, dx, \quad u \in H_{0}^{1}(G), \\ &\mathcal{N}_{G} = \left\{u \in H_{0}^{1}(G) \setminus \{0\} : (\nabla \Phi_{G}(u), u) = 0\right\}, \\ &\mathcal{N}_{G,\pm} = \left\{u \in H_{0}^{1}(G) : u^{\pm} \neq 0, (\nabla \Phi_{G,\pm}(u), u) = 0\right\}, \\ &c_{G} = \inf\{\Phi_{G}(u) : u \in \mathcal{N}_{G}\}, \\ &c_{G,\pm} = \inf\{\Phi_{G,\pm}(u) : u \in \mathcal{N}_{G,\pm}\}, \\ &\mathcal{K}^{+} = \left\{u \in \mathcal{N}_{\mathbb{R}^{N},+} : \Phi_{\mathbb{R}^{N},+}(u) = c_{\mathbb{R}^{N},+}, u(0) = \max_{x \in \mathbb{R}^{N}} u(x)\right\}, \\ &\mathcal{K}^{-} = \left\{u \in \mathcal{N}_{\mathbb{R}^{N},-} : \Phi_{\mathbb{R}^{N},-}(u) = c_{\mathbb{R}^{N},-}, u(0) = \min_{x \in \mathbb{R}^{N}} u(x)\right\}. \end{split}$$

For a domain $G \subset \mathbb{R}^N$, we say $(a,b) \in \mathbb{R}^2$ is a Fučík spectrum of $-\Delta$ on $H_0^1(G)$ if there exists $u \in H_0^1(G) \setminus \{0\}$ such that

$$\begin{cases}
-\Delta u = au^+ + bu^- & \text{in } G, \\
u = 0 & \text{on } \partial G.
\end{cases}$$

In the case that f is asymptotically linear in Theorem 3, we know that Fučík spectrum plays an important role to show the existence of solutions; for example see [1,7–11]. First, we show the following which is obtained in [12].

Theorem 4. Either $-\Delta$ on $H^1(\mathbb{R}^N)$ or $-\Delta$ on $H^1_0(\mathbb{R}^N_+)$ does not have a Fučík spectrum, where $\mathbb{R}_{+}^{N} = \{x = (x_{1}, \dots, x_{N}) \in \mathbb{R}^{N} : x_{N} > 0\}.$

From the theorem above, we can show the following:

Lemma 6. Let $d_n \to 0$ and $\{u_n\} \subset H^1(\mathbb{R}^N)$ such that $u_n \in H^1_0(\Omega/d_n)$ for all $n \in \mathbb{N}$, $\{(1+\|u_n\|)\|\nabla\Phi_{\Omega/d_n}(u_n)\|\}$ is bounded and $\{\Phi_{\Omega/d_n}(u_n)\}$ is bounded from above. Then $\{||u_n||\}$ is bounded.

For each $\varepsilon, d > 0$, we set

(3)
$$\mathcal{M}_{\varepsilon,d} = \{ u \in \Phi_{\Omega/d}^{3c_{\mathbb{R}^N}} : u^+, u^- \in \mathcal{N}_{\Omega/d}, \|\nabla \Phi_{\Omega/d}(u)\| \le \varepsilon \},$$

where

$$\Phi_{\Omega/d}^c = \{ u \in H_0^1(\Omega/d) : \Phi_{\Omega/d}(u) \le c \}, \quad c \in \mathbb{R}.$$

Using Lemma 6, we can show the following property.

Proposition 4. Let $\varepsilon_n \to 0$, $d_n \to 0$ and $\{u_n\} \subset H^1(\mathbb{R}^N)$ such that $u_n \in H^1_0(\Omega/d_n)$ for all $n \in \mathbb{N}$, $\operatorname{dist}(u_n, \mathcal{M}_{\varepsilon_n, d_n}) \to 0$ and $\overline{\lim}_{n \to \infty} \Phi_{\Omega/d_n}(u_n) \leq c_{\mathbb{R}^N}$. Then there exist a subsequence $\{u_{n_m}\}$ of $\{u_n\}$, $\{y_m^1\}$, $\{y_m^2\} \subset \mathbb{R}^N$, and $v^1 \in \mathcal{K}^+$, $v^2 \in \mathcal{K}^-$ such that

- (i) $|y_m^1 y_m^2| \to \infty$,
- (ii) $y_m^i \in \Omega/d_{n_m}$ for all $m \in \mathbb{N}$, and $\operatorname{dist}(y_m^i, \partial \Omega/d_{n_m}) \to \infty$ (i = 1, 2)
- (iii) $||u_{n_m} v^1(\cdot y_m^1) v^2(\cdot y_m^2)|| \to 0,$ (iv) $|u_{n_m}^+ v^1(\cdot y_m^1)|_{L^2} \to 0$ and $|u_{n_m}^- v^2(\cdot y_m^2)|_{L^2} \to 0.$

Remark 5. Since we define $\mathcal{M}_{\varepsilon,d}$ by (3), we can show the proposition above. See Remark 4.

Fix $0 < \varepsilon_0 \ll 1$.

Lemma 7. There exist $\delta_0 \in (0, \varepsilon_0)$ and $d_0 > 0$ such that

$$\|\nabla \Phi_d(u)\| \ge \frac{24\delta}{\varepsilon_0}$$

for each $\delta \in (0, \delta_0)$, $d \in (0, d_0)$ and $u \in \Phi_d^{c_{\Omega/d} + 2\delta}$ with $\varepsilon_0/2 < \operatorname{dist}(u, \mathcal{M}_{\varepsilon_0, d}) \le \varepsilon_0$.

Fix $0 < d \ll 1$ such that $(\mathfrak{f}_+ - 1, \mathfrak{f}_- - 1)$ is not a Fučík spectrum of $-\Delta$ on $H_0^1(\Omega/d)$. Then we can show the following:

Lemma 8. $\Phi_{\Omega/d}$ satisfies (CPS).

Let $\varphi:[0,\infty)\times H_0^1(\Omega/d)\to H_0^1(\Omega/d)$ defined by

$$\begin{cases} \varphi(0,u) = u, \\ \frac{\partial \varphi}{\partial t}(t,u) = -\frac{(1 + \|\varphi(t,u)\|)^2 \nabla \Phi_d(\varphi(t,u))}{(1 + \|\varphi(t,u)\|)^2 \|\nabla \Phi_d(\varphi(t,u))\|^2 + 1}. \end{cases}$$

Here, for the sake of simplicity, we assume that $\nabla \Phi_d$ is locally Lipschitz. Technically, we need to approximate $\nabla \Phi_d$ by a pseudo-gradient vector field.

Fix $0 < a_0 \ll 1$, and we set

$$\mathcal{P} = \{ u \in H_0^1(\Omega/d) : u \ge 0 \},$$

$$\mathcal{D}_{a_0} = \{ u \in H_0^1(\Omega/d) : \text{dist}(u, \mathcal{P} \cup -P) \le a_0 \}.$$

Since $0 < a_0 \ll 1$, we can show the following:

Lemma 9. \mathcal{D}_{a_0} is strictly positively invariant by φ .

We fix $T_0 \gg 1$ and we set

$$A_0 = \{ u \in \Phi_{\Omega/d}^{c_{\Omega/d} + \delta_0} : \operatorname{dist}(u, \mathcal{M}_{\varepsilon_0, d}) \le \varepsilon_0 \},$$

$$\mathcal{E}_{T_0} = \{ u \in H_0^1(\Omega/d) : \varphi(T_0, u) \in \mathcal{D}_{a_0} \cup \Phi_d^{c_d - \delta_0} \}.$$

Since $T_0 \gg 1$, we can show the following by using Lemma 7:

Lemma 10. $\Phi_{\Omega/d}^{c_d+\delta_0}\cup\mathcal{E}_{T_0}=A_0\cup\mathcal{E}_{T_0}$

Since for each $v \in H^1(\mathbb{R}^N) \setminus \{0\}$, $t \mapsto \int_{\mathbb{R}^N} f(tv)v/t \, dx : [0, \infty) \to \mathbb{R}$ is strictly increasing, for each $u \in H^1(\mathbb{R}^N)$, we can define $\tau(u) \in (0, \infty]$ by

$$\tau(u) = \begin{cases} t \in (0, \infty) \text{ satisfying } ||u||^2 = \int_{\mathbb{R}^N} \frac{f(tu)u}{t} \, dx & \text{if } ||u||^2 < \lim_{t \to \infty} \int_{\mathbb{R}^N} \frac{f(tu)}{t} u \, dx, \\ \infty & \text{otherwise.} \end{cases}$$

Now, we give the sketch of proof of Theorem 3.

- (I) Since $\Phi_{\Omega/d}$ satisfies (CPS) and \mathcal{E}_{T_0} is a closed subset of $\Phi_{\Omega/d}^{c_{\Omega/d}+\delta_0} \cup \mathcal{E}_{T_0}$ which is strictly positively invariant by φ , by a similar proof of that of Proposition 2, we can show that there exist at least $\cot_{\Phi_{\Omega/d}^{c_{\Omega/d}+\delta_0}\setminus\mathcal{E}_{T_0}}(\operatorname{Inv}(\Phi_{\Omega/d}^{c_{\Omega/d}+\delta_0}\setminus\mathcal{E}_{T_0}))$ critical points of $\Phi_{\Omega/d}$.
- (II) For each $u \in A_0$, there exist $v^1 \in \mathcal{K}^+$, $v^2 \in \mathcal{K}^-$, $y^1, y^2 \in \Omega/d$ such that $|y^1 y^2| \approx \infty$, $\operatorname{dist}(y^i, \partial \Omega/d) \approx \infty$, $||u^+ v^1(\cdot y^1)|| \approx 0$ and $||u^- v^2(\cdot y^2)|| \approx 0$ by Proposition 4. Hence, we have $(\beta(u^+), \beta(u^-)) \approx (dy^1, dy^2)$ for all $u \in A_0$.
- (III) By Lemmas 9, 4, 3 and 2, we have

$$\operatorname{cat}_{\Phi_{\Omega/d}^{c_{\Omega/d}+\delta_0}\setminus\mathcal{E}_{T_0}}(\operatorname{Inv}(\Phi_{\Omega/d}^{c_{\Omega/d}+\delta_0}\setminus\mathcal{E}_{T_0})) \geq \operatorname{ecat}(\Phi_{\Omega/d}^{c_{\Omega/d}+\delta_0}\cup\mathcal{E}_{T_0},\mathcal{E}_{T_0})$$

$$= \operatorname{ecat}(A_0, A_0\cap\mathcal{E}_{T_0}) \geq \operatorname{cat}(A_0, A_0\cap\mathcal{E}_{T_0}).$$

We fix $w_{+} \in \mathcal{K}^{+}$, $w_{-} \in \mathcal{K}^{-}$, and we define $h : \{u \in H_{0}^{1}(\Omega/d) : u^{\pm} \neq 0\} \to C\Omega \times [0,1]^{2}$ and $\alpha : C\Omega \times [0,1]^{2} \to \{u \in H_{0}^{1}(\Omega/d) : u^{\pm} \neq 0\}$ by

$$h(u) = (d\beta(u^+), d\beta(u^-), \chi(\tau(\varphi(T_0, u)^+)), \chi(\tau(\varphi(T_0, u)^-))),$$

$$\alpha(x_1, x_2, s_1, s_2) \approx s_1 w_+(\cdot - x_1/d) + s_2 w_-(\cdot - x_2/d),$$

where $\chi:(0,\infty)\to [0,1]$ is an appropriate strictly decreasing function with $\chi(1)=1/2$. Using (II) and some properties of τ , we can show $\beta\circ\alpha$ is homotopic

to the identity mapping on $(C\Omega \times [0,1]^2, C\Omega \times \partial [0,1]^2)$. Then by a similar proof of that of Lemma 1, we can also show

$$\operatorname{cat}(A_0, A_0 \cap \mathcal{E}_{T_0}) \ge \operatorname{cat}(C\Omega \times [0, 1]^2, C\Omega \times \partial [0, 1]^2).$$

(For the precise argument, we need to define h and α in a little bit different way.)

(IV) There exists at least one other critical point $u \in H_0^1(\Omega/d)$ such that it is sign-changing and $\Phi_{\Omega/d}(u) > c_{\Omega/d} + \delta_0$.

From these steps, we can find that problem 1 has at least $cat(C\Omega \times [0,1]^2, C\Omega \times \partial [0,1]^2) + 1$ sign-changing solutions.

REFERENCES

- [1] T. Bartsch, Z.-Q. Wang, and Z. Zhang, On the Fučik point spectrum for Schrödinger operators on \mathbb{R}^N , J. Fixed Point Theory Appl. 5 (2009), no. 2, 305–317.
- [2] T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 3, 259–281.
- [3] _____, The effect of the domain's configuration space on the number of nodal solutions of singularly perturbed elliptic equations, Topol. Methods Nonlinear Anal. 26 (2005), no. 1, 109–133.
- [4] V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal. 114 (1991), no. 1, 79–93.
- [5] V. Benci, G. Cerami, and D. Passaseo, On the number of the positive solutions of some nonlinear elliptic problems, Nonlinear analysis, Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, 1991, pp. 93–107.
- [6] V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations 2 (1994), no. 1, 29-48.
- [7] S. Carl and K. Perera, Sign-changing and multiple solutions for the p-Laplacian, Abstr. Appl. Anal. 7 (2002), no. 12, 613–625.
- [8] E. N. Dancer and Z. Zhang, Fucik spectrum, sign-changing, and multiple solutions for semilinear elliptic boundary value problems with resonance at infinity, J. Math. Anal. Appl. 250 (2000), no. 2, 449-464.
- [9] S. Li and Z. Zhang, Fucik spectrum, sign-changing and multiple solutions for semilinear elliptic boundary value problems with jumping nonlinearities at zero and infinity, Sci. China Ser. A 44 (2001), no. 7, 856-866.
- [10] M. Tanaka, Existence of a non-trivial solution for the p-Laplacian equation with Fučík-type resonance at infinity. III, Nonlinear Anal. 72 (2010), no. 1, 507-526.
- [11] Z. Zhang and S. Li, On sign-changing and multiple solutions of the p-Laplacian, J. Funct. Anal. 197 (2003), no. 2, 447–468.
- [12] N. Shioji, Existence of multiple sign-changing solutions for an asymptotically linear elliptic problem and the topology of the configuration space of the domain, preprint.