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1. INTRODUCTION

We consider the problem

M { ~d*Au+u = f(u) in Q,

u=20 on 09,

where d > 0, f : R — R is an appropriate function, and Q is a bounded domain in
RY. (For the sake of simplicity, we consider the case N > 3.) By using the Lusternik-
Schnirelmann category theory, we will give a lower estimate of the number of sign-changing
solutions of (1). Such a research was first studied for positive solutions by Benci and
Cerami [4]. In [6], they obtained the following result; see also [5].

Theorem 1 (Benci-Cerami). Assume

(i) f € C*(R,R), f(0) =0, f(0) =0,
(ii) there exist p € (2,2*) and C > 0 such that |f'(t)] < C(1 + |t|P~2) for all t € R,
where 2* = 2N/(N - 2),

(iii) f'(t) > f(t)/t for all t # 0,
(iv) there exists @ > 2 such that 0 < Hf(f f(s)ds < tf(t) for allt #0.

If d > 0 is small enough, then problem (1) has at least cat Q positive solutions. Moreover
if Q0 is not contractible, then it has at least one other positive solution.

Recently, Bartsch and Weth [2, 3] studied sign-changing solutions of (1). For each p > 0
and A C R", we set

Q, = {z € Q: distgn(z,09) > p}, QF = {z € RV : distgn (z,Q) < p},
CoA={(z,y) e AxA:|z—y|>p}, CA={(z,y) e AXA:x#y}.
In [3], they showed the following result:

Theorem 2 (Bartsch-Weth). Assume (i)—(iv). If d > 0 is small, then problem (1) has at
least cat(j,) + 1 (with p > 0 small) sign-changing solutions and it is greater than or equal
to cupl (CQ) + 2, where j, is the embedding
Jp 1 (CopQ, x [-1,1]%,C5,0, x 9[—1,1]?)
— (CQF x R?,CQ*° x (R*\ {(0,0)})).
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In this paper, we study the case that f is asymptotically linear. We show a lower
estimate of the number of the sign-changing solutions of (1), which is obtained in [12]. We
note that we do not assume the differentiability of f, and that since we consider the case
that f is asymptotically linear, f does not satisfy the so-called Ambrosetti-Rabinowitz
superlinear condition (iv). Now, we show our result:

Theorem 3. Assume
(f1) f € C(R,R), f(0) =0,
(£2) t — f(t)/t is strictly increasing on (0,00) and strictly decreasing on (—00,0),
(f3) £.(0), f.(0) € [0,1), where f3(0) = lim;_.+o f(t)/t,
(f4) (f+,5-) € (0,00) x (0,00), where f+ = lim; .+ f(2)/1-
Then there exists dy > 0 such that for each d € (0,dy) such that (f+ — 1,f- — 1) is not
a Fuétk spectrum of —A on HL(Q/d), problem (1) has at least cat(CQ x [0,1]%,CQ x
9[0,1]%) + 1 sign-changing solutions.

Remark 1. As in [3], we can give the following estimate:
cat(CQ x [0,1]%,CQ x 9[0,1]?) + 1 > cupl CQ + 2 > max{cupl Q + 2, 2cupl Q} + 1 > 3.

In the next section, we give some preliminaries. In Section 3, we give sketch of proofs
for Theorems 1 and 3.

2. PRELIMINARIES

First, we recall the category in the sense of Lusternik-Schnirelmann. Let A be a topo-
logical space and let B C A. The category catsB is defined to be the least integer
n € NU {0} such that there exist open subsets {4, ..., A} (not {Ao, A1,..., A} asin
other definitions below) of A such that B C (J;_; A; and each A; is contractible in A.
If there is no such open covering, we set cat4B = oo. We set cat A = cat4A and we
understand cat4 0 = 0.

By the proposition below, we can see that the category gives a lower estimate of the
number of critical points in a level set of a functional which is bounded from below.

Proposition 1. Let H be a Hilbert space and let I € C*(H,R) be a functional such that
it is bounded from below and it satisfies (CPS), i.e., each sequence {u,} C H satisfying
sup,, [I(un)] < 0o and (1 + |lus]])||VI(un)|| — O has a convergent subsequence. Assume
that c € R is not a critical value for I. Then I° = {u € H : I(u) < ¢} has at least cat I°
critical points of I.

We give simple examples for this proposition. In the figures below, we consider the case

H =R
A

=« G
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However, in general, it is difficult to find the value cat I°. So the conclusion of Proposi-
tion 1 may not make sense. In some cases, by the lemma below, we may give an estimate
of cat I°¢.

Lemma 1. Let Y be topological space. Assume that there exist o € C(Y,I¢) and [ €
C(I¢Y) such that Boa ~Idy, i.e., 3o a is homotopic to Idy. Then catI° > catY .

Now, we recall relative category for a pair of sets. Let A be a topological space and
let B C A. The relative category cat(A, B) is defined to be the least integer n € NU {0}
such that there exists an open covering {Ag, 4; ..., A, } of A satisfying

(i) B C Ay,
(ii) there exists hg € C([0, 1] x Ao, A) such that ho(0,z) = z and ho(1,z) € B for all
z € Ao, and hy(t,z) € B for all (¢,z) € [0,1] x B,
(iii) each A; is contractible in A fori=1,...,n.
If there is no such open covering, we set cat(A, B) = oo.

Remark 2. Tt holds that cat A = cat(4, 0).

By the proposition below, we can understand that the relative category also gives a
lower estimate of the number of critical points.

Proposition 2. Let H be a Hilbert space and let I € C*(H,R) satisfying (CPS). Assume
that a,b € R (a < b) are not critical values of I. Then I°\ I® has at least cat (I®, I%)
critical points of 1.

We also give some examples for this proposition. We consider the same functionals as
before; see the examples just after Proposition 1. On the right hand side example, we can
understand that it has at least two critical points from Propositions 1 and 2.

(@D, @)=0 0D, @)

Next, (in order to understand Theorem 2,) we recall category for a map. Let (A, B)
and (A’, B’) be pairs of topological spaces, i.e., A, A’ are topological spaces and B C A,
B’ C A’. Then cat(g) is defined to be the least integer n € NU {0} such that there exists
an open covering {Ag, A1, ..., A,} of A satisfying

(l) B C Ao,
(ii) there exists hg € C([0, 1] X Ay, , A’) such that ho(0,z) = g(z) and ho(1l,z) € B’
for all x € Ag, and ho(t,z) € B’ for all (¢,z) € [0,1] x B,
(iii) for each i = 1,...,n, there exists h; € C(|0,1] x A;, A’) such that h;(0,z) = g(x)
and h;(1,z) = hiy(1,y) for all z,y € A;.

If there is no such open covering, we set cat(g) = oo.

Remark 3. It holds that cat(A, B) = cat(Id(a,p)) and cat A = cat(A, D) = cat(Id(4,9))-
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Finally, we recall excisive category for a pair of topological spaces. Let (A, B) be a pair
of topological spaces. The excisive category ecat (A, B) is defined to be a least integer
n € NU {0} such that there exists an open covering {Ao, ..., A,} of A satisfying

(i) B C Ay,
(ii) there exists ho € C([0,1] x Ao, A) such that ho(0,z) = z and ho(1,z) € B for all
z € Ay, and for (t,z) € [0,1] X A with ho(t,z) € B, ho(s,z) = ho(t,z) for all
s € [t,1],
(iii) for each i = 1,...,n, A;N B = 0 and A; is contractible in A\ B.

If there is no such open covering, we set ecat (A, B) = co. From the definitions, we can
easily see the following:

Lemma 2. ecat (A, B) > cat (A, B).
The following is the property that ecat is named excisive category.

Lemma 3. Let A be a topological space and let B, C be closed subset of A with CUB = A.
Then ecat (A, B) = ecat (C,C N B).

We give simple examples for these lemmas. We can see that cat does not satisfy the
lemma above. In the example below, we consider
A = {(cosb,sinb) : 0 € [-7/2,37/2)},
B = {(cos,sinb) : 6 € [-m/6,7/6] U [57 /6, Tr/6]},
C = {(cosb,sinf) : 0 € [-7/2,—n/8] U [r/8,7m /8] U [97/8,37/2)}.

On the figures, we can easily see ecat (4, B) =2 > 1 = cat (A, B) and ecat(C,CNB) =
2=cat(C,CnNB).

The following is an important property that shows why excisive category appears;
see [3]. In the following, we understand that B is an “exit” set for A.

Lemma 4. Let A be a metric space and let ¢ : [0,00) x A — A, a semiflow. Let B be a
closed subset of A such that B is strictly positively invariant by o, i.e., o(t,u) € Int(B)
for each u € B and t > 0. Then cata\p(Inv(A\ B)) > ecat(A, B), where

Inv(A\ B) ={u€ A\ B: ¢(t,u) € A\ B for all t > 0}.

We also give a simple example for this lemma. On the figure below, we consider
that A and B as in the example above and ¢ : [0,00) X A — A is a semiflow as in
the figure whose fixed points are (0,-1), (1,0), (0,1) and (—1,0). Then we can see
Inv(A\ B) = {(0,-1),(0,1)} and the following:
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cat 4\p(Inv(A \ B)) = 2 = ecat (4, B).

3. SKETCH OF PROOFS OF THEOREMS 1 AND 3

In this section, we give sketch of proofs of Theorems 1 and 3. For a € R, we set
ot = max{a, 0} and a~ = min{a, 0}. We note that a = a++a“ For each domain G C RY,
we consider H}(G) C HY(RY). For u € HX(G), we set ( = Jan(VuVv + wv) dz and
|lull> = (u,u). We recall a generalized barycenter map B on L?(RV) defined in [2].
For u € L2(RN)\ {0}, we define a bounded continuous function % on RY by u(z) =
S, [u(W)[? dy for z € RY, and we set A(u) = {z € RV : a(z) > [i]e/2}. We define
8¢ L2(RY)\ {0} — RV by
Jay @ (W(z) = |ileo/2)dz
fA(u) (a(z) Iuloo/2)dx

We note that 8 is continuous from L?(RV)\ {0} into RV,
We note that problem (1) is equivalent to

—Au+u= f(u) in Q/d,
u=0 on 0Q/d.

for u € L*(R") \ {0}.

Blu) =

(2)

We set .
F.(¢) =/ ft(s)ds forteR.
0

For each domain G (we consider G = R" or G = Q/d), we set

bo.0) = [ (FUVuP+ 1) - Fufw) do. e HY(G)

Noqt = {u € Hy(G) : u* # 0, (VP¢ 1 (u),u) = 0},
G+ = inf{QG’+(U) U € NG,i},

= {u € Ngnv , : By, (u) = gy 4, u(0) = max u(z)}.

By the concentration compactness principle, we have the following;:

Proposition 3. Let d, — 0 and {un,} C No,_ 1 such that ®q/q, +(un) — cgy . Then
there exist a subsequence {un,,} of {un}, {ym} C RY and v € K* such that

(1) ym € Q/dp,, for allm € N, and dist(ym, 0/d,,,) — oo,

(i) llun, —v(- = gm)ll — 0.
Remark 4. In the proposition above, we note that d, — 0 and {u,} C Ng, + imply

1®0/dn,+(tn)|| — 0. Indeed, in Theorem 1, we treat the case that f is superlinear. We
note that in the case of f is asymptotically linear, the proposition above may not hold.
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We also know the following.
Lemma 5. For each d > 0, ®q/q 4 satisfies Palais-Smale condition on Ng Jdy+

Now, we give the sketch of proof of Theorem 1. Let 0 < 8o €1,0<d< 1 and set
X = {u € Noja+ : ®aja+(u) < caja++0}- By the following steps, we can give the proof
of Theorem 1.

(I) Since ®g/4 + satisfies Palais-Smale condition on Ngy/d,+, by a similar proof of that
of Proposition 1, we can show that X has at least cat X critical points of ®q/qg,+-
(II) By Proposition 3, for each u € X, there exist v € K* and y € /d such that
dist(y, 8Q/d) =~ oo and |lu — v(- — y)|| = 0. Hence we have 3(u) =~ dy.
(IIT) Fix w € K* and define @ € C(Q, X) by a(z) ~ w(- — z/d). Then by (II), we can
infer that 8o a ~ Idg. Hence by Lemma 1, we have cat X > cat Q. (Technically,
a should be a continuous function from Q, (for the definition of 2, see Section 1)
into X with small p > 0 and we need a precise argument.)
(IV) In the case when € is not contractible, we can find a critical point u of ®q 4+
such that ®q/4.4(u) > ca/a+ + o
From (I)—(III), we can see that problem (1) has at least cat Q2 positive solutions, and from
(IV), we can see that if Q is not contractible, problem (1) has at least one other positive
solution.

Next, we go to Theorem 3. Although f has changed to a function satisfying (f1)—(4),
we also set

F(t) = /Otf(s) ds and Fi(t)= /Ot fE(s)ds forteR,

and for each domain G (we consider G = R¥ or G = Q/d), we set

%) = [ (309ul + )~ Flw)) de. € HYG),

Sos(w) = [ (J0Vu +1uP) - Fatw)) d, we HY(G)

Ne = {u € Hy(G) \ {0} : (V®(u),u) = 0},
Nez = {u € Hy(G) : u* #0,(VPg,+(u),u) = 0},
ce = inf{®g(u) : u € Ng},
cg+ = inf{®¢+(u):u e Nga},

K+ ={u€ Ngv: Brv 4 (u) = gy 4, u(0) = max u(z)},
z€

K- ={u€Ngv_:Ppn_(u) =cgv_, u(0) = mniall}l u(z)}.
z€

For a domain G C RY, we say (a,b) € R? is a Fuéik spectrum of ~A on H}(G) if there
exists u € H}(G) \ {0} such that

—Au=aut +bu” inG,
u=0 on 0G.
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In the case that f is asymptotically linear in Theorem 3, we know that Fuéik spectrum
plays an important role to show the existence of solutions; for example see [1,7-11]. First,
we show the following which is obtained in [12].

Theorem 4. Either —A on H'(RN) or —A on H}(RY) does not have a Fuéik spectrum,
where RY = {z = (z1,...,2z5) € RN : 2y > 0}.

From the theorem above, we can show the following:

Lemma 6. Let dn — 0 and {u,} C H'(RY) such that u, € H5(Q/dn) for alln € N,
{1 + ualDIV®a/a, (un)l|} is bounded and {®gq,a,(un)} s bounded from above. Then
{llun||} is bounded.

For each ¢,d > 0, we set
(3) Meg={u€ B8 :ut, u™ € Nayg, [[VOa/a(u)|| < €},

where
o u={ue H(Q/d) : ®o/4(u) <c}, ceR.

Using Lemma 6, we can show the following property.

Proposition 4. Let €, — 0, d, — 0 and {u,} C HY(R") such that u, € H}(Q/d,)
for all n € N, dist(un, Mc, q,) — 0 and lim,_ @0 /4, (un) < cgnv. Then there ezist a
subsequence {un,,} of {un}, {yL.},{v3} CRY, and v' € K*,v? € K~ such that

(i) ,yrln - yrznl — o0, .
(ii) yi, € Q/dn,, for all m € N, and dist(y,,0Q/d,, ) —  (i=1,2),

(itl) f|tn, — v1(- — yL,) — v2(- —2)]| = O,
(iv) lug, —v'(- = yp)lze — 0 and |y, — v*(- — y2,)|22 — 0.

Remark 5. Since we define M, 4 by (3), we can show the proposition above. See Remark 4.
Fix0<eg 1.

Lemma 7. There exist & € (0,&0) and dy > 0 such that

45
V@) > 22
€o

for each § € (0,8), d € (0,do) and u € <I>§Wd+25 with €0/2 < dist(u, Mg, 4) < €o.

Fix 0 < d < 1 such that (f4 — 1,f- — 1) is not a Fué¢ik spectrum of —A on HJ(2/d).
Then we can show the following:

Lemma 8. ®q/, satisfies (CPS).
Let ¢ : [0,00) x Hj(Q/d) — H}(Q/d) defined by

90(0’ u) =u,
O, - - (Lt )Vt )
ot (L+ llo(t, WDV Rale(t, W) +1°
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Here, for the sake of simplicity, we assume that V®, is locally Lipschitz. Technically, we

need to approximate V®, by a pseudo-gradient vector field.
Fix 0 < ag < 1, and we set

P = {u € Hy(/d) : u > 0},

D,, = {u € Hy(Q/d) : dist(u, P U —P) < ao}.
Since 0 < ag < 1, we can show the following:
Lemma 9. D,, is strictly positively invariant by .

We fix Ty > 1 and we set

Ay={ue @;“/L;’MO - dist(u, Meya) < €0}

Er, = {u € HNQ/d) : o(Tp,u) € Dy U 7%}
Since Tp > 1, we can show the following by using Lemma 7:

Lemma 10. @?%60 Uér, = AgU&r,.

Since for each v € H'(RV)\ {0}, t — [on f(tv)v/tdz : [0, 00) — R is strictly increasing,

for each u € H(RY), we can define 7(u) € (0, 00] by

t
t € (0, 00) satisfying ||ul|* = / PO 4 it u)? < Jim / fl),
RN t t—00 RN t

T(u) =
{ fo'e) otherwise.

Now, we give the sketch of proof of Theorem 3.

dz,

(I) Since ®q/q4 satisfies (CPS) and &7, is a closed subset of @;9/‘;%0 U &7, which is
strictly positively invariant by ¢, by a similar proof of that of Proposition 2, we

@CQ/4+60

can show that there exist at least cat _cq/q+ @ (Inv(®q/;  \€n)) critical points
T

Q/d 0

of (I)Q/d.

(II) For each u € Ag, there exist v! € K*, v2 € K™, 1, y? € Q/d such that |y —¢?| ~
oo, dist(y?,8Q/d) ~ oo, |lut — v!(- — y!)|| ~ 0 and |Ju™ — v*(- — 3?)|| = 0 by

Proposition 4. Hence, we have (3(u™), B(u™)) = (dy', dy?) for all u € A,.
(III) By Lemmas 9, 4, 3 and 2, we have

+6 +6
cat_cq/atdo, , (Inv(@?zn//; °\ €r,)) > ecat (<I>;Q/; *U&n,En)

Q/d \ér,

= ecat (Ao, Ao N STO) 2 cat (AO, Ao N ng)-

We fix wy € K+, w_ € K-, and we define h : {u € H}(Q/d) : v* # 0} —

CQ x [0,1]? and o : CQ x [0,1]? — {u € H}(Q/d) : u* # 0} by

h(w) = (dB(u*), dB(u™), x(1(¢(To,w) ")), x(1((To, ) 7)),
Ol(.’L‘l, Z9, 81, 82) ~ slw+(~ - xl/d) + Sz’w_(' - xz/d),

where x : (0,00) — [0,1] is an appropriate strictly decreasing function with
x(1) = 1/2. Using (II) and some properties of 7, we can show (o « is homotopic
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to the identity mapping on (C2 x [0, 1], CQ2 x 8[0,1]?). Then by a similar proof
of that of Lemma 1, we can also show

cat (Ao, Ao N Exy) > cat(CQ x [0, 1], CQ x 5[0, 1]?).

(For the precise argument, we need to define h and « in a little bit different way.)
(IV) There exists at least one other critical point u € H}(2/d) such that it is sign-
changing and ®q/q4(u) > cq/q + do.
From these steps, we can find that problem 1 has at least cat(CQ x [0, 1]2, CQx 9|0, 1]?)+1
sign-changing solutions.
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