On atomic AEC and quasi-minimality

前園 久智 (Hisatomo MAESONO) 早稲田大学メディアネットワークセンター (Media Network Center, Waseda University)

Abstract

Atomic abstract elementary class have been researched in connection with the model theory of infinitary logic. In recent years, the results were summarized by J.T.Baldin [1]. In that book, categoricity problem of atomic AEC is discussed mainly. I tried some local argument around the problem.

Apology In this note, I do not have exact references to the papers in which the results are originally proved.

1. Atomic AEC and splitting

We recall some definitions.

Definition 1 A class of structures $(\mathbf{K}, \prec_{\mathbf{K}})$ (of a language L) is an *abstract elementary class* (AEC) if the class **K** and class of pairs satisfying the binary relation $\prec_{\mathbf{K}}$ are each closed under isomorphism and satisfy the following conditions;

A1. If $M \prec_{\mathbf{K}} N$, then $M \subseteq N$.

A2. $\prec_{\mathbf{K}}$ is a partial order on **K**.

A3. If $\{A_i : i < \delta\}$ is a $\prec_{\mathbf{K}}$ -increasing chain :

- (1) $\bigcup_{i < \delta} A_i \in \mathbf{K}$
- (2) for each $j < \delta$, $A_j \prec_{\mathbf{K}} \bigcup_{i < \delta} A_i$
- (3) if each $A_i \prec_{\mathbf{K}} M \in \mathbf{K}$, then $\bigcup_{i < \delta} A_i \prec_{\mathbf{K}} M$.

A4. If $A, B, C \in \mathbf{K}$, $A \prec_{\mathbf{K}} C$, $B \prec_{\mathbf{K}} C$ and $A \subseteq B$, then $A \prec_{\mathbf{K}} B$. A5. There is a Löwenheim-Skolem number $\mathrm{LS}(\mathbf{K})$ such that if $A \subseteq B \in \mathbf{K}$,

there is an $A' \in \mathbf{K}$ with $A \subseteq A' \prec_{\mathbf{K}} B$ and $|A'| \leq |A| + LS(\mathbf{K})$.

Definition 2 We say an AEC $(\mathbf{K}, \prec_{\mathbf{K}})$ is *atomic* if **K** is the class of atomic models of a countable complete first order theory and $\prec_{\mathbf{K}}$ is first order elementary submodel.

In the following, K denotes an atomic AEC.

Definition 3 Let T be a countable first order theory.

A set A contained in a model M of T is *atomic* if every finite sequence in A realizes a principal type over the empty set.

Let A be an atomic set.

 $S_{at}(A)$ is the collection of $p \in S(A)$ such that if $a \in \mathcal{M}$ realizes p, Aa is atomic (where \mathcal{M} is the big model).

We refer to a $p \in S_{at}(A)$ as an *atomic type*.

We consider the notion of stability for atomic types.

Definition 4 The atomic class **K** is λ – stable if for every $M \in \mathbf{K}$ of cardinality λ , $|S_{at}(M)| = \lambda$.

Example 5 ([1]) 1. Let \mathbf{K}_1 be the class of atomic models of the theory of dense linear order without endpoints. Then \mathbf{K}_1 is not ω -stable.

2. Let \mathbf{K}_2 be the class of atomic models of the theory of the ordered Abelian group of rationals. Then \mathbf{K}_2 is ω -stable.

The notion of independence by splitting is available in this context.

Definition 6 A complete type p over B splits over $A \subset B$ if there are $b, c \in B$ which realize the same type over A and a formula $\phi(x, y)$ such that $\phi(x, b) \in p$ and $\neg \phi(x, c) \in p$.

Let A, B, C be atomic.

We write $A \downarrow_C B$ and say A is *independent from* B over C if for any finite sequence $a \in A$, tp(a/B) does not split over some finite set of C.

Fact 7 ([1]) Under the atomic ω -stable assumption of $(\mathbf{K}, \prec_{\mathbf{K}})$ (and some assumption of parameters), the independence relation by splitting (over models) satisfies almost all forking axioms.

Theorem 8 ([1]) If K is ω -stable and has a model of power \aleph_1 , then it has a model of power \aleph_2 .

I considered the same problems under some weaker condition.

Definition 9 Let **K** be an atomic AEC and $M \in \mathbf{K}$.

M has no infinite splitting chain if for any $p \in S_{at}(M)$ which is realized outside *M*, there is no increasing sequence $\{A_i\}_{i < \omega} (\subset M)$ such that $p \lceil A_{i+1}$ splits over A_i for all $i < \omega$.

We can prove the next facts.

Fact 10 If K is ω -stable, then no model of K has infinite splitting chain.

Fact 11 Let **K** have no infinite splitting chain (i.e. every $M \in \mathbf{K}$ has no infinite splitting chain).

If **K** has a model of power \aleph_1 , then it has a model of power \aleph_2 .

Fact 12 Under the assumption that $(\mathbf{K}, \prec_{\mathbf{K}})$ has no infinite splitting chain, the independence relation by splitting (over models) satisfies almost all forking axioms except symmetry.

At present, I do not have the definitive result about symmetry of splitting. But we can prove the next fact.

Definition 13 Let **K** be an atomic AEC and $M \in \mathbf{K}$.

M has infinite splitting left – chain if there is a sequence $\{B_i\}_{i \le \omega} \subset M$ and *b* (outside *M*), and $A \subset M$ such that $\operatorname{tp}_{at}(B_i/Ab\{B_j : j < i\})$ splits over $A \cup \{B_j : j < i\}$ for all $i < \omega$.

Fact 14 Let **K** have no infinite splitting chain. Suppose that any countable atomic set is extended to a countable model in **K**.

If the independence by splitting over models is not symmetry, then there is an infinite splitting left-chain.

2. *-excellent AEC and categoricity

We recall some definitions.

Definition 15 The atomic AEC K is
$$* - excellent$$
 if

- A1. K has arbitrarily large models,
- A2. K is ω -stable,
- A3. K satisfies the amalgamation property,

A4. Let p be a complete type over a model $M \in \mathbf{K}$ such that $p \mid C$ is realized in M for each finite $C \subset M$, then there is a model $N \in \mathbf{K}$ with N primary over Ma such that p is realized by a in N.

Definition 16 Let $M \in \mathbf{K}$ and $A \subset M$.

The type $p \in S_{at}(A)$ is big if for any $M' \supset A$ with $M' \in \mathbf{K}$, there exists an N' such that $M' \prec_{\mathbf{K}} N'$ and p has a realization in N' - M'.

A triple (M, N, ϕ) is called a Vaughtian triple if $\phi(M) = \phi(N)$ where $M \prec_{\mathbf{K}} N$ with $M \neq N$ and L(M)-formula ϕ is big.

The next theorem is the analogous result of Morley's categoricity theorem for atomic AEC.

Theorem 17 ([1]) Suppose **K** is an *-excellent atomic AEC. Then the following are equivalent.

- (1) \mathbf{K} is categorical in some uncountable cardinality.
- (2) K has no Vaughtian triple.
- (3) \mathbf{K} is categorical in every uncountable cardinality.

Theorem 18 ([1]) For each $2 \le k < \omega$, there is an $L_{\omega_{1},\omega}$ -sentence ϕ_k such that :

- ϕ_k is categorical in μ if $\mu \leq \aleph_{k-2}$, and
- ϕ_k is not categorical in any μ with $\mu > \aleph_{k-2}$.

In the proof of Theorem 17, the geometry of quasi-minimal formula plays the important role. I considered that the argument in [5] makes the proof concise.

Definition 19 The type $p \in S_{at}(A)$ is quasi – minimal if p is big and for any M containing A, p has a unique extension to a type over M which is not realized in M.

Lemma 20 ([1]) Let K be ω -stable.

Then for any $M \in \mathbf{K}$, there is a $c \in M$ and a formula $\phi(x, c)$ which is quasi-minimal.

Definition 21 Let X be an infinite set and cl a function from $\mathcal{P}(X)$ to $\mathcal{P}(X)$ where $\mathcal{P}(X)$ denotes the set of all subsets of X. If the function cl satisfies the following properties, we say (X, cl) is a *pregeometry*.

- (I) $A \subset B \Longrightarrow A \subset \operatorname{cl}(A) \subset \operatorname{cl}(B),$
- (II) $\operatorname{cl}(\operatorname{cl}(A)) = \operatorname{cl}(A),$
- (III) (Finite character) $b \in cl(A) \implies b \in cl(A_0)$ for some finite $A_0 \subset A$,
- (IV) (Exchange axiom) $b \in cl(A \cup \{c\}) - cl(A) \implies c \in cl(A \cup \{b\}).$

In the proof of Theorem 17, the closure operator cl is defined as follows.

Definition 22 Let $c \in M \in \mathbf{K}$. And suppose $\phi(x, c)$ determines a quasiminimal type over M.

For any elementary extension $N(\in \mathbf{K})$ of M, cl is defined on the set of realizations of $\phi(x, c)$ in N by $a \in cl(A)$ if tp(a/Ac) is not big.

We recall some result from [5].

Definition 23 Let M be an uncountable structure and $p(x) \in S_1(M)$.

For all subsets $A \subset M$, the operator cl'_p is defined by $cl'_p(A) = \{a \in M : a \text{ is not a realization of } p[A].$

The *n*-th closure $\operatorname{cl}_{p}^{n}(A)$ of A is inductively defined as follows :

 $\operatorname{cl}_p^0(A) = A$ and $\operatorname{cl}_p^{n+1}(A) = \operatorname{cl}_p'(\operatorname{cl}_p^n(A))$

We put $\operatorname{cl}_p(A) = \bigcup_{n \in \omega} \operatorname{cl}_p^n(A)$.

Theorem 24 ([5]) Let N be a quasi-minimal model and $p(x) \in S_1(N)$. Suppose that p(x) does not split over A for some countable $A \subset N$ (and $N \neq cl_p(a)$ for some finite $a \in N$).

Then cl_p is a closure operator and exactly one of the following two holds; 1. Every cl_p -free sequence over A is totally indiscernible. In this case, (N, cl_p) is a pregeometry, and p is definable over A.

2. Oterwise. In this case, there is a finite extension A_0 of A and an A_0 -definable partial order \leq such that every cl_p -free sequence over A_0 is strictly increasing.

We can deduce the next lemma.

Lemma 25 Let **K** be ω -stable and have a sufficiently large model. And let $M \in \mathbf{K}$.

Then there is a finite $c \in M$ and a formula $\phi(x, c)$ such that $\phi(x, c)$ determines a quasi-minimal $p(x) \in S_{at}(M)$ and p(x) does not split over c, and cl defines a pregeometry in (p[c)(M).

3. P-closure in atomic AEC

I considered *P*-closure in the quasi-minimal set $\phi(M, c)$ above. The *P*-closure is the collection of realizations of types that is *P*-analysable and co-foreign to *P*. In this note, I omits the *P*-analysable assumption, resulting in a larger *P*-closure.

In this section, $A \downarrow_C B$ means $\operatorname{tp}(A/BC)$ does not split over C.

Assumptions

Let **K** be an ω -stable atomic AEC and $M \in \mathbf{K}$.

 $\phi(x, c)$ determines a quasi-minimal $p(x) \in S_{at}(M)$ and p(x) does not split over c. And we may assume that $c = \emptyset$.

The set P of types is defined by

 $P = \{q \in S(A') : q \text{ is a conjugate of } p \lceil A \text{ for some finite } A \subset M \}.$

Definition 26 In this definition, parameters are finite subset of $\phi(M, c)$ above and types are atomic types.

Now P is an \emptyset -invarint family of types.

A complete type $q \in S_{at}(A)$ is foreign to P if for all $a \models q$, $A \subset B$ with $a \downarrow_A B$, and realizations \bar{c} of extensions of types in P over B, we always have $a \downarrow_A \bar{c}B$.

A partial type q is co - foreign to P if every type in P is foreign to q.

The $P-closure \operatorname{cl}_P(A)$ of a set A is the collection of all element a such that $\operatorname{tp}(a/A)$ is co-foreign to P.

We can prove the next fact.

Fact 27 Let **K** be ω -stable and have a sufficiently large model. And let $M \in \mathbf{K}$ and $\phi(x, c)$ be a quasi-minimal formula that determines $p(x) \in S_{at}(c)$ for some $c \in M$ as above.

For any $A \subset p(M)$, $cl(A) = cl_P(A)$. And $(p(M), cl_P)$ is a pregeometry.

References

[1] J.T.Baldwin, Categoricity, University lecture series vol. 50, AMS, 2009 [2] S.Shelah, Classification theory for nonelementary classes. I. the number of uncountable models of $\psi \in L_{\omega_1,\omega}$ part A. Israel J. of math, vol.46, pp. 212-240, 1983

[3] S.Shelah, Classification theory for nonelementary classes. I. the number of uncountable models of $\psi \in L_{\omega_1,\omega}$ part B. Israel J. of math, vol.46, pp. 241-271, 1983

[4] O.Lessmann, Categoricity and U - rank in excellent classes, J. Symbolic Logic, vol.68, no.4, pp. 1317-1336, 2003

[5] A.Pillay and P.Tanović, Generic stability, regularity, quasi-minimality, preprint

[6] S.Shelah, Classification theory, North-Holland, 1990

[7] F.O.Wagner, Simple theories, Kluwer Academic Publishers, 2000

[8] A. Pillay, Geometric stability theory, Oxford Science Publications, 1996