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1. INTRODUCTION AND ABSTRACT SETTING

The method of Nehari manifold goes back to Nehari’s work [5, 6],
where he considered a boundary value problem for a certain nonlin-
ear second order ordinary differential equation in an interval $(a, b)$ and
showed that it has a nontrivial solution which may be found by con-
strained minimization of the Euler-Lagrange functional corresponding
to the problem.

In this paper we give a short account of the Nehari method in an
abstract setting and give examples of its applications to nonlinear el-
liptic equations. An important assumption here is that the associated
functional has a local minimum at $0$ . We also consider a recent ex-
tension of this method to problems where $0$ is a saddle point of the
functional. The approach we present here differs a little from the usual
one and is taken from [11], where the details and a more extensive list
of references may be found. We assume the reader is familiar with basic
critical point theory and its applications to nonlinear boundary value
problems for elliptic equations, see e.g. [1, 2, 9, 12].

Let $E$ be real Banach space and $\Phi\in C^{1}(E, \mathbb{R})$ a functional. If
$\Phi’(u)=0$ and $u\neq 0$ , then

$u\in \mathcal{N}:=\{u\in E\backslash \{0\}:\Phi’(u)u=0\}$ .

So $\mathcal{N}$ is a natural constraint for the set of nontrivial solutions. It
is called the Nehari manifold though it is not a manifold in general.
Assume without loss of generality that $\Phi(0)=0$ and let

$c:= \inf_{u\in \mathcal{N}}\Phi(u)$ .

Put $S:=S_{1}(0)=\{u\in E:\Vert u\Vert=1\}$ . Suppose:
$(A_{1})E$ is a Hilbert space,
$(A_{2})$ For each $w\in E\backslash \{0\}$ there exists $s_{w}$ such that if $\alpha_{w}(s)$ $:=\Phi(sw)$ ,

then $\alpha_{w}’(s)>0$ for $0<s<s_{w}$ and $\alpha_{w}’(s)<0$ for $s>s_{w}$ ,
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$(A_{3})$ There exists $\delta>0$ such that $s_{w}\geq\delta$ for all $w\in S$ and for each
compact subset $\mathcal{W}\subset S$ there exists a constant $C_{\mathcal{W}}$ such that
$s_{w}\leq C_{\mathcal{W}}$ for all $w\in \mathcal{W}$ .

It is easy to see that $(A_{2})-(A_{3})$ imply:
$\bullet$ $0$ is a local minimum for $\Phi$ ,
$\bullet\Phi(s_{w}w)=\max_{s>0}\Phi(sw)$ ,
$\bullet$ $0=\alpha_{w}’(s_{w})=\Phi’(s_{w}w)w=0,$ $s_{w}w\in \mathcal{N}$ (and $s_{w}w\not\in \mathcal{N}$ for any

other $s>0$),
$\bullet$

$\mathcal{N}$ is bounded away from $0$ and is radially homeomorphic with
$S$ ,

$\bullet$ $c$ if attained is positive.
Assuming $\Phi\in C^{2}(E, \mathbb{R})$ , one also has

$\alpha_{w}’’(s_{w})=\Phi’’(s_{w}w)(w, w)=s_{w}^{-2}\Phi’’(u)(u, u)\leq 0$, where $u=s_{w}w\in \mathcal{N}$.
If $\Phi’’(u)(u, u)<0$ for all $u\in \mathcal{N}$ , then it follows from the implicit
function theorem that $\mathcal{N}$ is a $C^{1}$ -manifold of codimension 1 and $E=$

$\tau_{u}(\mathscr{N}\oplus \mathbb{R}u$ for each $u\in \mathcal{N}$ , where $T_{u}(\mathcal{N})$ denotes the tangent space
of $\mathcal{N}$ at $u$ . Hence in this case if $c$ is attained, then any $u\in \mathcal{N}$ with
$\Phi(u)=c$ (i.e., any minimizer of $\Phi|_{N}$ ) satisfies $\Phi’(u)=0$ . Such $u$ is
called a ground state (because it has minimal “energy” $\Phi$ in the set of
all nontrivial solutions). As we shall see below, the assumptions $\Phi\in$

$C^{1}(E, \mathbb{R})$ and $(A_{2})-(A_{3})$ suffice in order to assert that the minimizers
are critical points. Let

$\hat{m}:E\backslash \{0\}arrow \mathcal{N}$ , $\hat{m}(w):=s_{w}w$

and
$m:Sarrow \mathcal{N}$ , $m:=\hat{m}|_{S}$ .

Proposition 1.1 ([11], Proposition 8). Suppose $\Phi$ satisfies $(A_{2})-(A_{3})$ .
Then:
$(a)$ The mapping $\hat{m}$ is continuous.
$(b)$ The mapping $m$ is a homeomorphism between $S$ and $\mathcal{N}$ . The in-
verse of $m$ is given by $m^{-1}(u)=u/\Vert u\Vert$ .

Proof. (a) Suppose $w_{n}arrow w\neq 0$ . Since $\hat{m}(tw)=\hat{m}(w)$ for each $t>0$ ,
we may assume without loss of generality that $w_{n}\in S$ . It suffices
to show that $\hat{m}(w_{n})arrow\hat{m}(w)$ after passing to a subsequence. Put
$\hat{m}(w_{n})=s_{n}w_{n}$ . By $(A_{2})$ and $(A_{3}),$ $(s_{n})$ is bounded and bounded away
from $0$ , hence, taking a subsequence, $s_{n}arrow\overline{s}>0$ . Since $\mathcal{N}$ is closed
and $\hat{m}(w_{n})arrow\overline{s}w,$ $\overline{s}w\in \mathcal{N}$ . It follows that $\overline{s}w=s_{w}w=\hat{m}(w)$ .
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(b) follows directly from (a).

Let
$\hat{\Psi}:E\backslash \{0\}arrow \mathbb{R}$ ,

and
$\Psi:Sarrow \mathbb{R}$ ,

$\square$

$\hat{\Psi}(w):=\Phi(\hat{m}(w))$

$\Psi:=\hat{\Psi}|s$ .

Proposition 1.2 ([11], Proposition 9). Suppose $\Phi$ satisfies $(A_{2})-(A_{3})$ .
Then $\hat{\Psi}\in C^{1}(E\backslash \{0\}, \mathbb{R})$ and

$\hat{\Psi}’(w)z=\frac{\Vert\hat{m}(w)\Vert}{\Vert w\Vert}\Phi’(\hat{m}(w))z$ for all $w,$ $z\in E,$ $w\neq 0$ .

Proof. Let $w\in E\backslash \{0\}$ and $z\in E$ . Since $\Phi(s_{w}w)\geq\Phi(sw)$ for all
$s>0$ , we see using the mean value theorem that if $|t|$ is small enough,
then

$\hat{\Psi}(w+tz)-\hat{\Psi}(w)=\Phi(s_{w+tz}(w+tz))-\Phi(s_{w}w)$

$\leq\Phi(s_{w+tz}(w+tz))-\Phi(s_{w+tz}w)$

$=\Phi’(s_{w+tz}(w+\tau tz))s_{w+tz}tz$

for some $\tau=\tau(t)\in(O, 1)$ . Similarly,
$\hat{\Psi}(w+tz)-\hat{\Psi}(w)\geq\Phi(s_{w}(w+tz))-\Phi(s_{w}w)$

$=\Phi’(s_{w}(w+\eta tz))s_{w}tz$

for some $\eta=\eta(t)\in(0,1)$ . Since the mapping $w\mapsto s_{w}$ is continuous
according to Proposition 1.1, it follows from the inequalities above that

$\lim_{tarrow 0}\frac{\hat{\Psi}(w+tz)-\hat{\Psi}(w)}{t}=s_{w}\Phi’(s_{w}w)z=\frac{\Vert\hat{m}(w)\Vert}{\Vert w\Vert}\Phi’(\hat{m}(w))z$.

Hence the G\^ateaux derivative of $\hat{\Psi}$ is bounded linear in $z$ and contin-
uous in $w$ . So $\hat{\Psi}\in C^{1}(E\backslash \{0\}, \mathbb{R})$ , see e.g. [2, 12]. $\square$

Corollary 1.3 ([11], Corollary 10). Suppose $\Phi$ satisfies $(A_{2})-(A_{3})$ .
Then:
$(a)\Psi\in C^{1}(S, \mathbb{R})$ and

$\Psi’(w)z=\Vert m(w)\Vert\Phi’(m(w))z$ for $allz\in T_{w}(S)$ .
$(b)$ If $(w_{n})$ is a Palais-Smale sequence for $\Psi_{f}$ then $(m(w_{n}))$ is a Palais-
Smale sequence for $\Phi$ . If $(u_{n})\subset \mathcal{N}$ is a bounded Palais-Smale sequence
for $\Phi_{f}$ then $(m^{-1}(u_{n}))$ is a Palais-Smale sequence for $\Psi$ .
$(c)w$ is a critical point of $\Psi$ if and only if $m(w)$ is a nontrivial critical
point of $\Phi$ . Moreover, the corresponding values of $\Psi$ and $\Phi$ coincide
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and $\inf_{S}\Psi=\inf_{\mathcal{N}}\Phi$ .
$(d)$ If $\Phi$ is even, then so is $\Psi$ .

Proof. (a) follows $hom$ the preceding proposition. Note only that
$m(w)=\hat{m}(w)$ because $w\in S$ here.

(b) Let $u=m(w)$ . Since $u\in \mathcal{N},$ $\Phi’(u)w=\Phi’(u)\frac{u}{\Vert u\Vert}=0$ . Hence it
follows using (a) that

(1) $\Vert\Psi’(w)\Vert=\sup_{z\in T_{w}(S)}\Psi’(w)z=\Vert u\Vert\sup_{z\in T_{w}(S)}\Phi’(u)z=\Vert u\Vert\Vert\Phi’(u)\Vert$
.

Since $\mathcal{N}$ is bounded away from $0$ and $\Phi(u)=\Psi(w)$ , we obtain the
conclusion.

(c) By (1), $\Psi’(w)=0$ if and only if $\Phi’(m(w))=0$ . The other part is
clear.

(d) If $\Phi$ is even, then $s_{w}=s_{-w}$ . Hence $\hat{m}(-w)=-\hat{m}(w)$ and
$\Psi(-w)=\Psi(w)$ by the definition of $\Psi$ . $\square$

Remark 1.4. (i) It is easy to see from the definitions that the value
$c$ has the following minimax characterization:

$c= \inf_{u\in \mathcal{N}}\Phi(u)=\inf_{w\in E\backslash \{0\}}\max_{s>0}\Phi(sw)=\inf_{w\in S}\max_{s>0}\Phi(sw)$ .

(ii) Note that the conditions $(A_{2})-(A_{3})$ do not imply that $\hat{m}\in C^{1}$

and $\mathcal{N}\in C^{1}$ , yet we have $\Psi\in C^{1}$ .
(iii) Propositions 1.1, 1.2 and Corollary 1.3 remain valid for a large

class of Banach spaces-see Section 3.1 of [11]. In particular, they
remain valid in the Sobolev spaces $W^{1,p}(\Omega)$ and $W_{0}^{1,p}(\Omega)$ .

2. ELLIPTIC EQUATIONS IN A BOUNDED DOMAIN

Let $\Omega\subset \mathbb{R}^{N}$ be a bounded domain and consider the boundary value
problem

(2) $\{\begin{array}{ll}-\triangle u-\lambda u=f(x, u), x\in\Omega u=0, x\in\partial\Omega,\end{array}$

where $\lambda<\lambda_{1}$ ( $\lambda_{1}$ is the first Dirichlet eigenvalue for $-\triangle$ in $\Omega$), $f$ is
continuous and

(3) $|f(x, u)|\leq a(1+|u|^{q-1})$ for some $a>0$ and $2<q<2^{*}$ .

Here $2^{*}$ is the critical exponent with respect to the embedding of the
Sobolev space $H^{1}(\Omega)$ into $L^{q}(\Omega)$ , i.e., $2^{*};=2N/(N-2)$ whenever $N\geq$

3. If $N=1$ or 2, we put $2^{*};=\infty$ . Since $\lambda<\lambda_{1}$ , the quadratic form
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$u \mapsto\int_{\Omega}(|\nabla u|^{2}-\lambda u^{2})dx$ is positive definite and defines an equivalent
norm in $H_{0}^{1}(\Omega)$ .

Let
$F(x, u):= \int_{0}^{u}f(x, s)ds$

and

$\Phi(u)$ $:= \frac{1}{2}\int_{\Omega}(|\nabla u|^{2}-\lambda u^{2})dx-\int_{\Omega}F(x, u)dx\equiv\frac{1}{2}\Vert u\Vert^{2}-I(u)$ .

Then $\Phi\in C^{1}(E, \mathbb{R})$ , where $E$ $:=H_{0}^{1}(\Omega)$ and critical points of $\Phi$ coincide
with (weak) solutions of (2).

Theorem 2.1 ([11], Theorem 16). In addition to the above assump-
tions, suppose that
(i) $f(x, u)=o(u)$ uniformly in $x$ as $uarrow 0$ ,
(ii) $u\mapsto f(x, u)/|u|$ is strictly increasing on $(-\infty, 0)$ and $(0, \infty)_{f}$

(iii) $F(x, u)/u^{2}arrow\infty$ uniformly in $x$ as $|u|arrow\infty$ .
Then equation (2) has a ground state solution. Moreover, if $f$ is odd
in $u$ , then (2) has infinitely many pairs of solutions.

Proof (outline). Since

$\alpha_{w}(s)=\Phi(sw)=\frac{1}{2}s^{2}\Vert w\Vert^{2}-\int_{\Omega}F(x, sw)dx$,

it is easy to see from (i) and (iii) that $\alpha_{w}(s)>0$ for $s>0$ small and
$\alpha_{w}(s)<0$ for $s$ large. Moreover,

$\alpha_{w}’(s)=\frac{d}{ds}\Phi(sw)=s(\Vert w\Vert^{2}-\int_{\Omega}\frac{f(x,sw)}{sw}w^{2}dx)$ .

It follows from (ii) that the term in brackets above is strictly decreasing
in $s$ if $w\neq 0$ and $s>0$ . Hence there exists a unique $s_{w}$ with $\alpha_{w}’(s_{w})=0$ .
So $(A_{2})$ holds and one sees that so does $(A_{3})$ . Consequently, according
to Corollary 1.3, $\Psi\in C^{1}(S, \mathbb{R})$ and critical points of $\Psi$ coincide with
solutions of (2).

Below we shall show that $\Phi$ satisfies the Palais-Smale condition on
$\mathcal{N}$ , i.e., if $(u_{n})\subset \mathcal{N},$ $\Phi(u_{n})$ is bounded and $\Phi’(u_{n})arrow 0$ , then $(u_{n})$ has
a convergent subsequence. Assuming this, it follows from Corollary 1.3
that $\Psi$ (as a mapping from $S$ to $\mathbb{R}$ ) satisfies the Palais-Smale condi-
tion. But then a well known result in critical point theory implies that
$\inf_{S}\Psi=c>0$ is attained. Hence (2) has a ground state solution.

Suppose $f$ is odd in $u$ , then $\Phi$ is even. Let
$\Gamma_{j}$ $:=$ {$A\subset S:A=-A,$ $A$ is compact and $\gamma(A)\geq j$ },
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where $\gamma$ is the Krasnoselskii genus [1, 2, 9], and

$c_{j}:= \inf_{A\in\Gamma_{j}}\sup_{u\in A}\Phi(u)$ , $j=1,2,$ $\ldots$

Since $c=c_{1}\leq c_{2}\leq\cdots,$ $c_{j}<\infty$ for all $j$ and $\Psi$ satisfies the Palais-
Smale condition, we can invoke another well known result in critical
point theory (see e.g. [1, 2, 9]) in order to conclude that $\Psi$ has infinitely
many pairs of critical points and hence (2) possesses infinitely many
pairs of solutions. $\square$

Proposition 2.2. $\Phi$ satisfies the Palais-Smale condition on $\mathcal{N}$ .

Proof. Suppose $(u_{n})\subset \mathcal{N},$ $\Phi(u_{n})$ is bounded and $\Phi’(u_{n})arrow 0$ . If $(u_{n})$

is bounded, we may assume passing to a subsequence that $u_{n}arrow u$ .
Since $I^{f}$ is completely continuous $(i.e., I’(u_{n})arrow I’(u) if u_{n}arrow u)$ and
$\Phi’(u_{n})=u_{n}-I’(u_{n})arrow 0,$ $u_{n}arrow I’(u)=u$ .

We complete the proof by showing that $\Phi|_{\mathcal{N}}$ is coercive, i.e., $\Phi(u_{n})arrow$

$\infty$ as $\Vert u_{n}\Vertarrow\infty,$ $(u_{n})\subset \mathcal{N}$. Suppose $\Phi(u_{n})\leq d$ and $\Vert u_{n}\Vertarrow\infty$ . We
may assume passing to a subsequence that $v_{n}$ $:=u_{n}/\Vert u_{n}\Vertarrow v,$ $v_{n}arrow v$

in $L_{loc}^{q}(\mathbb{R}^{N})$ and a.e. If $v=0$ , then weak continuity of $I$ implies that

$d \geq\Phi(u_{n})=\Phi(s_{v_{n}}v_{n})\geq\Phi(sv_{n})=\frac{1}{2}s^{2}-\int_{\Omega}F(x, sv_{n})dxarrow\frac{1}{2}s^{2}$

for all $s>0$ , a contradiction. So $v\neq 0$ . Since $|u_{n}(x)|arrow\infty$ whenever
$v(x)\neq 0$ , we obtain passing to a subsequence, using Fatou’s lemma
and (iii) that

$0 \leq\frac{\Phi(u_{n})}{\Vert u_{n}\Vert^{2}}=\frac{1}{2}-\int_{\Omega}\frac{F(x,u_{n})}{u_{n}^{2}}v_{n}^{2}dxarrow-\infty$ ,

a contradiction again. $\square$

Remark 2.3. (i) Each ground state solution $u_{0}$ is positive or negative.
For suppose $u$ is a sign-changing solution and let $u^{+};= \max\{u, 0\}$ ,
$u^{-};= \min\{u, 0\}$ . Multiplying (2) by $u^{\pm}$ and integrating, we see that
$u^{\pm}\in \mathcal{N}$. Hence $\Phi(u)=\Phi(u^{+})+\Phi(u^{-})\geq 2c$ and $u\neq u_{0}$ . It follows
that $u_{0}\geq 0$ or $u_{0}\leq 0$ and by Harnack’s inequality [3], $u_{0}>0$ or $u_{0}<0$

in $\Omega$ .
(ii) It is well known that if (ii) and (iii) in Theorem 2.1 are replaced

by the following Ambrosetti-Rabinowitz superlinearity condition:

There exist $\mu>2$ and $R>0$ such that
(4)

$0<\mu F(x, u)\leq f(x, u)u$ for all $|u|\geq R$ ,
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then (2) has a positive solution, and if in addition $f$ is odd in $u$ , then
there are infinitely many pairs of solutions (see e.g. [1, 9]). It is easy
to see that (4) implies $|F(x, u)|\geq a_{1}|u|^{\mu}-a_{2}$ for some $a_{1},$ $a_{2}>0$ while
(ii), (iii) hold for certain functions which increase slower than that,
e.g., $f(x, u)=u\log(1+|u|)$ . On the other hand, there are functions
satisfying (4) but not (ii).

Next we formulate a generalization of Theorem 2.1 to the p-Lapla-
cian. Let $W_{0}^{1,p}(\Omega)$ be the usual Sobolev space and consider the bound-
ary value problem

(5) $\{\begin{array}{ll}-\triangle_{p}u-\lambda|u|^{p-2}u=f(x, u), x\in\Omega u=0, x\in\partial\Omega.\end{array}$

where $\Omega\subset \mathbb{R}^{N}$ is a bounded domain, $\triangle_{p}u;=div(|\nabla u|^{p-2}\nabla u)$ is the
p-Laplacian $(p>1)$ ,

$\lambda<\lambda_{1}:=u\in W_{0}^{1,p}(\Omega)\inf_{u\neq 0}\frac{\int_{\Omega}|\nabla u|^{p}dx}{\int_{\Omega}|u|^{p}dx}$,

$f$ is continuous and
$|f(x, u)|\leq a(1+|u|^{q-1})$ for some $a>0$ and $p<q<p^{*}$ .

Here $p^{*};=Np/(N-p)$ if $N>p$ and $p^{*};=\infty$ otherwise. It is well
known (see e.g. Section 7. $5A$ in [2]) that $\lambda_{1}$ is attained and is the first
Dirichlet eigenvalue of the p-Laplacian.

The functional

$\Phi(u)$ $:= \frac{1}{p}\int_{\Omega}(|\nabla u|^{p}-\lambda|u|^{p})dx-\int_{\Omega}F(x, u)dx$ ,

is in $C^{1}(E, \mathbb{R})$ , where $E:=W_{0}^{1,p}(\Omega)$ , and critical points of $\Phi$ are weak
solutions of (5).

Theorem 2.4 ([11], Theorem 19). In addition to the above assump-
tions, suppose that
(i) $f(x, u)=o(|u|^{p-1})$ uniformly in $x$ as $uarrow 0_{Z}$

(ii) $u\mapsto f(x, u)/|u|^{p-1}$ is strictly increasing on $(-\infty, 0)$ and $(0, \infty)_{f}$

(iii) $F(x, u)/|u|^{p}arrow\infty$ uniformly in $x$ as $|u|arrow\infty$ .
Then equation (5) has a ground state solution. Moreover, if $f$ is odd
in $u$ , then (5) has infinitely many pairs of solutions.

The proof follows the same pattern as that of Theorem 2.1 but some
work is needed in order to extend the abstract results of Section 1 to
an appropriate class of Banach spaces.
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3. AN ELLIPTIC EQUATION IN $\mathbb{R}^{N}$

Consider now the problem

(6) $\{\begin{array}{ll}-\triangle u+V(x)u=f(x, u), x\in \mathbb{R}^{N}u(x)arrow 0, |x|arrow\infty,\end{array}$

where $V,$ $f$ are continuous and

(7) $|f(x, u)|\leq a(|u|+|u|^{q-1})$ for some $a>0$ and $2<q<2^{*}$ .

Theorem 3.1 ([11], Theorem 20). Suppose $f$ satisfies the growth con-
dition (7) and
(i) $V,$ $f$ aoe l-periodic in $x_{1},$ $\ldots,$ $x_{N}$ and $V(x)>0$ for all $x$ ,
(ii) $f(x, u)=o(u)$ unifomly in $x$ as $uarrow 0$ ,
(iii) $u\mapsto f(x, u)/|u|$ is strictly increasing on $($ -00, $0)$ and $(0, \infty)$ ,
(iv) $F(x, u)/u^{2}arrow\infty$ unifomly in $x$ as $|u|arrow\infty$ .
Then equation (6) has a ground state solution.

This extends a result by Li, Wang and Zeng [4] where more regularity
on $f$ was assumed. The proof is similar to that of Theorem 2.1 with
one important exception: $\Phi$ does not satisfy the Palais-Smale condition
on $\mathcal{N}$ here. Yet one can show using a concentration-compactness type
argument that $\Phi$ attains the infimum on $\mathcal{N}$ . And also here it is possible
to show that if $u$ is a ground state solution, then either $u>0$ or $u<0$

for all $x$ .
Note that it follows from the periodicity of $V$ and $f$ that if $u$ is a

solution of (6), then so is $u(\cdot-y)$ for any $y\in \mathbb{Z}^{N}$ . Two solutions
which are not translates of each other by an element of $\mathbb{Z}^{N}$ will be
called geometrically distinct. One can show, using a rather lengthy and
technical argument in [10] that if $f$ is odd in $u$ , then in fact (6) has
infinitely many pairs of geometrically distinct solutions.

If $V$ is a positive constant and $f=f(u)$ , then $\Phi(u)=\Phi(u(\cdot-$

$y))$ for all $y\in \mathbb{R}^{N}$ and any translate $u(\cdot-y)$ of a solution $u\neq 0$ is
again a solution. Hence the proper notion of geometrically distinct
solutions here would be the requirement that they are not translates
of each other by any $y\in \mathbb{R}^{N}$ . It follows that existence of a single
nontrivial solution automatically leads to the existence of infinitely
many geometrically distinct ones in the $\mathbb{Z}^{N}$-sense. However, as is well
known, it is not necessarily true that the number of those which are
$\mathbb{R}^{N}$-distinct is infinite, see e.g. [11].
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4. GENERALIZED NEHARI MANlFOLD

Let $E$ be a Hilbert space, $\Phi\in C^{1}(E, \mathbb{R}),$ $\Phi(0)=0$ and let
$E=E^{+}\oplus E^{0}\oplus E^{-}\equiv E^{+}\oplus F$ , where $\dim E^{0}<\infty$ ,

be an orthogonal decomposition. We shall write
$u=u^{+}+u^{0}+u^{-}=u^{+}+v$ , $u^{\pm}\in E^{\pm},$ $u^{0}\in E^{0},$ $v\in F$.

and
$S^{+}:=S\cap E^{+}=\{u\in E^{+} : \Vert u\Vert=1\}$ .

For $u\not\in F$ , let
$E(u)$ $:=\mathbb{R}u\oplus F\equiv \mathbb{R}u^{+}\oplus F$

and
$\hat{E}(u)$ $:=\mathbb{R}^{+}u\oplus F\equiv \mathbb{R}^{+}u^{+}\oplus F$ .

Assume that $\Phi$ satisfies the following conditions:
$(B_{1}) \Phi(u)=\frac{1}{2}\Vert u^{+}\Vert^{2}-\frac{1}{2}\Vert u^{-}\Vert^{2}-I(u)$ , where $I$ is weakly lower semi-

continuous and $\frac{1}{2}I’(u)u>I(u)>0$ for all $u\neq 0$ .
$(B_{2})$ For each $w\in E\backslash F$ there exists a unique nontrivial $(i.e., \neq 0)$

critical point $\hat{m}(w)$ of $\Phi|_{\hat{E}(w)}$ . Moreover, $\hat{m}(w)$ is the unique
global maximum of $\Phi|_{\hat{E}(w)}$ .

$(B_{3})$ There exists $\delta>0$ such that $\Vert\hat{m}(w)^{+}\Vert\geq\delta$ for all $w\in E\backslash F$ ,
and for each compact subset $\mathcal{W}\subset E\backslash F$ there exists a constant
$C_{\mathcal{W}}$ such that $\Vert\hat{m}(w)\Vert\leq C_{\mathcal{W}}$ for all $w\in \mathcal{W}$ .

It is easy to see that the inequalities in $(B_{1})$ are satisfied if $I(u)=$
$\int_{\Omega}F(x, u)dx$ , where $f(x, u)=o(u)$ uniformly in $x$ as $uarrow 0$ and $u\mapsto$

$f(x, u)/|u|$ is strictly increasing (i.e., if $f$ satisfies (i), (ii) of Theorem
2.1).

Let
$\mathcal{M}$ $:=\{u\in E\backslash F:\Phi’(u)u=0$ and $\Phi’(u)v=0$ for all $v\in F\}$ .

We shall call this set the generalized Nehari manifold. It has been
introduced by Pankov in [7]. By $(B_{1}),$ $\Phi\leq 0$ on $F$ and if $u\neq 0$ and
$\Phi^{f}(u)=0$ , then $\Phi(u)=\Phi(u)-\frac{1}{2}\Phi’(u)u=\frac{1}{2}I’(u)u-I(u)>0$ . Hence
$\mathcal{M}$ contains all nontrivial critical points of $\Phi$ and, as easily follows from
$(B_{2}),\hat{E}(w)\cap \mathcal{M}=\{\hat{m}(w)\}$ whenever $w\in E\backslash F$ . Note that if $F=\{0\}$ ,
then $(B_{2}),$ $(B_{3})$ are equivalent to $(A_{2}),$ $(A_{3})$ and $\mathcal{A}4=\mathcal{N}$ . So indeed,
$\mathcal{M}$ is a generalization of the Nehari manifold.

If, in addition, $\Phi\in C^{2}(E, \mathbb{R})$ and the restriction of $\Phi’’(\hat{m}(w))$ to
$E(w)$ is negative definite for all $w\in E\backslash F$ , then $\Lambda t$ is a manifold of class
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$C^{1}$ by the implicit function theorem (cf. [7]). Under our assumptions
$\mathcal{M}$ is a topological manifold as we shall see but in general it may not
be $C^{1}$ .

Let $\hat{m}$ be as above and let $m$ be the restriction of $\hat{m}$ to $S^{+}$ . Then
we have

$\hat{m}:E\backslash Farrow \mathcal{M}$ , $m:=\hat{m}|s+:S^{+}arrow \mathcal{M}$ ,

and similarly as in Section 1, we put
$\hat{\Psi}:E^{+}\backslash \{0\}arrow \mathbb{R}$, $\hat{\Psi}(w):=\Phi(\hat{m}(w))$

and
$\Psi:S^{+}arrow \mathbb{R}$ , $\Psi:=\hat{\Psi}|s+$ .

We also set
$c:= \inf_{u\in \mathcal{M}}\Phi(u)$ .

It follows from $(B_{2})$ that $c$ , if attained, is positive. Below we state
results which correspond to Propositions 1.1, 1.2 and Corollary 1.3.
As a consequence of Corollary 4.3, minimizers for $c$ are critical point
of $\Phi$ . Hence also in the present situation, if $c$ is attained, then there
exist ground states (which have the explicit characterization given in
Remark 4.4 below).

Proposition 4.1 ([11], Proposition 31). Suppose $\Phi$ satises $(B_{1})-(B_{3})$ .
Then:
$(a)$ The mapping $\hat{m}$ is continuous.
$(b)$ The mapping $m$ is a homeomorphism between $S^{+}$ and $\mathcal{N}$, and the
inverse of $m$ is given by $m^{-1}(u)=u^{+}/\Vert u^{+}\Vert$ .

Proposition 4.2 ([11], Proposition 32). Suppose $\Phi$ satises $(B_{1})-(B_{3})$ .
Then $\hat{\Psi}\in C^{1}(E^{+}\backslash \{0\}, \mathbb{R})$ and

$\hat{\Psi}’(w)z=\frac{\Vert\hat{m}(w)^{+}\Vert}{\Vert w||}\Phi’(\hat{m}(w))z$ for all $w,$ $z\in E^{+},$ $w\neq 0$ .

Corollary 4.3 ([11], Corollary 33). Suppose $\Phi$ satises $(B_{1})arrow(B_{3})$ .
Then:
$(a)\Psi\in C^{1}(S^{+}, \mathbb{R})$ and

$\Psi^{f}(w)z=\Vert m(w)^{+}\Vert\Phi’(m(w))z$ for $allz\in T_{w}(S^{+})$ .
$(b)$ If $(w_{n})$ is a PalatS-Smale sequence for $\Psi$ , then $(m(w_{n}))$ is a Palais-
Smale sequence for $\Phi$ . If $(u_{n})\subset \mathcal{M}$ is a bounded Palais-Smale sequence
for $\Phi$ , then $(m^{-1}(u_{n}))$ is a Palais-Smale sequence for $\Psi$ .
$(c)w$ is a critical point of $\Psi$ if and only if $m(w)$ is a nontrivial critical
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point of $\Phi$ . Moreover, the corresponding values of $\Psi$ and $\Phi$ coincide
and $\inf_{S+}\Psi=\inf_{\mathcal{M}}\Phi$ .
$(d)$ If $\Phi$ is even, then so is $\Psi$ .

The proofs of Proposition 4.2 and Corollary 4.3 are rather similar
to those of Proposition 1.2 and Corollary 1.3 while the proof of (i) of
Proposition 4.1 is different and more difficult than that of Proposition
1.1. See [10, 11] for the details.

Remark 4.4. Similarly as in Remark 1.4(i), we have the following
minimax characterization of $c$ :

$c= \inf_{u\in \mathcal{M}}\Phi(u)=\inf_{w\in E\backslash F}\max_{u\in\hat{E}(w)}\Phi(u)=\inf_{w\in S+}\max_{u\in\hat{E}(w)}\Phi(u)$ .

5. APPLICATION TO ELLIPTIC EQUATIONS AND SYSTEMS

First we return to equation (2), where as before, $\Omega$ is bounded, $f$

is continuous and satisfies the growth restriction (3), but instead of
$\lambda<\lambda_{1}$ , we now assume $\lambda\geq\lambda_{1}$ .

Let $E=H_{0}^{1}(\Omega)$ and denote the Dirichlet eigenvalues of -A by
$\lambda_{1},$ $\lambda_{2},$

$\ldots$ , and a corresponding orthogonal (in $E$ ) set of eigenfunctions
by $e_{1},$ $e_{2},$ $\ldots$ . Suppose $\lambda_{k}<\lambda=\lambda_{k+1}=\cdots=\lambda_{m}<\lambda_{m+1}$ , where
$1\leq k<m$ and set

$E^{-}=$ span $\{e_{1}, \ldots, e_{k}\}$ , $E^{0}=$ span $\{e_{k+1}, \ldots, e_{m}\}$ ,
$E^{+}=c1$ span $\{e_{m+1}, e_{m+2}, \ldots\}$

(cl denotes the closure). Then $E=E^{+}\oplus E^{0}\oplus E^{-}$ is the orthogonal
decomposition associated with the spectrum $of-\triangle-\lambda$ in $E$ . We also
include the cases $k=0$ and $k=m\geq 1$ which correspond to $E^{-}=\{0\}$

and $E^{0}=\{0\}$ respectively. Let $u=u^{+}+u^{0}+u^{-}\in E^{+}\oplus E^{0}\oplus E^{-}$ In
$E$ we may introduce an equivalent norm such that

$\int_{\Omega}(|\nabla u|^{2}-\lambda u^{2})dx=\Vert u^{+}\Vert^{2}-\Vert u^{-}\Vert^{2}$ .

Then the functional $\Phi$ corresponding to (2) is given by

$\Phi(u)=\frac{1}{2}\int_{\Omega}(|\nabla u|^{2}-\lambda u^{2})dx-\int_{\Omega}F(x, u)dx$

$\equiv\frac{1}{2}\Vert u^{+}\Vert^{2}-\frac{1}{2}\Vert u^{-}\Vert^{2}-I(u)$ .

The conclusions are as before: there is a ground state and if $f$ is odd
in $u$ , there are infinitely many pairs of solutions. More precisely, the
following holds:
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Theorem 5.1 ([10], Theorems 3.1, 3.2; [11], Theorem 37). In addition
to the above assumptions, suppose that
(i) $f(x, u)=o(u)$ uniform$ly$ in $x$ as $uarrow 0$ ,
(ii) $u\mapsto f(x, u)/|u|$ is stwictly increasing on $($ -00, $0)$ and $(0, \infty)$ ,
(iii) $F(x, u)/u^{2}arrow\infty$ unifomly in $x$ as $|u|arrow\infty$ .
Then equation (2) has a ground state solution. Moreover, if $f$ is odd
in $u$ , then (2) has infinitely many pairs of solutions.

Note that since $\dim(E^{0}\oplus E^{-})>0$ , we are no longer in the situation
encountered in Section 2, hence we must use the generalized Nehari
manifold. The proof is similar to that of Theorem 2.1. However, there
is one major difference: it is much more difficult to verify $(B_{2})$ than it
was to verify $(A_{2})$ . In particular, the following calculus lemma turns
out to play an important role:

Lemma 5.2 ([10], Lemma 2.2; [11], Lemma 38). Let $u,$ $s,$ $v$ be real
numbers such that $s\geq-1$ and let $w:=su+v\neq 0$ . Then

$f(x, u)[s( \frac{s}{2}+1)u+(1+s)v]+F(x,u)-F(x, u+w)<0$

for all $x\in\Omega$ .

Also Theorem 3.1 has a counterpart here. Let $E=H^{1}(\mathbb{R}^{N})$ and
suppose $V$ is continuous and l-periodic in $x_{1},$ $\ldots,$ $x_{N}$ . It is well known
[8] that the spectrum $\sigma(-\triangle+V)$ in $L^{2}(\mathbb{R}^{N})$ is completely continuous,
bounded below but not above and consists of closed disjoint intervals.
An interval $(a, b)$ such that $a,$ $b\in\sigma(-\Delta+V)$ and $(a, b)\cap\sigma(-\Delta+V)=\emptyset$

is called a spectml gap. The number of spectral gaps may be $0$ (then
$\sigma(-\triangle+V)=[a, \infty)$ for some $a$ ).

Suppose $0$ is in a spectral gap of $V$ . Then $E=E^{+}\oplus E^{-}(i.e.$ ,
$E^{0}=\{0\})$ and $\dim E^{\pm}=\infty$ . So again, we are in the situation of
Section 4.

Theorem 5.3 ([10], Theorem 1.1; [11], Theorem 40). Suppose $f$ sat-
isfies the growth condition (7) and
(i) $V,$ $f$ are l-periodic in $x_{1},$ $\ldots,$

$x_{N}$ and $0$ is in a spectral gap of $V$ ,
(ii) $f(x, u)=o(u)$ uniformly in $x$ as $uarrow 0$ ,
(iii) $u\mapsto f(x, u)/|u|$ is strictly increasing on $($ -00, $0)$ and $(0, \infty)_{Z}$

(iv) $F(x, u)/u^{2}arrow\infty$ uniformly in $x$ as $|u|arrow\infty$ .
Then equation $(\theta)$ has a ground state solution.
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Also here it can be shown that if in addition to the assumptions of
Theorem 5.3 $f$ is odd in $u$ , then there exist infinitely many pairs of
geometrically distinct solutions, see [10], Theorem 1.2.

Finally we mention a result for systems of equations. Let $\Omega$ be
bounded and suppose that the functions $g,$ $h$ are continuous and satisfy
the growth restriction (3). Consider the system

(8) $\{\begin{array}{ll}-\triangle u_{1}=h(x, u_{2}), x\in\Omega-\triangle u_{2}=g(x, u_{1}), x\in\Omega u_{1}=u_{2}=0, x\in\partial\Omega.\end{array}$

Here we take $E:=H_{0}^{1}(\Omega)\cross H_{0}^{1}(\Omega),$ $u=(u_{I}, u_{2})\in E$ and

$\Phi(u):=\int_{\Omega}\nabla u_{1}\cdot\nabla u_{2}dx-\int_{\Omega}(G(x, u_{1})+H(x, u_{2}))dx$ ,

where $G(x, u)$ $:= \int_{0}^{u}g(x, u)dx$ and $H(x, u)$ $:= \int_{0}^{u}h(x, u)dx$ . Then we
have

$E=E^{+}\oplus E^{-}$ , $E^{\pm}=\{u\in E : u_{2}=\pm u_{1}\}$ , $\dim E^{\pm}=\infty$ .

Theorem 5.4 ([11], Theorem 41). Suppose $g,$ $h$ satisfy (3) and $(i)-$

(iii) of Theorem 5.1. Then system (8) has a ground state solution.
Moreover, if $g$ is odd in $u_{1}$ and $h$ odd in $u_{2}$ , then (8) has infinitely
many pairs of solutions.

A similar system in $\mathbb{R}^{N}$ , with $g,$ $h$ l-periodic in $x_{1},$ $\ldots,$ $x_{N}$ , can also
be treated by the same methods, cf. [11], Theorem 42.
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