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1. INTRODUCTION

The notion of indiscernible sequence plays an essential role in model theory. A reason
why the notion is so useful lies in the fact that, given any sequence of tuples that satisfies
certain property, we can often choose an indiscernible sequence that still retains that
property.

Let us say a sequence (a; | ¢ < w) of tuples is modelled by a sequence (b; | i < w) if, for
any finite set A of L-formulas and any finite sequence 4y, - - - , 44 € w, there exists a finite
sequence ji,- - ,Jja € w such that (1) the finite sequences (iy,--- ,ig) and (ji,- -+ ,ja)
have the same order type, and (2) the tuples (b;,,---,&;,) and (@;,,--- ,@;,) have the
same A-type. A routine argument using Ramsey’s theorem and compactness yields the
following theorem.

Theorem. Any sequence (d; | i < w) can be modelled by some indiscernible sequence

Indeed, it is this theorem that often allows us to choose an indiscernible sequence that
retains certain desired property. The main idea of this article is that we can generalize
the notion of indiscernible sequence to sequences of the form (@; | i € A>a), where a, 8
are ordinals, and prove a generalized version of the theorem above. The proof relies on
Halpern-Lauchli theorem, which is a Ramsey-like theorem for trees. The idea of the proof
is essentially due to Shelah and Dzamonja [1] who introduced the notions of indiscernibility
for sequences indexed by the binary tree “>2. We are also influenced by Lynn Scow who
gave a detailed exposition on their proof in her recent PhD thesis [4]. We have revised their
proofs (and corrected errors). In doing so, we could significantly clarify the argument by
introducing some new notions and terminologies. Qur result also generalizes the original
result by allowing the index set I in (@; | i € I) to be #>¢ for any ordinals o and 8. We
have also been able to apply the result to a couple of classification problems, which we
will discuss in the last section.

We do not aim to include all the details of the proofs in this article. Instead, we aim
only to give a rough sketch of the ideas and how the argument flows. Interested readers
may refer to [3] for full details when it becomes available in print.

Convention & notations: We work in a fixed, sufficiently saturated model M. When we
talk about tuples of elements, we shall mean tuples of elements from M, unless specified
otherwise. When (a,,,--- ,a,,) is a finite sequence of tuples, we shall often abbreviate it
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simply as @;. When 7 is an element of a Cartesian product (*~ n)*, we shall often abuse
the notation and write it as 7 € “”n.

2. MAIN RESULTS
Let n,v € “>n. Recall (n N v) denotes the greatest common lower bound of 7 and v.

Definition 1. Let 77 = (1o, - ,Na-1) € “"n.

(1) 7 is 1-closed if Vi,j < d, 3k < d such that n; N n; = Nk
(2) 7 is O-closed if it is 1-closed, contains the root (), and is closed under level-
restriction. i.e. Vi,j < d, 3k < d such that 1; [, )= -

Definition 2. Let 7 := (1o, ,M4-1), 7 := (W, -+, V4-1) be tuples in “>n. We say
’I_] Rig V if

(1) both 77 and ¥ are 0-closed tuples,

(2) Vi,j <dand Vt < n,

(a) mdn; iff v, (Partial order)
(b) 7 (t) S m; iff v (t) Qv (Directionality)
(©) Iml < Inmjl HE |vi] < |yl (Length relation)

Definition 3. We say 7 =; 7 if, in Definition 2, ‘O-closed’ is replaced by ‘1-closed’, and
the length relation condition is omitted.

Definition 4.
(1) We say a sequence (@, | 7 € “>n) is i-fti if 7 ~; 7V implies tp(a;) = tp(ay), for
all 5,7 €“>n. (1=0,1.) _
(2) We say a sequence (a, | 7 € “>n) is i-modelled by a sequence (b, | n € “>n)
if, for any i-closed tuple 7 € “>n and any finite set A of L-formulas, there exists
v €“>n such that 7 =~; 7 and tpa(b;) = tpa(@s).

Remark. Clearly, 7} ~¢ v implies 7j ~; 0. Hence, 1- fti implies 0- fti.
Our main goal is to prove the following lemma.

Lemma 5 (Main Lemma). Vi € {0,1}, any sequence (&, | 7 € “>n) can be i-modelled
by some - fti sequence (b, | 7 € “>n).

Although 1- fti seems to be a pretty natural way to define indiscernibility on trees, it
is rather difficult to handle because ~;-equivalent tuples are not ‘rigid’ enough. On the
other hand, it turns out that we have just enough control over ~g-equivalent tuples to
apply Halpern-Lauchli theorem, a kind of Ramsey’s theorem for trees. Keep in mind that,
what we are really interested in is to prove Main Lemma for the case ¢ = 1. The 7z =0
case is an auxiliary, technical notion intended to help us ultimately to prove the : = 1
case. We mention that, in [1], Shelah and Dzamonja also defined a notion 2- fti (they
called it 2- fbti, where ‘b’ comes from the fact that they were working with the binary tree
w>2) which is the same as 1- fti except that, in 2- fti, even the directionality condition is
omitted. They claimed that any sequence can be 2-modelled by some 2- fti tree. But we
suspect that their proof is erroneous. We have tried to find a correct proof for it but, so
far, to no avail.

The strategy for proving Main Lemma is to prove the i = 0 case first, and then deduce
the i = 1 case. But first, we need to define a few more technical notions.
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Definition 6. For m < w and a tuple 7 := (ng,- -+ ,m4-1) € “”n,

(1) L(7) :=={|ml | i < d},
(2) um() :={i€ L(m|i>m}

Definition 7. Let 7 = {19, -+ ,n4-1) and 7 = {(vp, -+ ,V4_1) be tuples in “>n. For
m,s < w, We 8ay 1] R(m,s) 7 if
(1) 7_,%0 177

(2) m € L(7) N L(p),

@) lum(@)] = lun(P)| < s,

(4) |Im| £m iff |v| < m, for each i < |f|. And if both sides of the biconditional are
true, then n; = y;

Definition 8. For m, s < w and a finite set A of £L-formulas, a sequence (@, | n € “”n) is
said to be (m, s, A)-indiscernible if 7 ~(y, ) ¥ implies tpa(a;) = tpa(as), for all 7, 7 € “>n.
We shall use the notation (< w, s, A)-indiscernible to mean ‘(m, s, A)-indiscernible for

every m < w.’

Definition 9. Let T := (&, |n € “>n) and S := (b, | n € “>n) be sequences (viewed
as functions “”n — M). We say S <™ T (for m < w) if there exists a 1-1 map
h:“>n — “>n such that S=Tohand Vn,v € “>nand Vt < n,

(1) n<dv iff h(n) < h(v), (Partial order)
(2) n™(t) Qv iff h(n)™(t) < h(v), (Directionality)
(3) Inl < |v| iff |h(n)] < |h(v)], (Length relation)
(4) if |n| < m then h(n) =n. (Fixing up to m-th level)

Note any (@, | n € “>n) is trivially (< w,0,A)-indiscernible. And being (< w, s, A)-
indiscernible for every s < w and A is equivalent to being 0- fti.

The following is the key technical lemma on which the whole argument of this article is
based. Its proof relies on a Ramsey-like theorem called Halpern-Lauchli theorem (whose
precise statement will be given at the end of this section) and is rather long and technical,
so we omit it. (Interested readers may refer to [3] when it becomes available in print, or

[4] or [1].) ’

Lemma 10 (Key Technical Lemma). Suppose T := (@, | n € “”n) is a (< w,s,4A)-
indiscernible sequence. Then, Vm < w, there exists a (m, s+1, A)-indiscernible sequence
S = (b, |n€“n) such that S <™ T.

For convenience, let us call sequences of the form (b, |7 € “>n) parameterized trees.

Corollary 11. Suppose a sequence T = (@, | n € “>n) is (< w,s,A)-indiscernible.
Then there exists a (< w, s+1, A)-indiscernible sequence S = (b, | 7 € “>n) such that
S<T.

41

Proof. Suppose T = (a, | n € “>n) is a (< w,s,A)-indiscernible sequence. By ap-

plying Key Technical Lemma, we can build a sequence Ty, Ti,- - of parameterized trees
satisfying
Q) ---2PL<PHSTL LT,
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(2) each T; is (< ¢, s+1, A)-indiscernible.
Condition (1) allows us to define S := lim; ,,,7;. Then clearly S <° 7 and S is a
desired (< w, s+ 1, A)-indiscernible tree. |

Recall that any (a, | n € “”n) is trivially (< w, 0, A)-indiscernible. We immediately
obtain the following corollary.

Corollary 12. Let T := (a, | n € “>n) be any sequence. Then, given any finite set A
of L-formulas, there exists a sequence S&, S, - of parameterized trees such that,

(1) <P <SP LOSH =T,

(2) each S2 is (< w, 4, A)-indiscernible.

Proof of Main Lemma (The i = 0 case). Recall that being 0- fti is equivalent to being
(< w, s, A)-indiscernible for every s and A. Use Corollary 12 and compactness. [

Now, it remains to prove the i = 1 case of Main Lemma.

For technical reasons, let us say a tuple 7 € “>n is 1*-closed if it is 1-closed and contains
the root (). By replacing ‘1-closed’ by ‘1*-closed’, we can define analogous notions of ~j}-
equivalence, 1*-fti, and 1*-modelling property.

Now let us recursively define a sequence ( A, : ™2n — “>n | m < w) of maps as follows:
Define ho(()) = (). For the recursion step, define hp41({)) := () and

hma1 ((8) ™) = (£)7 -+ - ~(t) " hm(n)
“
2(t+1)+t-km
for all t < n and n € ™2n, where k,, := max{ |h.(n)| | n € ™2n}.

Let us define a linear order <., in “>n as follows: n <., v iff either 1y < v, or 7 and
v are incomparable such that (nNv)™(t;) I7n and (nNv)~(t2) S v where t; < t; < n.

Note 13.
(1) If G IRAS “>n then, Vi, j < |’I7I, N <iex M & Vi <iex Vj-
(2) Each map h,, preserves partial order and directionality.
(3) N <itez ¥ & |hm(n)| < |hm(v)], for any n,v € ™2n,
(4) If 7~} 7 € ™2n then hn,(7) =} hn(?) and, Vi,5 < |7,

Ihm(@)] < |hm(5)] & M <1ex My & Vi <tex ¥V & [P ()] < | (v5)]

These properties ensure that, if 1 ~] 7 € ™2n then the tuples hn(7) and hm(P)
agree on partial order, directionality and length relation. Hence we can almost say that
1 &} U € ™2n implies hny, () Xo hm(?). The only thing that is preventing us from saying it
is that the tuples h,,(7) and h,,(7) may not be O-closed. But this can be easily remedied by
taking the ‘level-closures’ of hn,(7) and h,, (7). Let us define cl(hm(7)) to be the smallest
0O-closed tuple (ordered in some fixed, arbitrary manner) containing h,,(77). Elementary
arguments can show that, if j ~} 7 € ™2n then indeed we have cl(hm (7)) ~o cl(hm(7)).
Hence we have the following corollary.

Corollary 14. Let {a, | n € “>n) be a 0-fti sequence. Then, for each m < w, (@a,() |
n € ™2n) is 1*-fti.

Applying compactness, we obtain:
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Corollary 15. Any 0-fti sequence (a, | 7 € “>n) can be 1*-modelled by some 1*-fti
sequence (b, | n € “>n).

Finally, we can prove the i =1 case of Main Lemma.

Proof of Main Lemma (The ¢ =1 case). By the i = 0 case of Main Lemma, (@, |7 €
“>n) can be 0-modelled by some 0-fti sequence (b, |7 € “>n). And, by the preceding
corollary, (b, | 7 € “>n) can be 1*-modelled by some 1*- fti sequence (Cn | mE€“n).
Then, (Zy~y | 7 €“>n) is a 1-fti sequence 1-modelling (@, | n € “>n). O

Note 16. The notions =, &%, 0-modelling and 1-modelling clearly all make sense even
for sequences (@, | n € *>\) for any ordinals K > w and X > 2. Hence, Main Lemma
can be extended to this context by compactness.

We end this section by stating Halpern-Léauchli theorem which plays a crucial role in
the proof of Main Technical Lemma. Recall that a partially ordered set (T, <) is called
a tree if, for every z € T, Pred(z) := {y € T | y < z} is linearly ordered. A tree T is
called finitistic if (1) T has a least element, (2) |Pred(z)| < w for every z € T, and (3)
T[n] := {r € T | |Pred(z)| = n} is a finite set for every n < w.

Definition 17. Let T be a finitistic tree. A subset S C T is called a strong subtree of T
witnessed by a subset A C w if
(1) A is an infinite set,
(2) S has a least element,
(3) S € Uyea T,
(4) SNTn|#0, Vn € A,
(5) if n < m are successive elements in A and
(a) if z € SNT[n] and y is an immediate successor of z in T, then 3!z € SNT[m]
such that y < 2
(b) if y € SN T[m], then there exists z € S N T[n] such that = < y.

Theorem 18 (Halpern-Léuchli, strong subtree version [6]). Let [[,_,7; be a finite
Cartesian product of finitistic trees without maximal elements. Then, for every finite
partition of [],_,7;, there exists a piece P of the partition and a sequence (S; C T; |
i < d) of strong subtrees, all witnessed by the same infinite subset of w, such that

UnEw (Hi<d S; [n]) CP.
Remark.

(1) Our definition of strong subtree is slightly stronger than the one given in [6]. But
this doesn’t affect the validity of Halpern-Lauchli theorem.

(2) There are several different versions of Halpern-Liuchli theorem. We refer inter-
ested readers to [6] for more details on these equivalent versions. The original
version by Halpern and L&uchli can be found in [2].

3. APPLICATIONS

In this section, we report two examples (Claims 20 and 24) where we have been able
to successfully apply the results of the previous section.

Definition 19. We say a theory T has k-TP1 (k > 2) if it allows an £-formula ¢(Z §) to
witness a sequence (&, |7 € “>w) satisfying:

43
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(1) If o Q- A gy € “>w then (), 49(Zay,) is consistent;
(2) If no,- -+ ,Mk—1 € “>w are pairwise incomparable elements then (), ¢(Zay,) is
not consistent.

Claim 20. A theory T has 2-TP1 iff it has k-TP1 for some k& > 2.

>n) and a

The crucial assumption used in the proof is that, if a sequence (a, | n €
me (G, | n € “"n) is

formula ¢(Zy) witness k-TP1 then Main Lemma allows us to assum
1- fta.

Remark.

(1) In proving this claim, we used an idea of Shelah and Usvyatsov who proved a
similar theorem [5].
(2) Our definition of k-TP1 is a generalization of TP1 defined by Shelah.

Let us move on to the second application. First, we need some terminology.

Definition 21. We say 1), -+ ,7x—1 € “”w are

(1) siblings if they are distinct elements sharing the same immediate predecessor. (i.e.
there exist ¥ € “>w and distinct #g,---,tx_1 < w such that v~ (t;) =n; for each
i<k.)

(2) distant siblings if there exist v € “w and distinet tg,--:,tx—; < w such that
v (t;) Q1 for each i < k.

Definition 22. We say a theory T ha% weak k-TP1 (k > 2) if it allows an L-formula
©(Z §) to witness a sequence (&, | n € “w) satisfying:
(1) I 9 Q-+ QAng_1 €“>w then (), ., 9(Zay,) is consistent;
(2) If 1o, , k-1 € “w are distant siblings then (), _, ¢(T ay,) is not consistent.
The following definition is due to Shelah and Dzamonja [1].
Definition 23. A theory T is said to have SOP; if it allows an L-formula to witness a
sequence (&, | 7 € “>2) satisfying:
(1) If po Q--- A mg_y €“>2 then ();.,9(Zay,) is consistent;
(2) If (0) Qv €“>2 then p(Za,~uy) Ap(Za,) is not consistent.
Claim 24. If a theory T has weak k-TP1 for some k& > 2, then T has SOP;.
Again, the crucial assumption used in the proof is that, if a sequence (@, | n € “>n)
and a formula ((Z§) witness weak k-TP1 then we may assume (&, | n € “>n) is 1- fti.
In [1], Shelah and DZamonja also defined the notion SOP,, which turns out to be
equivalent to k-TP1 (& 2-TP1). Hence we have the following picture:
| SOP,(< &-TP1) = Weak k&-TP1 = SOP, = TP

where TP denotes the tree property characterizing non-simple theories. Shelah and Usvy-
atsov showed that the implication SOP; = TP can not be reversed [5|. However, it still
remains unknown whether any of the other implications above is reversible.
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